

Presentation Dynamism in XML
Functional Programming meets SMIL Animation

Patrick Schmitz
Ludicrum Enterprises

San Francisco, CA, USA

cogit@ludicrum.org

Simon Thompson
Computing Laboratory

University of Kent
Canterbury, Kent, UK

+44 1227 823820

S.J.Thompson@ukc.ac.uk

Peter King
Department of Computer Science

University of Manitoba
Winnipeg, MB, Canada

+1 204 474 9935

prking@cs.UManitoba.ca

ABSTRACT
The move towards a semantic web will produce an increasing
number of presentations whose creation is based upon semantic
queries. Intelligent presentation generation engines have already
begun to appear, as have models and platforms for adaptive
presentations. However, in many cases these models are
constrained by the lack of expressiveness in current generation
presentation and animation languages. Moreover, authors of
dynamic, adaptive web content must often use considerable
amounts of script or code, thus breaking the declarative
description possible in the original presentation language.
Furthermore, the scripting/coding approach does not lend itself to
authoring by non-programmers. In this paper we describe a set of
XML language extensions that bring tools from the functional
programming world to web authors, extending the power of
declarative modeling for the web. The extensions are described in
the context of SMIL Animation and SVG, but could be applied to
many XML-based languages.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Animations, I.3.6 [Computer Graphics]:
Methodology and Techniques – languages, standards.

General Terms
Design, Standardization, Languages, Theory, Verification.

Keywords
Animation, declarative, DOM, function, modeling, parameter,
event, SMIL, SVG, time, XML,

1. INTRODUCTION
Web authors are turning more and more to W3C language
standards as powerful yet simple to use authoring tools. These
languages are declarative, providing a domain-level description of
both content and presentation. When authors need additional
capabilities not provided in the language, they are forced to work
in an imperative scripting or programming language, such as
ECMAScript or Java. Since most content authors are not
programmers, this is often awkward.
Modern presentation generation systems, such as [14], rely on the

structure and semantics of declarative languages, and often cannot
easily integrate imperative content extensions. Similarly, the use
of script or code is problematic in data-driven content models
based upon XML and associated tools.
In this paper we will motivate and describe a set of XML [10]
language extensions that will enhance these language standards.
The specific extensions are inspired by constructions from
functional programming languages, and include:

• attribute values defined as dynamically evaluated
expressions,

• custom (or ‘author defined’) events based on predicate
expressions,

• parameterized templates for document content.
The paper outlines these proposed extensions, discusses how they
may be integrated into existing languages and implementations
and illustrates their effect in examples based on SMIL animation,
XHTML and SVG graphics. In this introduction we will review
both the W3C XML-based and the functional language-based
approaches to authoring, and we will then outline in general terms
what we feel the former might gain from the latter.

1.1 Authoring in W3C language standards
Many W3C language standards promote a declarative approach to
defining complex document manipulations. These languages
include standards for XML document transformation [25], styling
and presentation [5, 11] as well as languages to describe complex
multimedia elements such as 2D graphics [16], and timing,
synchronization and animation [18]. A declarative language
permits the author to create a high-level description that explains
what is to happen rather than how the effect is to be achieved.
This latter, lower-level, description is usually provided by a
system program of some sort, such as an interpreter.
Consider a simple example written in SVG and SMIL Animation:

<circle cx="20" cy="20" r="100" fill="red">
<animateMotion dur="5s" from="0,0" to="50,50"/>

</circle>

This fragment defines a red circle and a motion animation,
moving the circle down and right over the course of 5 seconds.
The SMIL 2.0 Animation module provides a small domain-
specific language (DSL) for describing the animation of
properties in a document. The language contains certain primitive
constructs (elements) for functions such as changing a property
over time or moving a target object along a path, and provides a
model for composing multiple animations on a given property.
Details of the animation (such as the duration and the property

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

values to interpolate) are specified as attribute values (dur, from
and to in the example).
The DSL approach has the advantage over the use of script or
code that document semantics are machine independent while at
the same time machine understandable. Thus, documents can be
interchanged among authoring tools and rendered consistently
across a range of presentation implementations.
The XHTML+SMIL integration [21] has provided additional
experience with animation and adaptation, especially with the
flow layout model provided in HTML/CSS. Because the size and
position of elements can often be determined only at presentation
time (and can vary depending on user preferences), it is often
impossible to specify associated values for animation at author
time. A more flexible definition of animation values is needed;
with current technology this dynamic animation can only be
achieved using script- or code-based extensions.
SVG integrated and extended SMIL Animation to support
dynamism for vector graphics. While this was an important early
integration, the model was intentionally simple, and as a result,
many animations can be described only with the use of script.
Furthermore, SVG demonstrates some awkward interactions
between animation and other useful features such as the template
support provided by <symbol> and <use>. In particular, the
model for <use> precludes animating child elements, precludes
variant animation instances (e.g. varying duration or values per
<use>), and makes interactive animation awkward (with the
shadow element event-handling model).

1.2 Authoring in a programming language
An alternative approach to multimedia authoring, discussed for
example in [3], consists in making use of a programming
language. Of its nature, a general purpose programming language
is guaranteed to provide the author with sufficient power to
implement virtually anything, but the costs of complexity, lack of
portability, and the overhead associated with the implementation
of such a language are such that it is by no means clear that use of
a programming language is a preferable approach to authoring.
Moreover, multimedia authors and designers are generally not
programmers. Nevertheless, functional programming languages
like Haskell [19] have been shown to provide a suitable substrate
for embedding DSLs of various kinds [12], including the Fran
system for Functional Reactive Animation [8]. These models
provide a powerful and flexible programming environment, but
require a level of sophistication well beyond the authoring model
of SMIL. Moreover, it is well nigh impossible to integrate
programmed models into current authoring tools.
Constraint programming languages [13] also provide a suitable
host for multimedia description. A document is described in terms
of a collection of constraints on the spatial [20] and temporal [1]
layout of the components, and a constraint solver is used to find a
presentation that meets all the constraints. Constraints can be seen
as a restricted form of logical formula.
More general logics, such as variants of interval temporal logic
[2] can also be used to specify high-level presentations as a
collection of logical requirements. Other approaches to
multimedia description can be found in [14] and a comprehensive
overview of timing issues in multimedia and computer graphics is
given in [17], which, inter alia, also discusses the tension
between authoring and programming in the Tbag model.

1.3 When the DSL is not enough – adding
functionality
The declarative DSL approach to multimedia authoring provides a
number of benefits. A user is presented with a clear model of what
can and cannot be achieved. SMIL animation, for example, allows
movement along spline paths, but does not allow the speed of the
movement to be determined by the speed of a mouse gesture. The
motion is expressed in the language of the author, using terms
such as duration and extent, rather than at the level of the
implementation engine, which draws images in particular places at
particular times.
Here's the problem, though. The language is, by its very nature,
limited, and authors will want to express things that the DSL itself
cannot. In the case of SMIL animation one might want to

• animate motion from the current position of the mouse
to the layout position of some element; or

• begin an animated figure when the figure is scrolled into
view; or

• define a 'template' button with motion animation, and
then use instances of the template that vary the button
appearance and animation.

An ECMAScript or Java program could be used to generate or
modify SMIL content, but the code is non-trivial to write.
Moreover, once one works outside the DSL all its nice properties
are lost: document structure and presentation is defined by low-
level imperative instructions from which it is almost impossible to
reconstruct a declarative description of the intended behavior.
Scripting is for programmers, whereas the DSL can be used by a
much wider group of authors whose only requirement is
knowledge of the domain itself. Furthermore, many authors will
prefer to work with some authoring tool. Authoring tools can read
and write (“round-trip”) a DSL, and can exchange DSL
documents between tools, but there is no way tools can reasonably
interpret or present an animation description defined in script;
authors must become programmers to be effective.
There are two approaches to tackling the DSL/scripting mismatch.
The first is to embed the DSL in a higher-level language, as
discussed in the previous section. The second approach is to
extend the DSL is various ways, consistent with the declarative
approach. This approach preserves the ability of domain authors
to work in the language whilst extending its expressiveness.
In this paper, we adopt the second approach. Specifically, we add
three notions, calculation, event-predicates and templates. In the
case of SMIL these extended features will support the use cases
mentioned earlier in this section amongst others; these features
can also be seen to provide a general model for the extension of
other XML-based languages.
It is worth noting that SMIL Animation was designed specifically
to support extension, and that the SVG integration itself includes
extensions to support SVG-specific functionality (e.g., the
<animateTransform> element). Our approach is aligned with
the spirit of the standard.
The remainder of the paper is organized as follows. Section 2
introduces three common use-case scenarios that we use to
illustrate our various extensions. Sections 3,4 5 and 6 detail these
extensions, section 7 presents experience and issues with a
prototype implementation, and section 8 presents some further

examples that illustrate these extensions and their utility. Section
9 presents our ideas for future work in the direction of adding
functional features to XML languages, and concludes.

2. USE-CASE SCENARIOS
We describe three primary use-case scenarios that motivate and
help to explain our extensions. These were chosen to span a range
of common Web content models, and to highlight shortcomings in
current content description mechanisms. We refer to these as we
discuss the extensions in detail.

2.1 Arrow/Missile scenario
Consider a game-like scenario in which a projectile is fired at a
moving target. The course of an arrow is fixed when the arrow is
fired, whereas a guided missile can track the course of its target in
flight. We want a simple way to describe motion towards a target,
for both arrow and guided missile behavior variants.
Although games are not the primary content on the web, they are a
very common application of animation tools, and serve as a
measure of the expressiveness of an animation model.

2.2 Begin-when-viewed scenario
In a long scrolling document, we have figures that are animated to
illustrate concepts in the accompanying text. We want each
animation to begin only when the particular figure is scrolled into
view (either directly with scrolling UI, or indirectly via hyperlink
scrolling, etc.). Especially for a longer animation, this allows the
document presentation to be ‘in sync’ with the user as she reads.

2.3 Menu scenario
A common UI component in documents is a navigation menu,
composed of buttons that hyperlink to other pages, or begin
content within the page when clicked. The menu buttons may be
composed of complex graphics, and include roll-over or other
interactive behaviors, so that much of the definition of each
button is common or shared, and varies only in the details (such
as the position, text label, or color). Menus are used across a wide
range of documents, in multimedia as well as simple hypermedia.

3. EXPRESSIONS
The expression language we propose forms the basis for our
dynamic attribute values and our event predicates. In our
‘arrow/missile’ scenario, we calculate the projectile motion based
upon the position of the target, where in the ‘begin-when-viewed’
scenario we define an event predicate as a Boolean expression
using object dimensions and the scroll position. The first case
uses simple expressions, while the second is a more complex
Boolean combination of simpler expressions, and illustrates the
value of a fully featured expression language.
In defining the expression language we have chosen names and
definitions similar to those used in [7]. We have, however,
imposed a number of constraints for authoring simplicity and
runtime safety. A complete definition of the current form of our
expression language is to be found at the following URL:
http://www.cs.ukc.ac.uk/people/staff/sjt/PDXML/Expr.htm; here
we concentrate on some of its more significant features and omit
most details of syntax.

3.1 The typing mechanism
The expression language provides three types: numeric, string and
Boolean types. The expression language is typed: if an operator is
applied to an operand of an incorrect type, then the value
undefined is returned. Moreover it is strongly typed: all types can
be computed and verified prior to presentation. Furthermore, there
are no coercions (automatic type conversions) between types in
the model and in particular, therefore, there is no conversion
between the numeric and Boolean types in our model. We believe
that most authors will find such a type safe model more natural
and less error prone. We contend that in the following fragment in
which “-” has been mistyped as “<”, the author would prefer to
have the expression yield the value undefined (causing the
animation to have no effect), rather than to have a Boolean quietly
coerced to 0, causing the animation to behave in a subtly incorrect
manner:
<animate from="calc(a+b)" to="calc(a<b)" …/>

3.2 Types and operators
3.2.1 Data types
Our choice of data types is motivated to a very large degree by the
application domain. Numeric types are needed as they are widely
used when computing the evolution of animated values. Booleans
are needed for use within events and predicates. Strings are used
to convey information, and in a dynamic context it will be
necessary to compute strings, (or at least to choose from among
alternatives). For example, a different string might be generated
according to the position of an object on a web page (‘top’ or
‘bottom’).
The numeric type consists of floating-point numbers and the
Boolean type contains the two values true and false. More
specifically, the Number type contains numbers, the special values
NaN (not a number) and positive and negative Infinity. Integer
and floating-point literals are given in the usual IEEE format:
integer literals are (optionally signed) strings of digits, and
floating point literals consist of a decimal number with fractional
part and an optional integer exponent following the symbol E or
e. Boolean literals are, as usual, defined by the keywords true
and false. String literals are enclosed between single quotes
(since double quotes are used to delimit XML attribute values).

3.2.2 Operators
We have included a typical set of unary and binary, arithmetic,
relational and Boolean operators. The Boolean operators for
conjunction and disjunction are lazy: if their first argument
evaluates to false (respectively true) then this value is returned
without evaluating the second argument. In addition, we have
provided a C-style ternary conditional operator, denoted “?:”.
The first argument of ?: is a Boolean; if this evaluates to true,
then the result of the second argument is returned; otherwise, the
result of the third argument is returned. This operator plays the
role of the conditional statement to be found in traditional
programming languages.
Binary operators have a level of precedence as well as defined
associativity (left, right or none). Our definitions are, as far as
possible, compliant with IEEE standards; full details appear at the
URL given in the introduction to this section.
In accordance with our rule that that expressions are well typed, if
an operator is applied to an argument of the incorrect type, then
the undefined result is returned from the evaluation. We also make
the general assumption that if an evaluated argument to an

http://www.cs.ukc.ac.uk/people/staff/sjt/PDXML/Expr.htm
http://www.cs.ukc.ac.uk/people/staff/sjt/PDXML/Expr.htm

operator has the value undefined, then the result of the operation
is also undefined. In practice, when an expression evaluates to
undefined, the effect is the same as if an author specified an illegal
attribute value. The resulting behavior is defined by the
integrating language – in SMIL Animation, for example, an
undefined result for a from or to attribute will cause the
animation to have no effect.

3.2.3 Language Functions
We provide a fixed repertoire of numeric functions to supplement
the basic arithmetic operators. The functions are of four types:

� simple numeric functions whose role is largely to
supplement the set of arithmetic operators, including
abs, max, min, floor, etc.

� functions which return Boolean values, such as isFinite
etc. that serve to provide the means to add a higher
degree of security to the code being produced,

� mathematical functions, such as cos, tan, sqrt, exp etc.
which are frequently needed in the computation of
animation paths,

� environment functions: these functions return
information about the current environment, such as the
current time.

The choice of functions given here represents a core of general
functionality likely to be required across all application areas. The
choice is not intended to be definitive or closed; language
designers who integrate this module may extend the language to
include functions relevant to the particular domain. We expect
that implementation techniques will extend to these domain
specific elements in a straightforward way.
It should be noted that our model provides no facility for the
author to define functions for herself. This important constraint
greatly simplifies the authoring model, and also provides a
measure of ‘safety’ for the implementation (ensuring, for example,
that expressions used with animation can be quickly evaluated at
each animation sample). Our goal was to provide flexible
expressions, not a programming language.

3.2.4 Domain-specific values
Each domain will have a set of properties that expose OM (Object
Model) values in a manner convenient for use in expressions. For
example in SMIL Timing integrations, properties such as the
current simple time or a Boolean isActive would likely be
provided.
One set of properties we see as common to many applications
exposes the mouse position in a simple manner. The mouseX and
mouseY properties are exposed on all elements that can raise a
mousemove event. The actual values follow the definition given
in [6] for mousemove events, returning the position of the mouse
relative to the container (which in turn is language specific).
Expressions can reference these mouseX/Y properties on the root
layout element (e.g. “body.mouseY”) to get “global” mouse
positions, or on a particular target element to get “local” mouse
positions.

4. CALCULATION
We apply the expression functionality to animation attributes,
allowing the values that describe the animation function to be
expressed as calculated expressions. This approach provides more
expressive power to authors, greatly increasing the range of

animation use-cases that can be expressed, and also allows
dynamic documents to be adaptive, in that animation function
values can be defined in terms of other document properties that
are computed or may change in response to user actions.
Expressions may be applied to any of the attributes used to
describe the animation function values. This includes from, to,
by, and values, as well as path for <animateMotion>. The
expressions are called out for the parser with a prefix (‘calc’) and
enclosing parentheses, similar to CSS functional notations.
For example, to ‘zoom’ a box from the current size up to 80% of
the page width, we specify:
<animate attributeName="width" dur="5s"

to="calc(body.width*0.8)" .../>

For target attributes that take simple scalar values, the result of the
calculated expression must be a legal value for the specified
attribute. Vector-valued attributes (e.g. position or transforms) are
supported using the vector syntax of the attributeType
domain, but allowing calc-values for each constituent of the
vector value, as in the following example. To ‘fly’ an object from
the right edge of a button to the position of a content container,
we specify:
<animateMotion dur="5s"

from="calc(btn.x+btn.width),calc(btn.y)"
to="calc(content.x),calc(content.y)" …/>

An interactive example (using XHTML+SMIL) tracks ‘tooltip’
text with the mouse, and sets the tip string to indicate whether the
mouse is on the upper or lower half of the page:
<p>
<t:set attributeName="left"

to="calc(body.mouseX+20)"/>
<t:set attributeName="top"

to="calc(body.mouseY-5)"/>
<t:set attributeName="innerHtml"

to="calc((body.mouseY>(body.height/2))?
‘Lower’:‘Upper’)"/>

</p>

4.1 Computation model
In its simplest form, the computation of expressions is performed
using a stack calculator with a few built-in functions and value
references. However, the resolution of the references to Object
Model values introduces two key questions:

• Which value for a property should be used?

• When should the referenced value be sampled? That is,
when and how often should we re-calculate the
expression?

4.1.1 Resolving OM value references
There are three possibilities for the type of values to use in value
references:

1. the author-specified value,
2. the computed value (e.g. CSS OM computed-style

property values),
3. the animated value (e.g. SVGAnimatedNumber

animVal values).
We conducted a number of experiments and considered a broad
range of use-case scenarios. We concluded that specified values
are rarely useful in practice and could be ambiguous for things
like CSS properties in which the value could be specified in many
different ways. We note that the use of computed values may be

appropriate in applications outside animation, e.g. for property
values in CSS or XSL stylesheets. In our application domain
however, where the values are used in the specification of
animation functions, we concluded that the use of animated values
would make the most sense to authors. Thus, when a referenced
property is the target of animation(s), the animated value is used
in the expression; when the property is not animated, the
calculated value is used.

4.1.2 Expression calculation frequency
We describe the sampling rate for referenced values as the
calculation frequency of the expression, and have identified four
distinct models of when evaluation takes place:

1. once at parse time, for values that are effectively
constants (e.g. user-agent window size),

2. after layout is complete, for values that depend upon
styling and layout (e.g. position of an inline element),

3. each time an animation begins,
4. each time an animation is sampled.

For applications to other domains such as CSS and XSL property
specification, only cases 1 and 2 apply. However, even in these
domains there is the issue of handling changes to the referenced
values (e.g. if script changes a value, or if user interaction forces a
re-layout). Such changes should cause the engine to re-compute
the expression that uses the values. But in the context of
animation, the question then arises: Does the author want an
animation to update midstream, or would she prefer that it use the
value it ‘saw’ when the animation began? To illustrate this
dichotomy, consider the two variations on the ‘arrow/missile’
scenario:
Launching an arrow at a moving target. When the arrow is
launched, it is aimed at the current position of the target. But once
launched, it cannot change its course; further motion of the target
has no effect upon the arrow.
Launching a guided missile at a moving target. A guided
missile is aimed just as the arrow would be, but it also tracks the
target as it flies, and adjusts its motion accordingly.
Both use-cases could be expressed using syntax like:
<animateMotion to="calc(target.x),

calc(target.x)" …/>

In the first case we need to specify that once calculated, the to
value should remain fixed, while in the second case the to value
should be re-calculated on each sample.
Now to back up a bit, in practice we generally want to model
references to changing values using dependency-relation graphs,
so that we can efficiently re-compute dependent expressions when
a given value changes (this can be compared to cache
maintenance). For a sampled animation, there is no point in re-
calculating more often than the animation is sampled, and so a
change to a referenced value need only mark all dependent
expressions as out-of-date; the animation engine will then re-
calculate the expression at the next sample1.

1 Dependency graphs can chain, as expressions reference values

that are animated in turn by animations defined with
expressions. As a dependent value marked "out-of-date", it
should in turn mark any expression "out-of-date" that references
the animation target value. Naturally, cycles in the graph must

If we reconsider calculation frequency assuming the dependency
graph model is also in place, we can collapse the cases for
frequency models 1, 2 and 4 into one case; for this, we re-
compute an expression every time we sample the animation graph,
but if (and only if) a referenced value has changed. Cases 1 and 2
will change infrequently, but are covered by this simple rule. Case
3 is then distinct in that it ignores changes to referenced values
once an animation has begun.
To provide authoring control over this behavior, calc()
expressions can take an additional parameter that indicates the
desired calculation frequency. Allowed values are always and
atStart, with always assumed as the default2. Thus our arrow
use-case is specified:
<animateMotion to="calc(target.x, atStart),

calc(target.x, atStart)"…/>

The guided missile case could either specify always or just use
the default semantics.

5. EVENTS AND PREDICATES
In many animation use-cases, we need to know when a certain
condition is true, and to take action in response. Object models
typically provide a set of events to indicate a range of interaction
conditions (e.g., mouse events) as well as document conditions
(e.g., media download and mutation events). These can be used
declaratively to bind actions to the events - e.g., in SMIL, to begin
or end an animation when an event occurs. However, there is no
means for the author to declare new events specific to the
document content. Authors are forced to resort to code, and the
implementation of conditional events is non-trivial even for
programmers.
High-level languages for simulation and concurrent programming
support the definition of conditions and associated events, albeit
programmatically – outside the domain of XML authors. Early
drafts of the event syntax of XML [9] included a step in this
direction, supporting declaration of a new event based upon
existing events, with timing constraints when integrated with
SMIL. This functionality was removed in later drafts.
We define an XML syntax that leverages our expression support
to model author-declared events. Events are generated from
Boolean expressions; when this expression (or predicate)
evaluates to true, an event is raised on a target element (following
the model of [6]). This is inspired by the Fran event model [8].
For example, an author could define an ‘enterView’ event that
indicates when an image appears in the current user agent

be detected and broken (just as for SMIL Timing references).
There is further room for optimizations that take into account
the semantics of animation composition. Also, the traversal
order of the animation tree may generate forward references to
animated values, and so update of the "cached" expression
values is slightly more complex than described. Nevertheless,
these principles of optimized computation (cache maintenance)
still apply.

2 In other applications domains where timing does not play a
central role (e.g. for property definition in CSS or XSL
stylesheets), the distinction is meaningless and so this syntax
option need not be supported - the default behavior of "always"
will correctly apply.

window3 (e.g., to note when a user scrolls a figure into view). In
an XHTML integration, this could be described using the syntax:
<event target=”img1” type=”enterView”

predicate=”img1.top <= body.clientHeight” />

The target attribute indicates (as an ID-REF) the element on
which to raise the event; type declares the event type for binding
references; predicate is an expression as defined in section 3.
The event will fire once as soon as the condition is true (as soon
as the document loads when the condition is initially true). It will
not fire again unless the predicate is reset, either because:

• the predicate changes to false.

• the event element itself resets, e.g., in integration with
SMIL Timing when the element restarts.

Note that the calculation frequency for event predicate
expressions is fixed — by definition — to be always.
We considered an additional attribute to preclude an event being
raised more than once. In integration with SMIL, this may be
unnecessary as a similar semantic is provided by SMIL Timing. If
the integrating language allows the <event> element to support
SMIL timing, events are only raised when the element is active
(between the begin and end times); the author can then leverage
the SMIL restart attribute to ensure that the event is raised at
most once.
Some common use-case scenarios for event predicates include
collision events, limit-conditions (when a property goes above or
below a certain threshold) and state modeling (relating the values
of a set of properties).

6. TEMPLATES & PARAMETERIZATION

6.1 Introduction
The need to create of a number of similar objects from a common
template arises naturally in multimedia design, just as it does in
other areas of system development. Consider our ‘menu’ scenario
of a web page with a sidebar containing a menu of navigational
buttons. The buttons have much in common, but differ in color,
position and label. The buttons will have common animation
behaviors, such as highlighting when the cursor passes over the
button. A frequent mode of design is first to produce a correct
animation of a single button, and then to copy and modify this
animation for the other buttons. Thus, having developed a blue
button labeled Home, and placed at position (10, 25), an author
can use this as a template for the creation of 4 other buttons, with
varying colors, individual labels and positioned down the page as
a menu. Although this effect can be achieved by explicit copy and
modify, such an approach is hard to maintain, and inefficient to
express, bloating the description file. A better approach is to
define a template with parameters for color, label and the button
number (from which the position is calculated). The template can
then be instantiated with different property values at each
instance.
SVG provides a mechanism for creating elements which may be
used as such templates, including symbol elements, graphic
elements, and so on. Moreover, SVG provides a means for
instantiating such elements, the <use> element, described in
section 5.6 of [16]. An element instantiated in this fashion

3 A more complex predicate could also consider the height of the

image, and fire when the image is fully in view.

references some other named element, and indicates that the
graphical contents of that element is to be included and/or drawn
in place of the <use> reference. Thus, using the SVG model, one
may copy the definition of a button symbol as:
<use xlink:href= “#button” …/>

and thereby may instantiate as many copies are needed.
However, the <use> element in SVG has some severe constraints.
In particular, the <use> element does not enable one to change
attribute values when re-instantiating a definition. Thus, one
cannot easily change the color attribute from blue to green, or the
label attribute from Home to Search. Because of the shadow
DOM model in SVG 1.0, there is neither an Information Set [24]
representation of the instance nodes, nor DOM element nodes. As
such, there is no way to target animations to nodes within an
instance tree – e.g., one cannot target an animation to a color
property on an element within the template instance. The SVG
model also precludes registering event handlers on nodes within
the template instance – this makes it difficult to define interaction
and timing on instance nodes. Further, the identifiers appearing
within the various instantiated copies of the element are identical
across the various instantiations, severely limiting the utility of ID
values and references.
By way of contrast, within the more general domain of
programming languages and design tools, the notion of the
instantiation of such a template and of creating variants when
instantiating is commonplace. Support is generally provided by
linguistic mechanisms such as object creation and
parameterization, and identifier scopes.

6.2 Proposed solution
Our goal is to provide facilities that remain within the declarative
idiom of XML. Our proposed extensions are inspired by the SVG
<symbol> and <use> elements illustrated above, but the
semantics are different enough that we define new elements
<template> and <instance>.
We then propose a simple mechanism for the specification of
formal parameters within <template> elements, and the
provision of actual parameter values within <instance>
elements. Parameterization allows for more flexible instantiation,
increasing the useful domain for templates and making the
language more efficient as more cases can be represented as
templates, thereby reducing file size.
Within the template element:

• each (formal) parameter is specified using a <param>
element and its name attribute;

• a default value may optionally be assigned to the
parameter using the value attribute; omitting this is
equivalent to specifying the special value “” (the empty
string), and allows no value to be specified. When used
for an attribute value within the template, this
effectively specifies that the language default be used;

• a formal parameter may be referenced anywhere within
the template content that defines it; the reference is
designated by prefixing the parameter name with the ‘$’
character.

The following example illustrates these notions:
<template id="button">

<param name=”color” value="blue" />

<param name=”label” />
<param name=”num” value ="0" />
<rect id=”bg” width=”100” height=”40”

style=”fill:$color”
x=”10” y=”calc(25+$num*(40+5)”>

<text>$label</text>
<animateColor id=”rollover”

begin=”bg.mouseover” end=”bg.mouseover”
attributeName=”fill” to=”yellow” />

</rect>
</template>

<instance id=”homeBtn” xlink:href=”#button”>
<param name=”label” value=”Home”/>

</instance>

<instance id=”goBackBtn” xlink:href=”#button”>
<param name=”label” value=”Go Back”/>
<param name=”num” value="1" />

</instance>

<instance id=”searchBtn” xlink:href=”#button”>
<param name=”color” value="green" />
<param name=”label” value=”Search”/>
<param name=”num” value="2" />

</instance>
The template describes a generic button with default color,
rollover behavior etc. Each instance defines a button in the menu,
specifying the label, etc. The position is calculated as a dynamic
expression based upon the button number, and shows how we can
combine our extension features.
In order to make it possible to refer to each instantiated copy
independently, a mechanism is required to associate a local
identifier space with each such instance. Support for local id-
spaces has two further advantages.

• In the first place, it will enable the use of each instance
to be exposed as a true DOM copy, rather than as a
shadow copy (as used by SVG); any tools that query the
DOM need not be modified to work with instances.

• Further, the presence of local ID name-spaces enables
the children to be selected by style sheets, to be targeted
by external animations or XMLE event bindings [9],
and to be referenced by script.

We have investigated two possible approaches to the provision of
such separate identifier spaces. The first is a general solution
using structured ID references (e.g. homeBtn/bg where the
instance introduces a new ID scope, and so bg is found as a
descendent of homeBtn), analogous to that used by a compiler
when instantiating objects in a scope-based object-oriented
language. In the longer term, the DOM and XML Info Set models
will need to address the issues associated with compound
documents and fragment transclusion, and may well incorporate
such a model for local ID-spaces.
However we do not propose such an approach at this stage, since
it would require major changes to existing XML parsers and to
the DOM model; in our view changes of such a scale would be
inappropriate at this time. For present purposes, therefore, we
propose a second solution, which requires no XML parser
changes. Our proposal for our template extension translates local
IDs and references. The language interpreter will change all local
(within the template) ID definitions and local ID references (i.e.
ID-REFs to local IDs), inserting the value of the <instance> ID
as a prefix. Thus we can express the two distinct references to the
background rect element for the home and search button
instances in the menu example, as in the following animation
declarations:

<animate targetElement=“homeBtn.bg” …/>

<animate targetElement=“searchBtn.bg” …/>

It should be observed that since dot ‘.’ is a legal ID char, the code
created by this scheme will conform to current XML syntax and
will function in the desired manner, mimicking the structured ID
solution. This simple approach has the advantage of providing a
mechanism for separate name spaces within the correct XML
framework, and will give us a useful means for experimenting
with this facility while making use of existing XML parsers4.

7. IMPLEMENTATION EXPERIENCE

7.1 Calculated expressions and predicates
We developed a prototype implementation for our expressions,
leveraging the MS Internet Explorer 6 support for
XHTML+SMIL. The extensions were developed using the IE
behavior mechanism. Our behavior located calc() expressions
in the attribute values for animation elements, and then evaluated
the expressions using the JScript engine (since our syntax is a
subset of ECMAScript syntax). The animation attributes were
then set via DOM interfaces to the resulting expression values,
replacing the “calc()” strings. This works in part because the
“calc()” strings are illegal values for the animation attributes,
which causes the animations to have no effect (until the behavior
provides legal expression result values). This first version was not
unlike the support in IE for dynamic CSS properties (an
inspiration for our extension), but applied to animation attribute
values.
The next step was to refine the behavior to parse the expressions
in the behavior, implementing a stack calculator and modeling the
dependency graphs using property mutation events (provided in
the DOM). Unfortunately, the IE implementation does not raise
propertychange (i.e. mutation) events for animated CSS
properties. We added a brute force work-around to get
notifications, but the propagation of changes through dependent
expressions sometimes lags by one sample. A native
implementation would resolve this.
Since we cannot inject our behavior code into the animation
sampling traversal in IE, we cannot always optimize expression
calculation (cache maintenance) to only recalculate once per
sample. Also, without access to the animation composition
engine, we are not able to optimize the dependency graph (e.g.,
ignoring dependent expression changes for an animation element
A when a higher priority, non-additive animation B cancels or
overrides the effect of A).
A more robust and better-optimized version of this code could be
developed in an open-source implementation, such as the Batik
implementation of SVG. We hope to explore this route.

7.2 Templates and parameterization
We are currently developing <template> and <instance>
element prototypes, again using IE behaviors. The <template>
implementation is trivial, and just ensures that the element is
removed form the layout and display graphs (setting the CSS
display property to “none”). The <instance> implementation
clones the <template> content (except for the <param>

4 There is minimal risk of ID clash, if the document includes an

element with an ID that matches one of our synthesized ID
values. However authors and tools can easily avoid this.

elements), and then replaces parameter references and maps local
ID definitions and references. Any “calc()” expressions are
handled (orthogonally) by the expression behavior described
above.

7.3 Observations
The experience we gained building out prototype leads us to
believe that high quality, efficient implementations of our
proposed functionality are entirely feasible. The model for
dependency graph maintenance is quite similar to that for timing
references in SMIL Timing; we expect that much design – if not
code – can be borrowed from this. The most complex aspect of
the implementation will be to optimize animated value references.

8. CASE STUDIES
In this section we briefly outline a number of other use-cases that
we have considered, and indicate for each where our extensions
would be of use.

8.1 Pong
This 1970s arcade version of table tennis provides further
examples of the mechanisms outlined in the paper. The example
was chosen to stress test the extensions we propose, by dint of its
open-ended and computational nature.

The aim of the game is for each player to keep the ball in play by
controlling the vertical position of his or her paddle. The two
paddles are controlled by external user events or behaviors. The
SMIL definition of the paddle would be a template with
parameters corresponding to the horizontal position and to the
events that cause the paddle to move upwards or downwards.
There would be two instances of this template, one for each
paddle.

The ball continues to move in a straight line – a straightforward
animation – until it hits either a paddle or a wall. This impact will
be effected by processing an event generated by a predicate over
the position of the ball, and the processing of the event will
require a calculation of the modification to one of the horizontal
or vertical components of the ball’s motion.
More advanced effects can cause the ball to flatten a little on
contact with the paddles, or one can apply a more complex
transformation to the ball on impact with a moving paddle. The
players’ score can be shown as an animated string, and other
attributes – such as the color of the ball – can also depend on the
players’ performance.
Among the aspects of Pong that we could not easily model were:

• multi-user input – this would require DOM support for
the associated input devices, or equivalent.

• the definition of variables for the score values, etc. We
considered and rejected several kludge solutions, using
extension (a.k.a. expando) attributes or numeric
properties (e.g., width and height) on hidden
elements.

8.2 Other case studies
A variety of smaller examples illustrate our approach.

Clocking to show the progress of an operation, registering
progress by animating an angle.

This would be implemented by animating the angle through which
a geometrical figure is rotated, which can be can be done either by
explicit placement of the coordinates of a figure or by animating
an SVG-style rotation transformation. The animation progress
(i.e., the animated angle value) would be linked with a calc()
expression to some other animated property (such as a
percentLoaded property for media).
Decaying bounce. To describe the behavior of a ball bouncing, a
degree of damping needs to be applied to the motion on each
bounce. This can be achieved by defining the height of the bounce
motion as an expression based upon an iRepeat value exposed
by SMIL timing.

Spatialized or layered audio: We tie the stereo balance to x
position of the audio source, or surround sound to an x-y-z
position. Alternatively, the mouse position can be used
dynamically to determine the balance (mix) between a number of
audio channels (sources).

Oscilloscope. An oscilloscope gives a visual display of a sliding
window ‘snapshot’ of an audio signal. A similar display can show
a time segment of an evolving floating point value of any sort. A
treatment of this example in Fran is given in [4].

9. FUTURE WORK AND CONCLUSIONS
Our future work will proceed in three related directions: one
concerned with widening our experience with the authoring
implications of our extensions, a second concerned with further

integration with W3C language standards, and the third with more
basic XML extensions to accommodate the scoped ID model.

9.1 Authoring issues
All of the experience we have to date with use of these proposed
language extensions has been with hand authoring of a limited set
of use cases. While we do contend that the use cases in the paper
are varied and complex enough to justify the utility of these
extensions, we nonetheless need to explore further to demonstrate
that the extended DSL lends itself to reasonable authoring.

9.2 Language integration and extensions
9.2.1 Integration with SMIL Timing
The currently proposed extensions are deliberately all orthogonal
to the timing model. This simplification is appropriate as a first
approach, but at the same time we intend to consider whether we
can apply calc() values to timing attributes so that timing can be
computed. What timing attributes would be appropriate? What
issues arise with this additional dynamism in the SMIL timing
model? What further interesting examples would timing
computations allow?

9.2.2 Extensions relating to expressions
Our current extensions allow expressions in the animation
attributes from, to, by, values and animateMotion::path.
We wish to investigate the question of how limited is this in
practice, and in particular, what other items would it be useful or
feasible to animate? There are interesting questions with respect
to our current typing model that we intend to pursue. All types
currently are simple types; the question naturally arises of how
useful would it be to introduce structured values such as tuples
and sequences. We wish to investigate whether such structured
types could be accommodated without going too far away from
the declarative XML approach, and too far towards a 'full'
programming language.

9.2.3 Extensions relating to TEMPLATES
We intend to investigate the role of templates and
parameterization in the general XML context. We wish to
consider the utility and implementation issues of template
hierarchies, analogous to classes, and inheritance in the object-
oriented world.

9.3 Scoped IDs in XML
As we have indicated above, our current approach to scoping
rules and name spaces is ad hoc. We wish to investigate a more
solid model for id-spaces similar to what is available in scope-
structured programming languages. While a proper scope model
would certainly increase complexity of interpreter and language
complexity, but it would be less ad hoc.
We contend that this will be a requirement for DOM in the not too
distant future, as more support is developed for document
fragment references [22] and transclusion in practice. The model
appearing in [23] will not work for many cases, and an alternative
will be required (as discussed in [15].

9.4 Conclusions
The extensions presented in this paper are based upon
programming language constructs that have proved their utility in
multimedia authoring. We have demonstrated how they can be
added to W3C languages while remaining entirely within the style

and character of XML and still be processed by existing XML
parsers. We have experimented with our extended version of
SMIL Animation with a number of hand examples, and in each
case the extensions have made the coding of the example easier to
achieve and simpler to understand than using, say, script or some
other notation external to the DSL.
We concentrated on integration with SMIL Animation, using
XHTML+SMIL and SVG; nevertheless, as we explored the
model, we came to see the utility of these tools for a broad range
of applications, including expressions for CSS/XSL style
properties, custom event declaration to complement the binding
facilities in XMLEvents, and of course the general utility of
parameterized templates in XML documents.
The extensions provide considerable power for authoring, but we
have resisted all temptation to provide a full-scale programming
language, recognizing that skilled multimedia authors are not
necessarily (and should not have to become) programmers. Our
experience with the prototype implementation has provided
valuable insights, and raises additional interesting questions and
issues to explore.

10. ACKNOWLEDGMENTS
The work of Dr. King is supported by a research grant from the
Natural Sciences and Engineering Research Council of Canada.
The authors wish to thank Lynda Hardman of CWI Amsterdam
for providing encouragement and support during the initial stages
of the work.

11. REFERENCES
[1] G.J. Badros and A. Borning. Cassowary: A Constraint Solving
Toolkit, 1999
[2] H.Bowman, H. Cameron, P. King and S. Thompson, Mexitl:
Multimedia in Executable Interval Temporal Logic, Formal
Methods in System Design, to appear, 2003.

[3] M.C. Buchanan and P.T. Zellweger, Automatic temporal
mechanisms, Proc. Multimedia’93, ACM Press, 1993.

[4] H. A. Cameron, P.R. King and S.J. Thompson, Modeling
Reactive Multimedia: Events and Behaviours, Multimedia Tools
and Applications, to appear 2003.

[5] Cascading Style Sheets, level 2, W3C Recommendation 12
May 1998. Available at http://www.w3.org/TR/REC-CSS2.
[6] Document Object Model (DOM) Level 2 Events Specificatio",
W3C Recommendation 13 November, 2000 Available at
http://www.w3.org/TR/DOM-Level-2-Events/.

[7] ECMAScript, third edition, 1999,
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM)
[8] C. Elliott. and P. Hudak. Functional Reactive Animation,
ICFP97, ACM Press.
[9] An Events Syntax for XML, W3C Working Draft 12 August
2002. Available at http://www.w3.org/TR/xml-events/.
[10] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000. Available at
http://www.w3.org/TR/REC-xml

http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.ecma.ch/
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/REC-xml

[11] Extensible Stylesheet Language (XSL) Version 1.0. W3C
Recommendation 15 October 2001. Available at
http://www.w3.org/TR/xsl/

[12] Paul Hudak, “Building Domain-Specific Embedded
Languages”, ACM Computing Surveys 28A(4),1996.

[13] K. Marriott and P. Stuckey. Programming With Constraints:
An Introduction. 1998. The MIT Press

[14] Jacco van Ossenbruggen, et al., "Towards Second and Third
Generation Web-Based Multimedia", WWW10, May 1-5, 2001.
Available at http://www10.org/cdrom/papers/423/.

[15] L. Rutledge and P. Schmitz, Improving Media Fragment
Integration in Emerging Web Formats. Proceedings of the
International Conference on Multimedia Modeling 2001
(MMM01), November 5-7, 2001, Available at
http://www.cwi.nl/~media/publications/mmm01b.pdf
[16] Scalable Vector Graphics (SVG) 1.0 Specification, W3C
Proposed Recommendation, 19 July 2001. Available at
http://www.w3.org/TR/SVG/.

[17] Patrick Schmitz, Multimedia Meets Computer Graphics in
SMIL2.0: A Time Model for the Web, WWW2002, May 7-11,
2002. Available at http://www2002.org/CDROM/refereed/382/

[18] Synchronized Multimedia Integration Language (SMIL
2.0),W3C Recommendation 07 August 2001. Available at
http://www.w3.org/TR/smil20/.

[19] S. Thompson. Haskell, The Craft of Functional
Programming, Second Edition, Addison-Wesley, 1999.

[20] Lionel Villard, Cécile Roisi and, Nabil Layaïda, "An XML-
based multimedia document processing model for content
adaptation", Proceeding of Eighth International Conference on
Digital Documents and Electronic Publishing, 14 September,
2000

[21] XHTML+SMIL Profile, W3C Note 31 January 2002,
Available at http://www.w3.org/TR/XHTMLplusSMIL/

[22] XML Fragment Interchange, W3C Candidate
Recommendation 12 February 2001. Available at
http://www.w3.org/TR/xml-fragment

[23] XML Inclusions (XInclude) Version 1.0, W3C Candidate
Recommendation 17 September 2002. Available at
http://www.w3.org/TR/xinclude/.

[24] XML Information Set", W3C Recommendation 24 October
2001. Available at http://www.w3.org/TR/xml-infoset/.

[25] XSL Transformations (XSLT) Version 1.0, W3C
Recommendation 16 November 1999. Available at
http://www.w3.org/TR/xslt

http://www.w3.org/TR/xsl/
http://www.acm.org/
http://www.acm.org/surveys
http://www10.org/cdrom/papers/423/
http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/DOM-Level-2-Style/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.ecma.ch/
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.acm.org/
http://www.acm.org/surveys
http://www.cwi.nl/~media/publications/mmm01b.pdf
http://www.cwi.nl/~media/publications/mmm01b.pdf
http://www.w3.org/TR/SVG/
http://www2002.org/CDROM/refereed/382/
http://www.w3.org/TR/smil20/
http://www.w3.org/TR/SVG/
http://www11.in.tum.de/DDEP00/
http://www11.in.tum.de/DDEP00/
http://www.w3.org/TR/XHTMLplusSMIL/
http://www.w3.org/TR/xml-fragment
http://www.w3.org/TR/XHTMLplusSMIL/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt

	INTRODUCTION
	Authoring in W3C language standards
	Authoring in a programming language
	When the DSL is not enough – adding functionality

	USE-CASE SCENARIOS
	Arrow/Missile scenario
	Begin-when-viewed scenario
	Menu scenario

	EXPRESSIONS
	The typing mechanism
	Types and operators
	Data types
	Operators
	Language Functions
	Domain-specific values

	CALCULATION
	Computation model
	Resolving OM value references
	Expression calculation frequency

	EVENTS AND PREDICATES
	TEMPLATES & PARAMETERIZATION
	Introduction
	Proposed solution

	IMPLEMENTATION EXPERIENCE
	Calculated expressions and predicates
	Templates and parameterization
	Observations

	CASE STUDIES
	Pong
	Other case studies

	FUTURE WORK AND CONCLUSIONS
	Authoring issues
	Language integration and extensions
	Integration with SMIL Timing
	Extensions relating to expressions
	Extensions relating to TEMPLATES

	Scoped IDs in XML
	Conclusions

	ACKNOWLEDGMENTS
	REFERENCES

