
PROGRAMMING IT IN HASKELL

This document tells you some ways that you can write programs in Haskell. In the left-hand column are general
programming advice, and suggestions about the specifics of writing in Haskell. In the right-hand column you can find
examples to illustrate these ideas.

GETTING STARTED
First we need to get a clear idea of the problem. What are
the inputs; what are the outputs? What are their types?

For example, we may want to find the greatest of three
integers. The inputs are three integers (Int in  Haskell),
the output is an integer.

We have to think about how to use Haskell to represent
the types of the problem; we first look at cases where
choices are clear, and revisit types later.

We can then start our definition in Haskell. We have to
name the function(s) we are going to write, and give their
type(s).

We need to know this information before we start writing
our definitions.

In the ‘greatest of three’ example we have the function
maxThree of type

  Int -> Int -> Int -> Int

The type after the last arrow is the type of the result; the
others are the types of the arguments (or inputs).

Usually we are not working from scratch; now is the time
to review what we know already that might be relevant
to the problem:

• What functions does the language provide already
which might be useful? You can look in the standard
preludes to find out about these.

In the context of the example, max is useful as it gives
the maximum of two arguments.

• Have we solved a simpler problem before? If so, we
can perhaps take the definition as a guide, or modify it to
work in the new problem.

We can define maxi to take the maximum of two
arguments:

  maxi a b | a>=b         = a

           | otherwise    = b

• Have we solved a related problem before? We might already have found the minimum of three
numbers; the two problems are close, and we can modify
the minimum to maximum.

• Can we use a function we have defined already in
solving this problem?

In our running example, we can in fact use maxi or max
in defining maxThree:

  maxThree a b c = maxi a (maxi b c)

DEFINING A FUNCTION
Function definitions in Haskell consist of a number of
conditional quations. At the start of each, after the
function name, there are patterns, which show to which
data each equation applies. After this there may be
multiple clauses, representing different cases, and a
where clause to hold local definitions.

In this section we take the running example of finding
the maximum of a list of positive integers. We can begin
by naming it and giving it a type, thus:

  maxList :: [Int] -> Int

An obvious question raised by the specification is what
to do about an empty list? Since we have lists of positive
numbers, we can signal that a list is empty by returning
the result 0 in that case.



We can start by designing the patterns to which each
equation will apply. Each type has characteristic patterns
which are often (but not always) used. In the case of lists
we have patterns for an empty and a non-empty list; for
instance.

  maxList []    = …

  maxList (a:x) = …

Given the patterns we look next at how to work out their
corresponding results. What will help?

In the example, we can do the [] case straight away:

  maxList []    = 0

For the non-empty list (a:x) we have to think a bit
more…

• It usually helps to think of examples. These clarify the
typical cases, and how the definitions might work.

In the example, we might think of

  maxList [4,1,2]

  maxList [2,1,4]

in one case the maximum occurs at the head, in the
second it occurs in the tail of the list.

• Often definitions are recursive: the value at (a:x) is
calculated using the value at x, or the value at n is
calculated from the value at (n-1).

Here we try to define

  maxList (a:x)

using maxList x

The problem is that as we saw in the examples above, the
result may be maxList x, or it may be a itself, so…

• In working out values, we maybe need to divide into
cases. These give guards, which follow the vertical bars;
the corresponding result is separated from the guard by
an equals sign.

  maxList (a:x)

    | maxList x > a     = maxList x

    | otherwise         = a

Can we break down how the value is calculated into a
number of smaller calculations?

• We can use the where clause to make these smaller
calculations, for instance.

  maxList (a:x)

    | maxL > a       = maxL

    | otherwise      = a

    where  maxL = maxList x

MORE COMPLEX DEFINITIONS: BREAKING THE PROBLEM DOWN
A problem is often solved by breaking it into parts.
These parts might be functions which are to be called by
other functions, or to be composed together.

• Function composition is useful in many examples. A
task is broken into parts, the inputs being transformed to
an intermediate value, then the result is calculated from
this value.

How many characters in a list of strings?

  charCount :: [String] -> Int

First find the length of each string,

  countEach :: [String] -> [Int]

then sum the results

  sum :: [Int] -> Int

giving the definition

  charCount stList

    = sum (countEach stList)

or directly,

  charCount = sum . countEach



• Built in functions are helpful in suggesting ways of
breaking a problem down.

We want to count the number of characters in each string
in a list, that is apply a function to every member of a
list, so

  countEach stList

    = map countString stList

Of course, countString is built in too

    = map length stList

• Another way of breaking a problem down is to write
the solution using things which then have to be defined
themselves in a where clause.

If we want to calculate the maximum of three numbers
and the number of times that maximum occurs we can
write

  maxThreeCount a b c

    = (max,count)

      where

      max   = maxThree a b c

      count = if a==b && b==c then 3

              else …

• The methods suggested here are top down: we work
down from the original problem (the top). It can also be
useful to work bottom up, writing functions we know we
will need in our overall solution.

Suppose we are asked to build an index for a document.
We will need functions to split the document into lines,
words and so on; to order words and entries etc. These
can be built and tested separately.

• Sometimes we have to solve a related problem, in
addition to the original one..

An example occurs if we are trying to find out whether
one string is a substring of another.

In deciding whether the string st is a substring of
(a:x), it will either be a substring of x, or a substring
of (a:x) starting at the front: we need a function to
decide the latter: frontSubStr.

  subStr st (a:x)

    =  subStr st x ||

       frontSubStr st (a:x)

• Sometimes we have to generalise a problem, seemingly
making it more complicated, in order to get the solution,
This happens when trying to write a recursion fails…

A good example would be to define [1..n] if it was
not already built in. We start by saying

  [1..n] = 1:[2..n]

but where do we go now? We have to define [m..n]
instead:

  [m..n] | m<=n         = m:[m+1..n]

         | otherwise    = []

DESIGNING DATA TYPES
We need to know the built in types of the language. The base types are Int and other numerical types; Bool

and Char. Compound types are tuples (t1,t2,…),
lists [t] and function types t1->t2.

Types can be given names. Type synonyms are given in Haskell thus:

  type Name = [Char]

  type Age  = Int

The types can be combined to give representations of
many more complex objects.

A person might be represented by their name and age

  type Person = (Name,Age)



In a functional programming language, functions can be
thought of as arguments and results of other functions.

map takes a function which is to be applied to every
element of a list.

filter takes a property, which is represented as a
function taking an element to a Bool, as well as the list
to be filtered.

If a type contains different kinds of object, then we might
well use an algebraic type to represent it.

A simple example is of geometrical shapes on a two-
dimensional grid.

• First we name the type and think of the different kinds
of object which it contains.

The type will be Shape, and will contain circles, lines
and triangles.

  data Shape = Circle … |

               Line … |

               Triangle …

• Next we have to think of the components of the
different kinds of object. This completes the definition.

This process works equally well for recursive types like
trees.

Points on the grid will be represented by Point (to be
defined). A circle is given by its radius and centre, a line
by its end points and a triangle by its three corners:

  data Shape

    = Circle Float Point |

      Line Point Point |

      Triangle Point Point Point
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