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ABSTRACT 
The move towards a semantic web will produce an increasing 
number of presentations whose creation is based upon semantic 
queries. Intelligent presentation generation engines have already 
begun to appear, as have models and platforms for adaptive 
presentations. However, in many cases these models are 
constrained by the lack of expressiveness in current generation 
presentation and animation languages. Moreover, authors of 
dynamic, adaptive web content must often use considerable 
amounts of script or code, thus breaking the declarative 
description possible in the original presentation language.  
Furthermore, the scripting/coding approach does not lend itself to 
authoring by non-programmers. In this paper we describe a set of 
XML language extensions that bring tools from the functional 
programming world to web authors, extending the power of 
declarative modeling for the web. The extensions are described in 
the context of SMIL Animation and SVG, but could be applied to 
many XML-based languages. 

Categories and Subject Descriptors 

H.5.1 [Information Interfaces and Presentation]: Multimedia 
Information Systems – Animations, I.3.6 [Computer Graphics]: 
Methodology and Techniques – languages, standards. 

General Terms 
Design, Standardization, Languages, Theory, Verification. 

Keywords 
Animation, declarative, DOM, function, modeling, parameter, 
event, SMIL, SVG, time, XML,  

1. INTRODUCTION 
Web authors are turning more and more to W3C language 
standards as powerful yet simple to use authoring tools. These 
languages are declarative, providing a domain-level description of 
both content and presentation. When authors need additional 
capabilities not provided in the language, they are forced to work 
in an imperative scripting or programming language, such as 
ECMAScript or Java. Since most content authors are not 
programmers, this is often awkward. 
Modern presentation generation systems, such as [14], rely on the 

structure and semantics of declarative languages, and often cannot 
easily integrate imperative content extensions. Similarly, the use 
of script or code is problematic in data-driven content models 
based upon XML and associated tools. 
In this paper we will motivate and describe a set of XML [10] 
language extensions that will enhance these language standards. 
The specific extensions are inspired by constructions from 
functional programming languages, and include: 

• attribute values defined as dynamically evaluated 
expressions, 

• custom (or ‘author defined’) events based on predicate 
expressions, 

• parameterized templates for document content. 
The paper outlines these proposed extensions, discusses how they 
may be integrated into existing languages and implementations 
and illustrates their effect in examples based on SMIL animation, 
XHTML and SVG graphics.  In this introduction we will review 
both the W3C XML-based and the functional language-based 
approaches to authoring, and we will then outline in general terms 
what we feel the former might gain from the latter. 

1.1 Authoring in W3C language standards 
Many W3C language standards promote a declarative approach to 
defining complex document manipulations. These languages 
include standards for XML document transformation [25], styling 
and presentation [5, 11] as well as languages to describe complex 
multimedia elements such as 2D graphics [16], and timing, 
synchronization and animation [18]. A declarative language 
permits the author to create a high-level description that explains 
what is to happen rather than how the effect is to be achieved. 
This latter, lower-level, description is usually provided by a 
system program of some sort, such as an interpreter.   
Consider a simple example written in SVG and SMIL Animation: 

<circle cx="20" cy="20" r="100" fill="red">
<animateMotion dur="5s" from="0,0" to="50,50"/>

</circle>

This fragment defines a red circle and a motion animation, 
moving the circle down and right over the course of 5 seconds. 
The SMIL 2.0 Animation module provides a small domain-
specific language (DSL) for describing the animation of 
properties in a document. The language contains certain primitive 
constructs (elements) for functions such as changing a property 
over time or moving a target object along a path, and provides a 
model for composing multiple animations on a given property.  
Details of the animation (such as the duration and the property 
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values to interpolate) are specified as attribute values (dur, from 
and to in the example).  
The DSL approach has the advantage over the use of script or 
code that document semantics are machine independent while at 
the same time machine understandable. Thus, documents can be 
interchanged among authoring tools and rendered consistently 
across a range of presentation implementations.  
The XHTML+SMIL integration [21] has provided additional 
experience with animation and adaptation, especially with the 
flow layout model provided in HTML/CSS. Because the size and 
position of elements can often be determined only at presentation 
time (and can vary depending on user preferences), it is often 
impossible to specify associated values for animation at author 
time. A more flexible definition of animation values is needed; 
with current technology this dynamic animation can only be 
achieved using script- or code-based extensions. 
SVG integrated and extended SMIL Animation to support 
dynamism for vector graphics. While this was an important early 
integration, the model was intentionally simple, and as a result, 
many animations can be described only with the use of script. 
Furthermore, SVG demonstrates some awkward interactions 
between animation and other useful features such as the template 
support provided by <symbol> and <use>.  In particular, the 
model for <use> precludes animating child elements, precludes 
variant animation instances (e.g. varying duration or values per 
<use>), and makes interactive animation awkward (with the 
shadow element event-handling model). 

1.2 Authoring in a programming language 
An alternative approach to multimedia authoring, discussed for 
example in [3], consists in making use of a programming 
language. Of its nature, a general purpose programming language 
is guaranteed to provide the author with sufficient power to 
implement virtually anything, but the costs of complexity, lack of 
portability, and the overhead associated with the implementation 
of such a language are such that it is by no means clear that use of 
a programming language is a preferable approach to authoring.  
Moreover, multimedia authors and designers are generally not 
programmers. Nevertheless, functional programming languages 
like Haskell [19] have been shown to provide a suitable substrate 
for embedding DSLs of various kinds [12], including the Fran 
system for Functional Reactive Animation [8]. These models 
provide a powerful and flexible programming environment, but 
require a level of sophistication well beyond the authoring model 
of SMIL. Moreover, it is well nigh impossible to integrate 
programmed models into current authoring tools. 
Constraint programming languages [13] also provide a suitable 
host for multimedia description. A document is described in terms 
of a collection of constraints on the spatial [20] and temporal [1] 
layout of the components, and a constraint solver is used to find a 
presentation that meets all the constraints. Constraints can be seen 
as a restricted form of logical formula. 
More general logics, such as variants of interval temporal logic 
[2] can also be used to specify high-level presentations as a 
collection of logical requirements. Other approaches to 
multimedia description can be found in [14] and a comprehensive 
overview of timing issues in multimedia and computer graphics is 
given in [17], which, inter alia, also discusses the tension 
between authoring and programming in the Tbag model. 

1.3 When the DSL is not enough – adding 
functionality 
The declarative DSL approach to multimedia authoring provides a 
number of benefits. A user is presented with a clear model of what 
can and cannot be achieved. SMIL animation, for example, allows 
movement along spline paths, but does not allow the speed of the 
movement to be determined by the speed of a mouse gesture. The 
motion is expressed in the language of the author, using terms 
such as duration and extent, rather than at the level of the 
implementation engine, which draws images in particular places at 
particular times. 
Here's the problem, though. The language is, by its very nature, 
limited, and authors will want to express things that the DSL itself 
cannot. In the case of SMIL animation one might want to  

• animate motion from the current position of the mouse 
to the layout position of some element; or 

• begin an animated figure when the figure is scrolled into 
view; or 

• define a 'template' button with motion animation, and 
then use instances of the template that vary the button 
appearance and animation. 

 
An ECMAScript or Java program could be used to generate or 
modify SMIL content, but the code is non-trivial to write. 
Moreover, once one works outside the DSL all its nice properties 
are lost: document structure and presentation is defined by low-
level imperative instructions from which it is almost impossible to 
reconstruct a declarative description of the intended behavior. 
Scripting is for programmers, whereas the DSL can be used by a 
much wider group of authors whose only requirement is 
knowledge of the domain itself. Furthermore, many authors will 
prefer to work with some authoring tool. Authoring tools can read 
and write (“round-trip”) a DSL, and can exchange DSL 
documents between tools, but there is no way tools can reasonably 
interpret or present an animation description defined in script; 
authors must become programmers to be effective.  
There are two approaches to tackling the DSL/scripting mismatch. 
The first is to embed the DSL in a higher-level language, as 
discussed in the previous section. The second approach is to 
extend the DSL is various ways, consistent with the declarative 
approach. This approach preserves the ability of domain authors 
to work in the language whilst extending its expressiveness.  
In this paper, we adopt the second approach.  Specifically, we add 
three notions, calculation, event-predicates and templates. In the 
case of SMIL these extended features will support the use cases 
mentioned earlier in this section amongst others; these features 
can also be seen to provide a general model for the extension of 
other XML-based languages. 
It is worth noting that SMIL Animation was designed specifically 
to support extension, and that the SVG integration itself includes 
extensions to support SVG-specific functionality (e.g., the 
<animateTransform> element). Our approach is aligned with 
the spirit of the standard.  
The remainder of the paper is organized as follows.  Section 2 
introduces three common use-case scenarios that we use to 
illustrate our various extensions. Sections 3,4 5 and 6 detail these 
extensions, section 7 presents experience and issues with a 
prototype implementation, and section 8 presents some further 



  

examples that illustrate these extensions and their utility.  Section 
9 presents our ideas for future work in the direction of adding 
functional features to XML languages, and concludes. 

2. USE-CASE SCENARIOS 
We describe three primary use-case scenarios that motivate and 
help to explain our extensions. These were chosen to span a range 
of common Web content models, and to highlight shortcomings in 
current content description mechanisms. We refer to these as we 
discuss the extensions in detail. 

2.1 Arrow/Missile scenario 
Consider a game-like scenario in which a projectile is fired at a 
moving target. The course of an arrow is fixed when the arrow is 
fired, whereas a guided missile can track the course of its target in 
flight. We want a simple way to describe motion towards a target, 
for both arrow and guided missile behavior variants. 
Although games are not the primary content on the web, they are a 
very common application of animation tools, and serve as a 
measure of the expressiveness of an animation model. 

2.2 Begin-when-viewed scenario 
In a long scrolling document, we have figures that are animated to 
illustrate concepts in the accompanying text. We want each 
animation to begin only when the particular figure is scrolled into 
view (either directly with scrolling UI, or indirectly via hyperlink 
scrolling, etc.). Especially for a longer animation, this allows the 
document presentation to be ‘in sync’ with the user as she reads. 

2.3 Menu scenario 
A common UI component in documents is a navigation menu, 
composed of buttons that hyperlink to other pages, or begin 
content within the page when clicked. The menu buttons may be 
composed of complex graphics, and include roll-over or other 
interactive behaviors, so that much of the definition of each 
button is common or shared, and varies only in the details (such 
as the position, text label, or color). Menus are used across a wide 
range of documents, in multimedia as well as simple hypermedia. 

3. EXPRESSIONS 
The expression language we propose forms the basis for our 
dynamic attribute values and our event predicates. In our 
‘arrow/missile’ scenario, we calculate the projectile motion based 
upon the position of the target, where in the ‘begin-when-viewed’ 
scenario we define an event predicate as a Boolean expression 
using object dimensions and the scroll position.  The first case 
uses simple expressions, while the second is a more complex 
Boolean combination of simpler expressions, and illustrates the 
value of a fully featured expression language. 
In defining the expression language we have chosen names and 
definitions similar to those used in [7]. We have, however, 
imposed a number of constraints for authoring simplicity and 
runtime safety.  A complete definition of the current form of our 
expression language is to be found at the following URL: 
http://www.cs.ukc.ac.uk/people/staff/sjt/PDXML/Expr.htm; here 
we concentrate on some of its more significant features and omit 
most details of syntax. 

3.1 The typing mechanism 
The expression language provides three types: numeric, string and 
Boolean types. The expression language is typed: if an operator is 
applied to an operand of an incorrect type, then the value 
undefined is returned. Moreover it is strongly typed: all types can 
be computed and verified prior to presentation. Furthermore, there 
are no coercions (automatic type conversions) between types in 
the model and in particular, therefore, there is no conversion 
between the numeric and Boolean types in our model.  We believe 
that most authors will find such a type safe model more natural 
and less error prone. We contend that in the following fragment in 
which “-” has been mistyped as “<”, the author would prefer to 
have the expression yield the value undefined (causing the 
animation to have no effect), rather than to have a Boolean quietly 
coerced to 0, causing the animation to behave in a subtly incorrect 
manner: 
<animate from="calc(a+b)" to="calc(a<b)" …/> 

3.2 Types and operators 
3.2.1 Data types 
Our choice of data types is motivated to a very large degree by the 
application domain.  Numeric types are needed as they are widely 
used when computing the evolution of animated values.  Booleans 
are needed for use within events and predicates.  Strings are used 
to convey information, and in a dynamic context it will be 
necessary to compute strings, (or at least to choose from among 
alternatives). For example, a different string might be generated 
according to the position of an object on a web page (‘top’ or 
‘bottom’).  
The numeric type consists of floating-point numbers and the 
Boolean type contains the two values true and false. More 
specifically, the Number type contains numbers, the special values 
NaN (not a number) and positive and negative Infinity. Integer 
and floating-point literals are given in the usual IEEE format: 
integer literals are (optionally signed) strings of digits, and 
floating point literals consist of a decimal number with fractional 
part and an optional integer exponent following the symbol E or 
e. Boolean literals are, as usual, defined by the keywords true 
and false. String literals are enclosed between single quotes 
(since double quotes are used to delimit XML attribute values). 

3.2.2 Operators 
We have included a typical set of unary and binary, arithmetic, 
relational and Boolean operators.  The Boolean operators for 
conjunction and disjunction are lazy: if their first argument 
evaluates to false (respectively true) then this value is returned 
without evaluating the second argument. In addition, we have 
provided a C-style ternary conditional operator, denoted “?:”. 
The first argument of ?: is a Boolean; if this evaluates to true, 
then the result of the second argument is returned; otherwise, the 
result of the third argument is returned. This operator plays the 
role of the conditional statement to be found in traditional 
programming languages. 
Binary operators have a level of precedence as well as defined 
associativity (left, right or none).  Our definitions are, as far as 
possible, compliant with IEEE standards; full details appear at the 
URL given in the introduction to this section. 
In accordance with our rule that that expressions are well typed, if 
an operator is applied to an argument of the incorrect type, then 
the undefined result is returned from the evaluation. We also make 
the general assumption that if an evaluated argument to an 

http://www.cs.ukc.ac.uk/people/staff/sjt/PDXML/Expr.htm
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operator has the value undefined, then the result of the operation 
is also undefined. In practice, when an expression evaluates to 
undefined, the effect is the same as if an author specified an illegal 
attribute value. The resulting behavior is defined by the 
integrating language – in SMIL Animation, for example, an 
undefined result for a from or to attribute will cause the 
animation to have no effect. 

3.2.3 Language Functions 
We provide a fixed repertoire of numeric functions to supplement 
the basic arithmetic operators. The functions are of four types: 

� simple numeric functions whose role is largely to 
supplement the set of arithmetic operators, including 
abs, max, min, floor,  etc. 

� functions which return Boolean values, such as  isFinite 
etc. that serve to provide the means to add a higher 
degree of security to the code being produced,  

� mathematical functions, such as cos, tan, sqrt, exp etc. 
which are frequently needed in the computation of 
animation paths, 

� environment functions: these functions return 
information about the current environment, such as the 
current time. 

The choice of functions given here represents a core of general 
functionality likely to be required across all application areas. The 
choice is not intended to be definitive or closed; language 
designers who integrate this module may extend the language to 
include functions relevant to the particular domain. We expect 
that implementation techniques will extend to these domain 
specific elements in a straightforward way. 
It should be noted that our model provides no facility for the 
author to define functions for herself. This important constraint 
greatly simplifies the authoring model, and also provides a 
measure of ‘safety’ for the implementation (ensuring, for example, 
that expressions used with animation can be quickly evaluated at 
each animation sample). Our goal was to provide flexible 
expressions, not a programming language. 

3.2.4 Domain-specific values  
Each domain will have a set of properties that expose OM (Object 
Model) values in a manner convenient for use in expressions. For 
example in SMIL Timing integrations, properties such as the 
current simple time or a Boolean isActive would likely be 
provided. 
One set of properties we see as common to many applications 
exposes the mouse position in a simple manner. The mouseX and 
mouseY properties are exposed on all elements that can raise a 
mousemove event. The actual values follow the definition given 
in [6] for mousemove events, returning the position of the mouse 
relative to the container (which in turn is language specific). 
Expressions can reference these mouseX/Y properties on the root 
layout element (e.g. “body.mouseY”) to get “global” mouse 
positions, or on a particular target element to get “local” mouse 
positions. 

4. CALCULATION 
We apply the expression functionality to animation attributes, 
allowing the values that describe the animation function to be 
expressed as calculated expressions. This approach provides more 
expressive power to authors, greatly increasing the range of 

animation use-cases that can be expressed, and also allows 
dynamic documents to be adaptive, in that animation function 
values can be defined in terms of other document properties that 
are computed or may change in response to user actions.  
Expressions may be applied to any of the attributes used to 
describe the animation function values. This includes from, to, 
by, and values, as well as path for <animateMotion>. The 
expressions are called out for the parser with a prefix (‘calc’) and 
enclosing parentheses, similar to CSS functional notations. 
For example, to ‘zoom’ a box from the current size up to 80% of 
the page width, we specify: 
<animate attributeName="width" dur="5s"

to="calc(body.width*0.8)" .../>

For target attributes that take simple scalar values, the result of the 
calculated expression must be a legal value for the specified 
attribute. Vector-valued attributes (e.g. position or transforms) are 
supported using the vector syntax of the attributeType 
domain, but allowing calc-values for each constituent of the 
vector value, as in the following example. To ‘fly’ an object from 
the right edge of a button to the position of a content container, 
we specify: 
<animateMotion dur="5s"

from="calc(btn.x+btn.width),calc(btn.y)"
to="calc(content.x),calc(content.y)" …/>

An interactive example (using XHTML+SMIL) tracks ‘tooltip’ 
text with the mouse, and sets the tip string to indicate whether the 
mouse is on the upper or lower half of the page: 
<p>
<t:set attributeName="left"

to="calc(body.mouseX+20)"/>
<t:set attributeName="top"

to="calc(body.mouseY-5)"/>
<t:set attributeName="innerHtml"

to="calc((body.mouseY>(body.height/2))?
‘Lower’:‘Upper’)"/>

</p> 

4.1 Computation model 
In its simplest form, the computation of expressions is performed 
using a stack calculator with a few built-in functions and value 
references. However, the resolution of the references to Object 
Model values introduces two key questions: 

• Which value for a property should be used? 

• When should the referenced value be sampled? That is, 
when and how often should we re-calculate the 
expression? 

4.1.1 Resolving OM value references 
There are three possibilities for the type of values to use in value 
references: 

1. the author-specified value,  
2. the computed value (e.g. CSS OM computed-style 

property values),  
3. the animated value (e.g. SVGAnimatedNumber 

animVal values).  
We conducted a number of experiments and considered a broad 
range of use-case scenarios. We concluded that specified values 
are rarely useful in practice and could be ambiguous for things 
like CSS properties in which the value could be specified in many 
different ways. We note that the use of computed values may be 



  

appropriate in applications outside animation, e.g. for property 
values in CSS or XSL stylesheets. In our application domain 
however, where the values are used in the specification of 
animation functions, we concluded that the use of animated values 
would make the most sense to authors.  Thus, when a referenced 
property is the target of animation(s), the animated value is used 
in the expression; when the property is not animated, the 
calculated value is used. 

4.1.2 Expression calculation frequency 
We describe the sampling rate for referenced values as the 
calculation frequency of the expression, and have identified four 
distinct models of when evaluation takes place: 

1. once at parse time, for values that are effectively 
constants (e.g. user-agent window size), 

2. after layout is complete, for values that depend upon 
styling and layout (e.g. position of an inline element),  

3. each time an animation begins,  
4. each time an animation is sampled.  

For applications to other domains such as CSS and XSL property 
specification, only cases 1 and 2 apply. However, even in these 
domains there is the issue of handling changes to the referenced 
values (e.g. if script changes a value, or if user interaction forces a 
re-layout). Such changes should cause the engine to re-compute 
the expression that uses the values. But in the context of 
animation, the question then arises: Does the author want an 
animation to update midstream, or would she prefer that it use the 
value it ‘saw’ when the animation began? To illustrate this 
dichotomy, consider the two variations on the ‘arrow/missile’ 
scenario: 
Launching an arrow at a moving target. When the arrow is 
launched, it is aimed at the current position of the target. But once 
launched, it cannot change its course; further motion of the target 
has no effect upon the arrow. 
Launching a guided missile at a moving target. A guided 
missile is aimed just as the arrow would be, but it also tracks the 
target as it flies, and adjusts its motion accordingly. 
Both use-cases could be expressed using syntax like: 
<animateMotion to="calc(target.x),

calc(target.x)" …/>

In the first case we need to specify that once calculated, the to 
value should remain fixed, while in the second case the to value 
should be re-calculated on each sample. 
Now to back up a bit, in practice we generally want to model 
references to changing values using dependency-relation graphs, 
so that we can efficiently re-compute dependent expressions when 
a given value changes (this can be compared to cache 
maintenance). For a sampled animation, there is no point in re-
calculating more often than the animation is sampled, and so a 
change to a referenced value need only mark all dependent 
expressions as out-of-date; the animation engine will then re-
calculate the expression at the next sample1. 

                                                                 
1 Dependency graphs can chain, as expressions reference values 

that are animated in turn by animations defined with 
expressions. As a dependent value marked "out-of-date", it 
should in turn mark any expression "out-of-date" that references 
the animation target value. Naturally, cycles in the graph must 

If we reconsider calculation frequency assuming the dependency 
graph model is also in place, we can collapse the cases for 
frequency models 1, 2 and 4 into one case; for this, we re-
compute an expression every time we sample the animation graph, 
but if (and only if) a referenced value has changed. Cases 1 and 2 
will change infrequently, but are covered by this simple rule. Case 
3 is then distinct in that it ignores changes to referenced values 
once an animation has begun. 
To provide authoring control over this behavior, calc() 
expressions can take an additional parameter that indicates the 
desired calculation frequency. Allowed values are always and 
atStart, with always assumed as the default2. Thus our arrow 
use-case is specified: 
<animateMotion to="calc(target.x, atStart),

calc(target.x, atStart)"…/>

The guided missile case could either specify always or just use 
the default semantics. 

5. EVENTS AND PREDICATES 
In many animation use-cases, we need to know when a certain 
condition is true, and to take action in response. Object models 
typically provide a set of events to indicate a range of interaction 
conditions (e.g., mouse events) as well as document conditions 
(e.g., media download and mutation events). These can be used 
declaratively to bind actions to the events - e.g., in SMIL, to begin 
or end an animation when an event occurs. However, there is no 
means for the author to declare new events specific to the 
document content.  Authors are forced to resort to code, and the 
implementation of conditional events is non-trivial even for 
programmers. 
High-level languages for simulation and concurrent programming 
support the definition of conditions and associated events, albeit 
programmatically – outside the domain of XML authors. Early 
drafts of the event syntax of XML [9] included a step in this 
direction, supporting declaration of a new event based upon 
existing events, with timing constraints when integrated with 
SMIL. This functionality was removed in later drafts. 
We define an XML syntax that leverages our expression support 
to model author-declared events. Events are generated from 
Boolean expressions; when this expression (or predicate) 
evaluates to true, an event is raised on a target element (following 
the model of [6]). This is inspired by the Fran event model [8]. 
For example, an author could define an ‘enterView’ event that 
indicates when an image appears in the current user agent 

                                                                                                           
be detected and broken (just as for SMIL Timing references). 
There is further room for optimizations that take into account 
the semantics of animation composition. Also, the traversal 
order of the animation tree may generate forward references to 
animated values, and so update of the "cached" expression 
values is slightly more complex than described. Nevertheless, 
these principles of optimized computation (cache maintenance) 
still apply. 

2 In other applications domains where timing does not play a 
central role (e.g. for property definition in CSS or XSL 
stylesheets), the distinction is meaningless and so this syntax 
option need not be supported - the default behavior of "always" 
will correctly apply. 



  

window3 (e.g., to note when a user scrolls a figure into view). In 
an XHTML integration, this could be described using the syntax: 
<event target=”img1” type=”enterView”

predicate=”img1.top <= body.clientHeight” />

The target attribute indicates (as an ID-REF) the element on 
which to raise the event; type declares the event type for binding 
references; predicate is an expression as defined in section 3. 
The event will fire once as soon as the condition is true (as soon 
as the document loads when the condition is initially true). It will 
not fire again unless the predicate is reset, either because: 

• the predicate changes to false. 

• the event element itself resets, e.g., in integration with 
SMIL Timing when the element restarts. 

Note that the calculation frequency for event predicate 
expressions is fixed — by definition — to be always. 
We considered an additional attribute to preclude an event being 
raised more than once. In integration with SMIL, this may be 
unnecessary as a similar semantic is provided by SMIL Timing. If 
the integrating language allows the <event> element to support 
SMIL timing, events are only raised when the element is active 
(between the begin and end times); the author can then leverage 
the SMIL restart attribute to ensure that the event is raised at 
most once. 
Some common use-case scenarios for event predicates include 
collision events, limit-conditions (when a property goes above or 
below a certain threshold) and state modeling (relating the values 
of a set of properties). 

6. TEMPLATES & PARAMETERIZATION 

6.1 Introduction 
The need to create of a number of similar objects from a common 
template arises naturally in multimedia design, just as it does in 
other areas of system development.  Consider our ‘menu’ scenario 
of a web page with a sidebar containing a menu of navigational 
buttons. The buttons have much in common, but differ in color, 
position and label. The buttons will have common animation 
behaviors, such as highlighting when the cursor passes over the 
button. A frequent mode of design is first to produce a correct 
animation of a single button, and then to copy and modify this 
animation for the other buttons. Thus, having developed a blue 
button labeled Home, and placed at position (10, 25), an author 
can use this as a template for the creation of 4 other buttons, with 
varying colors, individual labels and positioned down the page as 
a menu.  Although this effect can be achieved by explicit copy and 
modify, such an approach is hard to maintain, and inefficient to 
express, bloating the description file. A better approach is to 
define a template with parameters for color, label and the button 
number (from which the position is calculated). The template can 
then be instantiated with different property values at each 
instance. 
SVG provides a mechanism for creating elements which may be 
used as such templates, including symbol elements, graphic 
elements, and so on.  Moreover, SVG provides a means for 
instantiating such elements, the <use> element, described in 
section 5.6 of [16]. An element instantiated in this fashion 
                                                                 
3 A more complex predicate could also consider the height of the 

image, and fire when the image is fully in view. 

references some other named element, and indicates that the 
graphical contents of that element is to be included and/or drawn 
in place of the <use> reference. Thus, using the SVG model, one 
may copy the definition of a button symbol as: 
<use xlink:href= “#button” …/>

and thereby may instantiate as many copies are needed. 
However, the <use> element in SVG has some severe constraints.  
In particular, the <use> element does not enable one to change 
attribute values when re-instantiating a definition.  Thus, one 
cannot easily change the color attribute from blue to green, or the 
label attribute from Home to Search.  Because of the shadow 
DOM model in SVG 1.0, there is neither an Information Set [24] 
representation of the instance nodes, nor DOM element nodes. As 
such, there is no way to target animations to nodes within an 
instance tree – e.g., one cannot target an animation to a color 
property on an element within the template instance. The SVG 
model also precludes registering event handlers on nodes within 
the template instance – this makes it difficult to define interaction 
and timing on instance nodes. Further, the identifiers appearing 
within the various instantiated copies of the element are identical 
across the various instantiations, severely limiting the utility of ID 
values and references. 
By way of contrast, within the more general domain of 
programming languages and design tools, the notion of the 
instantiation of such a template and of creating variants when 
instantiating is commonplace. Support is generally provided by 
linguistic mechanisms such as object creation and 
parameterization, and identifier scopes.  

6.2 Proposed solution 
Our goal is to provide facilities that remain within the declarative 
idiom of XML. Our proposed extensions are inspired by the SVG 
<symbol> and <use> elements illustrated above, but the 
semantics are different enough that we define new elements 
<template> and <instance>.   
We then propose a simple mechanism for the specification of 
formal parameters within <template> elements, and the 
provision of actual parameter values within <instance> 
elements. Parameterization allows for more flexible instantiation, 
increasing the useful domain for templates and making the 
language more efficient as more cases can be represented as 
templates, thereby reducing file size. 
Within the template element:  

• each (formal) parameter is specified using  a <param> 
element and its name attribute; 

• a default value may optionally be assigned to the 
parameter using the value attribute; omitting this is 
equivalent to specifying the special value “” (the empty 
string), and allows no value to be specified. When used 
for an attribute value within the template, this 
effectively specifies that the language default be used; 

• a formal parameter may be referenced anywhere within 
the template content that defines it; the reference is 
designated by prefixing the parameter name with the ‘$’ 
character.  

The following example illustrates these notions: 
<template id="button">

<param name=”color” value="blue" />



  

<param name=”label” />
<param name=”num” value ="0" />
<rect id=”bg” width=”100” height=”40”

style=”fill:$color”
x=”10” y=”calc(25+$num*(40+5)”>

<text>$label</text>
<animateColor id=”rollover”

begin=”bg.mouseover” end=”bg.mouseover”
attributeName=”fill” to=”yellow” />

</rect>
</template>

<instance id=”homeBtn” xlink:href=”#button”>
<param name=”label” value=”Home”/>

</instance>

<instance id=”goBackBtn” xlink:href=”#button”>
<param name=”label” value=”Go Back”/>
<param name=”num” value="1" />

</instance>

<instance id=”searchBtn” xlink:href=”#button”>
<param name=”color” value="green" />
<param name=”label” value=”Search”/>
<param name=”num” value="2" />

</instance> 
The template describes a generic button with default color, 
rollover behavior etc. Each instance defines a button in the menu, 
specifying the label, etc. The position is calculated as a dynamic 
expression based upon the button number, and shows how we can 
combine our extension features. 
In order to make it possible to refer to each instantiated copy 
independently, a mechanism is required to associate a local 
identifier space with each such instance.  Support for local id-
spaces has two further advantages.  

• In the first place, it will enable the use of each instance 
to be exposed as a true DOM copy, rather than as a 
shadow copy (as used by SVG); any tools that query the 
DOM need not be modified to work with instances.  

• Further, the presence of local ID name-spaces enables 
the children to be selected by style sheets, to be targeted 
by external animations or XMLE event bindings [9], 
and to be referenced by script. 

We have investigated two possible approaches to the provision of 
such separate identifier spaces.  The first is a general solution 
using structured ID references (e.g. homeBtn/bg where the 
instance introduces a new ID scope, and so bg is found as a 
descendent of homeBtn), analogous to that used by a compiler 
when instantiating objects in a scope-based object-oriented 
language.  In the longer term, the DOM and XML Info Set models 
will need to address the issues associated with compound 
documents and fragment transclusion, and may well incorporate 
such a model for local ID-spaces.  
However we do not propose such an approach at this stage, since 
it would require major changes to existing XML parsers and to 
the DOM model; in our view changes of such a scale would be 
inappropriate at this time. For present purposes, therefore, we 
propose a second solution, which requires no XML parser 
changes.   Our proposal for our template extension translates local 
IDs and references. The language interpreter will change all local 
(within the template) ID definitions and local ID references (i.e. 
ID-REFs to local IDs), inserting the value of the <instance> ID 
as a prefix.  Thus we can express the two distinct references to the 
background rect element for the home and search button 
instances in the menu example, as in the following animation 
declarations: 

<animate targetElement=“homeBtn.bg” …/>

<animate targetElement=“searchBtn.bg” …/>

It should be observed that since dot ‘.’ is a legal ID char, the code 
created by this scheme will conform to current XML syntax and 
will function in the desired manner, mimicking the structured ID 
solution.  This simple approach has the advantage of providing a 
mechanism for separate name spaces within the correct XML 
framework, and will give us a useful means for experimenting 
with this facility while making use of existing XML parsers4. 

7. IMPLEMENTATION EXPERIENCE 

7.1 Calculated expressions and predicates 
We developed a prototype implementation for our expressions, 
leveraging the MS Internet Explorer 6 support for 
XHTML+SMIL. The extensions were developed using the IE 
behavior mechanism. Our behavior located calc() expressions 
in the attribute values for animation elements, and then evaluated 
the expressions using the JScript engine (since our syntax is a 
subset of ECMAScript syntax). The animation attributes were 
then set via DOM interfaces to the resulting expression values, 
replacing the “calc()” strings. This works in part because the 
“calc()” strings are illegal values for the animation attributes, 
which causes the animations to have no effect (until the behavior 
provides legal expression result values). This first version was not 
unlike the support in IE for dynamic CSS properties (an 
inspiration for our extension), but applied to animation attribute 
values. 
The next step was to refine the behavior to parse the expressions 
in the behavior, implementing a stack calculator and modeling the 
dependency graphs using property mutation events (provided in 
the DOM). Unfortunately, the IE implementation does not raise 
propertychange (i.e. mutation) events for animated CSS 
properties. We added a brute force work-around to get 
notifications, but the propagation of changes through dependent 
expressions sometimes lags by one sample. A native 
implementation would resolve this. 
Since we cannot inject our behavior code into the animation 
sampling traversal in IE, we cannot always optimize expression 
calculation (cache maintenance) to only recalculate once per 
sample. Also, without access to the animation composition 
engine, we are not able to optimize the dependency graph (e.g., 
ignoring dependent expression changes for an animation element 
A when a higher priority, non-additive animation B cancels or 
overrides the effect of A). 
A more robust and better-optimized version of this code could be 
developed in an open-source implementation, such as the Batik 
implementation of SVG. We hope to explore this route. 

7.2 Templates and parameterization 
We are currently developing <template> and <instance> 
element prototypes, again using IE behaviors. The <template>
implementation is trivial, and just ensures that the element is 
removed form the layout and display graphs (setting the CSS 
display property to “none”). The <instance> implementation 
clones the <template> content (except for the <param> 

                                                                 
4 There is minimal risk of ID clash, if the document includes an 

element with an ID that matches one of our synthesized ID 
values. However authors and tools can easily avoid this. 



  

elements), and then replaces parameter references and maps local 
ID definitions and references. Any “calc()” expressions are 
handled (orthogonally) by the expression behavior described 
above. 

7.3 Observations 
The experience we gained building out prototype leads us to 
believe that high quality, efficient implementations of our 
proposed functionality are entirely feasible. The model for 
dependency graph maintenance is quite similar to that for timing 
references in SMIL Timing; we expect that much design – if not 
code – can be borrowed from this. The most complex aspect of 
the implementation will be to optimize animated value references. 

8. CASE STUDIES  
In this section we briefly outline a number of other use-cases that 
we have considered, and indicate for each where our extensions 
would be of use. 

8.1 Pong 
This 1970s arcade version of table tennis provides further 
examples of the mechanisms outlined in the paper. The example 
was chosen to stress test the extensions we propose, by dint of its 
open-ended and computational nature. 

 
The aim of the game is for each player to keep the ball in play by 
controlling the vertical position of his or her paddle. The two 
paddles are controlled by external user events or behaviors. The 
SMIL definition of the paddle would be a template with 
parameters corresponding to the horizontal position and to the 
events that cause the paddle to move upwards or downwards.  
There would be two instances of this template, one for each 
paddle. 

The ball continues to move in a straight line – a straightforward 
animation – until it hits either a paddle or a wall.  This impact will 
be effected by processing an event generated by a predicate over 
the position of the ball, and the processing of the event will 
require a calculation of the modification to one of the horizontal 
or vertical components of the ball’s motion. 
More advanced effects can cause the ball to flatten a little on 
contact with the paddles, or one can apply a more complex 
transformation to the ball on impact with a moving paddle. The 
players’ score can be shown as an animated string, and other 
attributes – such as the color of the ball – can also depend on the 
players’ performance. 
Among the aspects of Pong that we could not easily model were: 

• multi-user input – this would require DOM support for 
the associated input devices, or equivalent. 

• the definition of variables for the score values, etc. We 
considered and rejected several kludge solutions, using 
extension (a.k.a. expando) attributes or numeric 
properties (e.g., width and height) on hidden 
elements. 

8.2 Other case studies 
A variety of smaller examples illustrate our approach. 

Clocking to show the progress of an operation, registering 
progress by animating an angle. 

 
This would be implemented by animating the angle through which 
a geometrical figure is rotated, which can be can be done either by 
explicit placement of the coordinates of a figure or by animating 
an SVG-style rotation transformation. The animation progress 
(i.e., the animated angle value) would be linked with a calc() 
expression to some other animated property (such as a 
percentLoaded property for media). 
Decaying bounce. To describe the behavior of a ball bouncing, a 
degree of damping needs to be applied to the motion on each 
bounce. This can be achieved by defining the height of the bounce 
motion as an expression based upon an iRepeat value exposed 
by SMIL timing. 

 

Spatialized or layered audio: We tie the stereo balance to x 
position of the audio source, or surround sound to an x-y-z 
position. Alternatively, the mouse position can be used 
dynamically to determine the balance (mix) between a number of 
audio channels (sources). 

Oscilloscope. An oscilloscope gives a visual display of a sliding 
window ‘snapshot’ of an audio signal. A similar display can show 
a time segment of an evolving floating point value of any sort. A 
treatment of this example in Fran is given in [4]. 

9. FUTURE WORK AND CONCLUSIONS 
Our future work will proceed in three related directions: one 
concerned with widening our experience with the authoring 
implications of our extensions, a second concerned with further 



  

integration with W3C language standards, and the third with more 
basic XML extensions to accommodate the scoped ID model.  

9.1 Authoring issues 
All of the experience we have to date with use of these proposed 
language extensions has been with hand authoring of a limited set 
of use cases.  While we do contend that the use cases in the paper 
are varied and complex enough to justify the utility of these 
extensions, we nonetheless need to explore further to demonstrate 
that the extended DSL lends itself to reasonable authoring. 
 

9.2 Language integration and extensions 
9.2.1 Integration with SMIL Timing 
The currently proposed extensions are deliberately all orthogonal 
to the timing model.  This simplification is appropriate as a first 
approach, but at the same time we intend to consider whether we 
can apply calc() values to timing attributes so that timing can be 
computed.  What timing attributes would be appropriate? What 
issues arise with this additional dynamism in the SMIL timing 
model? What further interesting examples would timing 
computations allow? 

9.2.2 Extensions relating to expressions 
Our current extensions allow expressions in the animation 
attributes from, to, by, values and animateMotion::path.  
We wish to investigate the question of how limited is this in 
practice, and in particular, what other items would it be useful or 
feasible to animate?  There are interesting questions with respect 
to our current typing model that we intend to pursue. All types 
currently are simple types; the question naturally arises of how 
useful would it be to introduce structured values such as tuples 
and sequences.  We wish to investigate whether such structured 
types could be accommodated without going too far away from 
the declarative XML approach, and too far towards a 'full' 
programming language.   

9.2.3 Extensions relating to TEMPLATES 
We intend to investigate the role of templates and 
parameterization in the general XML context. We wish to 
consider the utility and implementation issues of template 
hierarchies, analogous to classes, and inheritance in the object-
oriented world. 

9.3 Scoped IDs in XML 
As we have indicated above, our current approach to scoping 
rules and name spaces is ad hoc.  We wish to investigate a more 
solid model for id-spaces similar to what is available in scope-
structured programming languages.  While a proper scope model 
would certainly increase complexity of interpreter and language 
complexity, but it would be less ad hoc.  
We contend that this will be a requirement for DOM in the not too 
distant future, as more support is developed for document 
fragment references [22] and transclusion in practice. The model 
appearing in [23] will not work for many cases, and an alternative 
will be required (as discussed in [15]. 

9.4 Conclusions 
The extensions presented in this paper are based upon 
programming language constructs that have proved their utility in 
multimedia authoring.  We have demonstrated how they can be 
added to W3C languages while remaining entirely within the style 

and character of XML and still be processed by existing XML 
parsers.  We have experimented with our extended version of 
SMIL Animation with a number of hand examples, and in each 
case the extensions have made the coding of the example easier to 
achieve and simpler to understand than using, say, script or some 
other notation external to the DSL.  
We concentrated on integration with SMIL Animation, using 
XHTML+SMIL and SVG; nevertheless, as we explored the 
model, we came to see the utility of these tools for a broad range 
of applications, including expressions for CSS/XSL style 
properties, custom event declaration to complement the binding 
facilities in XMLEvents, and of course the general utility of 
parameterized templates in XML documents.   
The extensions provide considerable power for authoring, but we 
have resisted all temptation to provide a full-scale programming 
language, recognizing that skilled multimedia authors are not 
necessarily (and should not have to become) programmers.  Our 
experience with the prototype implementation has provided 
valuable insights, and raises additional interesting questions and 
issues to explore. 

10. ACKNOWLEDGMENTS 
The work of Dr. King is supported by a research grant from the 
Natural Sciences and Engineering Research Council of Canada.  
The authors wish to thank Lynda Hardman of CWI Amsterdam 
for providing encouragement and support during the initial stages 
of the work. 

11. REFERENCES 
[1] G.J. Badros and A. Borning. Cassowary: A Constraint Solving 
Toolkit, 1999  
[2] H.Bowman, H. Cameron, P. King and S. Thompson, Mexitl: 
Multimedia in Executable Interval Temporal Logic,  Formal 
Methods in System Design, to appear, 2003.  

[3] M.C. Buchanan and P.T. Zellweger, Automatic temporal 
mechanisms, Proc. Multimedia’93, ACM Press, 1993.  

[4] H. A. Cameron, P.R. King and S.J. Thompson, Modeling 
Reactive Multimedia: Events and Behaviours, Multimedia Tools 
and Applications, to appear 2003. 

[5] Cascading Style Sheets, level 2, W3C Recommendation 12 
May 1998. Available at http://www.w3.org/TR/REC-CSS2. 
[6] Document Object Model (DOM) Level 2 Events Specificatio", 
W3C Recommendation 13 November, 2000 Available at 
http://www.w3.org/TR/DOM-Level-2-Events/.  

[7] ECMAScript, third edition, 1999, 
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM ) 
[8] C. Elliott. and P. Hudak. Functional Reactive Animation, 
ICFP97, ACM Press. 
[9] An Events Syntax for XML, W3C Working Draft 12 August 
2002. Available at  http://www.w3.org/TR/xml-events/. 
[10] Extensible Markup Language (XML) 1.0 (Second Edition), 
W3C Recommendation 6 October 2000. Available at 
http://www.w3.org/TR/REC-xml 

http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.ecma.ch/
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/REC-xml


  

[11] Extensible Stylesheet Language (XSL) Version 1.0. W3C 
Recommendation 15 October 2001. Available at 
http://www.w3.org/TR/xsl/ 

[12] Paul Hudak, “Building Domain-Specific Embedded 
Languages”, ACM Computing Surveys 28A(4),1996.  

[13] K. Marriott and P. Stuckey. Programming With Constraints: 
An Introduction. 1998. The MIT Press 

[14] Jacco van Ossenbruggen, et al., "Towards Second and Third 
Generation Web-Based Multimedia", WWW10, May 1-5, 2001. 
Available at http://www10.org/cdrom/papers/423/. 

[15] L. Rutledge and P. Schmitz, Improving Media Fragment 
Integration in Emerging Web Formats. Proceedings of the 
International Conference on Multimedia Modeling 2001 
(MMM01), November 5-7, 2001, Available at  
http://www.cwi.nl/~media/publications/mmm01b.pdf   
[16] Scalable Vector Graphics (SVG) 1.0 Specification, W3C 
Proposed Recommendation, 19 July 2001. Available at 
http://www.w3.org/TR/SVG/. 

[17] Patrick Schmitz, Multimedia Meets Computer Graphics in 
SMIL2.0: A Time Model for the Web, WWW2002, May 7-11, 
2002. Available at http://www2002.org/CDROM/refereed/382/  

[18] Synchronized Multimedia Integration Language (SMIL 
2.0),W3C Recommendation 07 August 2001. Available at 
http://www.w3.org/TR/smil20/. 

[19] S. Thompson. Haskell, The Craft of Functional 
Programming, Second Edition, Addison-Wesley, 1999. 

[20] Lionel Villard, Cécile Roisi and, Nabil Layaïda, "An XML-
based multimedia document processing model for content 
adaptation", Proceeding of Eighth International Conference on 
Digital Documents and Electronic Publishing, 14 September, 
2000 

[21] XHTML+SMIL Profile, W3C Note 31 January 2002, 
Available at http://www.w3.org/TR/XHTMLplusSMIL/ 

[22] XML Fragment Interchange, W3C Candidate 
Recommendation 12 February 2001. Available at 
http://www.w3.org/TR/xml-fragment 

[23] XML Inclusions (XInclude) Version 1.0, W3C Candidate 
Recommendation 17 September 2002. Available at 
http://www.w3.org/TR/xinclude/. 

[24] XML Information Set", W3C Recommendation 24 October 
2001. Available at http://www.w3.org/TR/xml-infoset/. 

[25] XSL Transformations (XSLT) Version 1.0, W3C 
Recommendation 16 November 1999. Available at 
http://www.w3.org/TR/xslt 

 

http://www.w3.org/TR/xsl/
http://www.acm.org/
http://www.acm.org/surveys
http://www10.org/cdrom/papers/423/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Style/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.ecma.ch/
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.acm.org/
http://www.acm.org/surveys
http://www.cwi.nl/~media/publications/mmm01b.pdf
http://www.cwi.nl/~media/publications/mmm01b.pdf
http://www.w3.org/TR/SVG/
http://www2002.org/CDROM/refereed/382/
http://www.w3.org/TR/smil20/
http://www.w3.org/TR/SVG/
http://www11.in.tum.de/DDEP00/
http://www11.in.tum.de/DDEP00/
http://www.w3.org/TR/XHTMLplusSMIL/
http://www.w3.org/TR/xml-fragment
http://www.w3.org/TR/XHTMLplusSMIL/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt

	INTRODUCTION
	Authoring in W3C language standards
	Authoring in a programming language
	When the DSL is not enough – adding functionality

	USE-CASE SCENARIOS
	Arrow/Missile scenario
	Begin-when-viewed scenario
	Menu scenario

	EXPRESSIONS
	The typing mechanism
	Types and operators
	Data types
	Operators
	Language Functions
	Domain-specific values


	CALCULATION
	Computation model
	Resolving OM value references
	Expression calculation frequency


	EVENTS AND PREDICATES
	TEMPLATES & PARAMETERIZATION
	Introduction
	Proposed solution

	IMPLEMENTATION EXPERIENCE
	Calculated expressions and predicates
	Templates and parameterization
	Observations

	CASE STUDIES
	Pong
	Other case studies

	FUTURE WORK AND CONCLUSIONS
	Authoring issues
	Language integration and extensions
	Integration with SMIL Timing
	Extensions relating to expressions
	Extensions relating to TEMPLATES

	Scoped IDs in XML
	Conclusions

	ACKNOWLEDGMENTS
	REFERENCES

