
 Simon Thompson, 1996. Acknowledgements to How To Solve It by G. Polya upon which this table is based.

HOW TO PROGRAM IT

First understand the problem.

Name the program or function.

What is its type?

In designing the program you need to
think about the connections between the

input and the output.

If there is no immediate connection, you
might have to think of auxiliary

problems which would help in the
solution.

You want to give yourself some sort of
plan of how to write the program.

Writing the program means taking your
design into a particular programming

language.

Think about how you can build
programs in the language. How do you

deal with different cases? With doing
things in sequence? With doing things

repeatedly or recursively?

You also need to know the programs you
have already written, and the functions

built into the language or library.

Examine your solution: how can it be
improved?

UNDERSTANDING THE PROBLEM
What are the inputs (or arguments)? What are the outputs (or results)? What is
the specification of the problem? Can the specification be satisfied? Is it
insufficient? or redundant? or contradictory? What special conditions are there
on the inputs and outputs?

Does the problem break into parts? It can help to draw diagrams and to write
things down in pseudo-code or plain English.

DESIGNING THE PROGRAM
Have you seen the problem before? In a slightly different form?

Do you know a related problem? Do you know any programs or functions
which could be useful?

Look at the specification.Try to find a familiar problem with the same or similar
specification

Here is a problem related to yours and solved before. Could you use it? Could
you use its results? Could you use its methods? Should you introduce some
auxiliary parts to the program?

If you cannot solve the proposed problem try to solve a related one. Can you
imagine a more accessible related one? A more general one? A more special
one? An analogous problem?

Can you solve part of the problem? Can you get something useful from the
inputs? Can you think of information which would help you to calculate the
outputs? How could you change the inputs/outputs so that they were ‘closer’ to
each other?

Did you use all the inputs? Did you use the special conditions on the inputs?
Have you taken into account all that the specification requires?

WRITING YOUR PROGRAM
In writing your program, make sure that you check each step of the design. Can
you see clearly that each step does what it should?

You can write the program in stages. Think about the different cases into which
the problem divides; in particular think about the different cases for the inputs.
You can also think about computing parts of the result separately, and how to
put the parts together to get the final results.

You can think of solving the problem by solving it for a ‘smaller’ input and
using the result to get your result – this is recursion.

Your design may call on you to solve a more general or more specific problem.
Write the solutions to these; they may guide how you write the solution itself, or
may indeed be used in that solution.

You should also draw on other programs you have written. Can they be used?
Can they be modified? Can they guide how to build the solution?

LOOKING BACK
Can you test that the program works, on a variety of arguments?

Can you think of how you might write the program differently if
you had to start again?

Can you see how you might use the program or its method to
build another program?


