
Refactoring Functional Programs

Simon Thompson

Computing Laboratory
University of Kent, UK

S.J.Thompson@kent.ac.uk

Abstract. Refactoring is the process of improving the design of exist-
ing programs without changing their functionality. These notes cover
refactoring in functional languages, using Haskell as the medium, and
introducing the HaRe tool for refactoring in Haskell.

1 Introduction

Refactoring [Fow00] is about improving the design of existing computer programs
and systems; as such it is familiar to every programmer, software engineer and
designer. Its key characteristic is the focus on structural change, strictly sep-
arated from changes in functionality. A structural change can make a program
simpler, by removing duplicate code, say, or can be the preparatory step for an
upgrade or extension of a system.

Program restructuring has a long history. As early as 1978 Robert Floyd
in his Turing Award lecture [Flo79] encouraged programmers to reflect on and
revise their programs as an integral part of their practice. Griswold’s thesis on
automated assistance for LISP program restructuring [GN93] introduced some
of the ideas developed here and Opdyke’s thesis [Opd92] examined refactoring
in the context of object-oriented frameworks. Martin Fowler brought the field
to prominence with his book on refactoring object-oriented programs [Fow00].
The refactoring browser, or ‘refactory’ [BR], for Smalltalk is notable among the
first generation of OO tools; a number of Java tools are now widely available.
The best known of these is the refactoring tool for Java in Eclipse [Ecl]. More
comprehensive reviews of the refactoring literature are available at the web page
for [Fow00] and at our web site.1

Refactorings are one sort of program transformation; they differ from other
kinds of program transformation in a number of ways. Traditional transforma-
tions usually have a ‘direction’: they are applied to make a program more time or
space efficient, say. On the other hand, refactorings are typically bi-directional: a
refactoring to widen the scope of a local definition could equally well be applied
in reverse to localise a global definition.

It is also characteristic of refactorings that they are ‘diffuse’ and ‘bureau-
cratic’: that is, their effect is not limited to a particular point in a program, and
1 http://www.cs.kent.ac.uk/projects/refactor-fp/

http://www.cs.kent.ac.uk/projects/refactor-fp/

they require care and precision in their execution. Consider the example of the
simplest possible refactoring: renaming a component of a program. To effect this
change requires not only the component definition to be changed, but also every
use of the component must be similarly modified. This involves changing every
file or module which might use the component, potentially tens or hundreds of
modules. Moreover, it is vital not to change any components hidden in other
parts of the system which happen to share the same name.

It is, of course, possible to do refactorings ‘by hand’, but this process is
tedious and, more importantly, error-prone. Automated support for refactorings
makes them safe and easy to perform, equally easy to undo, and also secure in
their implementation. The Refactoring Functional Programs2 [LRT03] project at
the University of Kent is building the HaRe [HaR] system to support refactorings
for Haskell programs.

HaRe is designed as a serious tool for use by practising programmers: HaRe
supports the whole of Haskell 98; it is integrated into standard development
environments and it preserves the ‘look and feel’ of refactored programs. HaRe
is built using a number of existing libraries: Programatica [Hal03] on which
to build the language-analysis components, and Strafunski [LV01] which gives
general support for tree transformations.

These notes begin presenting overviews of design for functional programs
and the HaRe system. The core of the paper is an exposition of the basics of
refactoring: a detailed description of generalisation is presented as an example of
a structural refactoring in Section 4, and the impact of modules on refactoring
is examined in Section 5.

A number of data-oriented refactorings are given Section 6: principal among
these is the transformation taking a concrete data type into an ADT, which is
implemented in HaRe as composition of simpler refactorings. As well as provid-
ing a repertoire of built-in refactorings, HaRe provides an API by which other
refactorings can be constructed; this is the subject of Section 7. The notes con-
clude with a discussion of conclusions and directions for the research.

I am very grateful indeed to my colleagues Huiqing Li and Claus Reinke,
interns Nguyen Viet Chau and Jon Cowie, and research students Cyris Ryder
and Chris Brown for their collaboration in the project. I would also like to thank
the referees for their suggestions and corrections.

2 The elements of design

In designing an object-oriented system, it is taken for granted that design will
precede programming. Designs will be written using a system like UML [UML]
which is supported in tools such as Eclipse [Ecl]. Beginning programmers may
well learn a visual design approach using systems like BlueJ [Blu]. Work on a
similar methodology for functional programming is reported in [Rus00], but little
other work exists. There may be a number of reasons for this.

2 This work is supported by EPSRC under project grant GR/R75052.

– Existing functional programs are of a scale which does not require design.
Many functional programs are small, but others, such as the Glasgow Haskell
Compiler, are substantial.

– Functional programs directly model the application domain, thus rendering
design irrelevant. Whilst functional languages provide a variety of power-
ful abstractions, it is difficult to argue that these provide all and only the
abstractions needed to model the real world.

– Functional programs are built as an evolving series of prototypes.

If we accept the final reason, which appears to be the closest to existing practice,
we are forced to ask how design emerges. A general principle is the move from
the concrete to the abstract, and from the specific to the general. Specifically,
for Haskell, we can use the following strategies:

Generalisation. A function is written with a specific purpose: it is generalised
by making some of the particular behaviour into an argument.

Higher-order functions. This particular case of generalisation is character-
istic of modern functional programming: specific behaviour is abstracted
into a function, which becomes a parameter.

Commonality. Two parts of a program are identified as being identical or at
least similar; they can be replaced by invocations of a single function (with
appropriate parameters).

Data abstraction. Concrete, algebraic data types provide an excellent starting
point, but are difficult to modify: a move to an abstract type gives the
programmer flexibility to modify the implementation without modifying any
client code.

Overloading. The introduction of a class and its instances allows set of
names to be overloaded: programs thus become usable in a variety of con-
texts. This can make programs more readable, and also replace a number of
similar definitions by a single, overloaded, one.

Monadification. This particular case of overloading allows explicit computa-
tional effects to become an implicit part of a system; once this transformation
has taken place it is possible to modify the monad being used without chan-
ging the client code. A number of monads can be combined using monad
transformers [LHJ95].

The HaRe tool supports many of these ‘design abstractions’. Using a refactoring
tool allows programmers to take a much more exploratory and speculative ap-
proach to design: large-scale refactorings can be accomplished in a single step,
and equally importantly can be undone with the same effort. In this way Haskell
programming and pedagogy can become very different from current practice.

3 The HaRe system

Refactoring for Haskell is supported by the HaRe tool [HaR] built at the Uni-
versity of Kent as a part of the project Refactoring Functional Programs. The

Fig. 1. HaRe: the Refactor menu

system was designed to be a tool useable by the working programmer, rather
than a proof-of-concept prototype. This imposes three substantial constraints on
the designer.

– It should support a full standard language – Haskell 98 in this case – rather
than a convenient subset chosen for demonstration purposes.

– It should work within programmers’ existing tools (Emacs and Vim) rather
than be stand alone, allowing programmers to augment their existing prac-
tice with zero overhead.

– It is our experience that although layout is of syntactic significance in Haskell,
different programmers adopt widely different styles of layout, and in most
cases programmers would find it completely unacceptable to have had their
code reformatted by a ‘pretty printer’ in the course of a refactoring.
The system should therefore preserve the appearance of source code pro-
grams. In particular, it is crucial to preserve not only comments but also the
particular layout style used by the programmer.

3.1 Using HaRe

HaRe supports a growing set of refactorings over Haskell; the details of many of
these are presented in the sections that follow. The initial release of HaRe con-
tained a number of ‘structural’, scope-related, single-module refactorings (Oc-
tober 2003); multiple-module versions of these refactorings were added in HaRe

Fig. 2. HaRe: the result of ‘From concrete to abstract data type’.

0.2 (January 2004), and the first datatype-related refactorings added in HaRe
0.3 (November 2004). The third version restructures HaRe to expose an API for
the system infrastructure used for implementing refactorings and other trans-
formations in HaRe; this is addressed in more detail in Section 7.

HaRe, embedded in Emacs, is shown in Figures 1 and 2. A new Refactor
menu has been added to the user interface: menu items group refactorings, and
submenus identify the particular refactoring to be applied. Input is supplied by
the cursor position, which can be used to indicate an identifier to be renamed,
say, and from the keyboard, to give the replacement identifier, for instance.
Figure 1 shows a program defining and using a concrete data type; Figure 2
shows the result of refactoring this to an abstract data type.

3.2 Implementation

HaRe is implemented in Haskell. It can be used as a stand-alone program, and is
integrated with Emacs and Vim using their scripting languages. As is apparent
from the example shown in Figures 1 and 2, HaRe is more than a text editor.

Information
gathering

Precondition
checking

Program
transformation

Program
rendering

Fig. 3. The four stages of a refactoring

Implementing refactorings requires information about a number of aspects of the
program:

Syntax. The subject of the refactoring (or program transformation) is the ab-
stract syntax tree (AST) for the parsed program. To preserve comments and
layout, information about comments and source code locations for all tokens
is also necessary.

Static semantics. In the case of renaming a function f it is necessary to check
that this binding of f does not capture any existing uses of f. The binding
analysis provides this information.

Module analysis. In a multi-module project, analysis must include all mod-
ules. For example, renaming the function f must percolate through all mod-
ules of a project which import this binding of f.

Type system. If a function g is generalised (as in Section 4) then its type
declaration will need to be adjusted accordingly.

It is therefore clear that we require the full functionality of a Haskell front-end
in order to implement the refactorings completely and safely. In this project
we have used the Programatica front end [Hal03], which supports all aspects of
analysis of Haskell 98. The correct implementation of a refactoring consists of
four parts, shown in Figure 3.

Information gathering and condition checking. The refactoring will only
be performed if it preserves the semantics of the program; examples of some
of the conditions are given above. Verifying these conditions requires in-
formation, such as the set of identifiers in scope at a particular point in the
program, to be gathered from the AST by traversing it.

Transformation. Once the conditions are verified, it is possible to perform the
refactoring, which is a transformation of the AST.

Program rendering. Once transformed, source code for the new program needs
to be generated, conforming to the original program layout as much as pos-
sible.

Information gathering and transformation consist for the most part of ’boiler-
plate’ code: generic operations are performed at the majority of AST nodes, with
the real work being performed by ad hoc operations at particular kinds of node.
These hybrid generic / specific traversals are supported by a number of systems:
in HaRe we use Strafunski [LV01]; other systems include [LP03,LP04].

More details of the HaRe system, including the implementation of a particular
refactoring and the details of program rendering, are given in Section 7 and the
papers [LRT03,LRT04].

4 Structual refactorings

The first release of HaRe contained a number of refactorings which could be
called structural. They principally concern the structure of a program, and in
particular the objects defined, how they are named and what are their scopes.
In summary, HaRe supports the following structural refactorings.

Delete a definition that is not used.

Duplicate a definition, under another name.

Rename a function, variable, type or any other program item.

Promote a definition from a local scope to a wider scope, or to the top level of
the module.

Demote a definition which is only used within one definition to be local to that
definition.

Introduce a definition to name an identified expression.

Add an argument to a function.

Remove an argument from a function, if it is not used.

Unfold a definition: in other words replace an occurrence of the left-hand side
of a definition by the corresponding right-hand side.

Generalise a definition by making a selected sub-expression of its right-hand
side into a value passed into the function via a new formal parameter.

A number of these refactorings are inverses of each other: promote / demote a
definition; add / remove an argument. Others are not quite inverse; the principal
example of this is the pair: unfold a definition / introduce a definition. Yet others
have inverses yet to be implemented, including generalisation.

We look in more detail here at just one refactoring: generalisation, whose full
catalogue entry is given in Figures 4 and 5. Note that, in common with many of
these refactorings, generalisation has an effect throughout a module and indeed
beyond, since both the definition of the function and all calls to the function
must be modified.

Each refactoring is only valid under certain conditions. These conditions
are covered in more detail in the paper [LRT03] and in the catalogue which
accompanies the HaRe system [HaR].

Generalisation

Description: Generalise a definition by selecting a sub-expression of the right-hand
side (here "\n") of the definition and making this the value of a new formal para-
meter added to the definition of the function. The sub-expression becomes the actual
parameter at all the call sites.

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs)

= (x ++ "\n") : format xs

table = concat . format

format :: [a] -> [[a]] -> [[a]]

format sep [] = []

format sep [x] = [x]

format sep (x:xs)

= (x ++ sep) : format sep xs

table = concat . format "\n"

General comment: The choice of the position where the argument is added is not
accidental: putting the argument at the beginning of the argument list means that it
can be added correctly to any partial applications of the function. Note that in the Add
Argument refactoring we name the new parameter at the same level as the definition,
whereas here we substitute the expression at all call sites.

Left to right comment: In the ex-
ample shown, a single expression is se-
lected. It is possible to abstract over
a number of occurrences of the (syn-
tactically) identical expression by pre-
ceding this refactoring by

– a transformation to a single equa-
tion defined by a case expression;

– the introduction of a local defini-
tion of a name for the common ex-
pression.

and by following the refactoring by the
appropriate inverse refactorings.

In a multi-module system, some of
the free variables in the selected sub-
expression might not be accessible to
the call sites in some client mod-
ules. Instead of explicitly exporting
and/or importing these variables, the
refactorer creates an auxiliary func-
tion (fGen, say) in the module contain-
ing the definition to represent the sub-
expression, and makes it accessible to
the client modules.

Right to left comment: The inverse
can be seen as a sequence of simpler
refactorings.

– A definition of a special case is in-
troduced: fmt = format "\n" and
any uses of format "\n" (outside
its definition) are folded to fmt.

– Using generative folding, the defin-
ition of format is specialised to
a definition of fmt. (Folds in the
style of Burstall and Darlington
are called generative as they will
generate a new definition.)

– If all uses of format take the para-
meter "\n" then no uses of format
remain. Its definition can be re-
moved, and fmt can be renamed to
format.

(cont.)

Fig. 4. Catalogue entry for generalisation (part 1)

Left to right conditions: There are
two conditions on the refactoring.

– Adding the new formal parameter
should not capture any existing
uses of variables.

– The abstracted sub-expression, e

say, becomes the first argument of
the new function at every use of it.
For every new occurrence of e it is
a requirement that the bindings of
all free identifiers within e are re-
solved in the same way that they
are in the original occurence.

Right to left conditions: The suc-
cessful specialisation depends upon the
definition of the function to have a par-
ticular form: the particular argument
to be removed has to be a constant
parameter: that is, it should appear un-
changed in every recursive call.
The definition of the original function
can only be removed if it is only used
in the specialised form.

Analysis required: Static analysis of bindings; call graph; module analysis. If the
type declaration is to be modified, then type inference will be needed.

Fig. 5. Catalogue entry for generalisation (part 2)

The most complex conditions are centered on the binding structure of the pro-
gram: that is, the association between uses of identifiers (function and variable
names, types, constructor names and so forth) and their definitions. Two ex-
amples serve to illustrate the point:

– If a definition is moved from a local scope to the top level, it may be that
some names move out of their scope: this could leave them undefined, or
bound to a different definition.

– In the case of generalisation, a new formal parameter is added to the defin-
ition in question: this may also disturb the binding structure, capturing
references to an object of the same name defined at the top level.

Capture can occur in two ways: the new identifier may be captured, as when f
is renamed to g:

h x = ... h ... f ... g ... h x = ... h ... g ... g ...
where where
g y = ... g y = ...

f x = ... g x = ...

or it may capture other uses, as when a local definition f is renamed to g:

h x = ... h ... f ... g ... h x = ... h ... g ... g ...
where where
f y = ... f ... g ... g y = ... g ... g ...

g x = ... g x = ...

In the next section we explore the impact of modules on the refactoring process
for Haskell.

5 Modules and module-aware refactorings

The second release of HaRe extends the first in two ways. The structural refact-
orings are themselves made module aware, that is they are extended to have an
effect throughout a multi-module project rather than in a single module alone.
Various refactorings for the module system are then introduced.

5.1 Module-aware refactorings

A Haskell module may import definitions from other modules, and re-export
them and its own definitions for use in other modules. This has the effect of
widening the scope of a definition from a single module to a set of modules. It
may be imported just under its name, or in ‘qualified’ form as Module.name.
An exhaustive, formal, description of the Haskell module system, developed as
a part of the Programatica project, is given in [DJH02].

Returning to our example of generalisation, it is necessary to consider the
expression which becomes the new actual parameter at every call site of the
function, in every module where the function is used. This expression will use
identifiers defined in its home module, and these will need to be accessible.
Two options present themselves. First, it would be possible to export all these
definitions to all modules using the function, but this has the disadvantage of
cluttering up the namespace with extraneous definitions, as well as introducing
the possibility of name clashes. Instead, we introduce a new name for the ac-
tual parameter in the home module, and export that value together with the
generalised function.

The scope of multi-module refactorings is not, of course, universal. In the
HaRe project, we build on the Programatica infrastructure, and so we use the
Programatica notion of project as delimiting the scope of a refactoring. In many
cases it is possible to mitigate the effect of refactorings on modules outside the
project. For example, if a generalised function is going to be used outside the
project, then it is possible to build a ‘wrapper’ module which exports the original
function rather than the generalised version.

5.2 Module refactorings

HaRe supports a number of refactorings related to the module system.

Clean the import list, so that the only functions imported are ones that are
used in the module.

Make an explicit list of those bindings used from each imported module.
Add and remove items from the export list.
Move a definition from one module to another.

Consider the process of moving a top level definition of f from module A to B.
First, various conditions need to be satisfied if the move is to happen.

– f should not already be defined at the top level of B.
– The free variables in f should be accessible within the module B.
– The move should not create a circularity in the module dependencies.3

If the conditions are satisfied then the refactoring can be achieved by moving
the definition from A to B with some follow-up actions.

– Modify the import/export lists in the modules A and B and the client modules
of A and B as necessary.

– Change uses of A.f to B.f or f in all affected modules.
– Resolve any ambiguity that might arise.

Other refactorings within the module system include: moving a group of defin-
itions, moving type, class and instance definitions, and merging and splitting
modules.

6 Data-oriented refactorings

This section looks in more detail at a number of larger-scale, data-oriented,
refactorings. It is characteristic of all of these that they are bi-directional, with
the context determining the appropriate direction. Some of these refactorings are
described in the case study of [TR03]. The section concludes with an overview
of other, type-based, refactorings.

6.1 Concrete to abstract types

One of the principal attractions of almost all modern functional programming
languages is the presence of pattern matching.4 Pattern matching combines
selection between alternatives and extraction of fields, allowing definitions of
data-processing functions to follow the template provided by the data definition
closely. Take the example of a binary tree:

data Tree a
= Leaf a |
Node a (Tree a) (Tree a)

The definition has two cases: a Leaf and a (recursive) Node. Correspondingly, a
function to flatten a tree into a list has two clauses: the first deals with a leaf,
and the second processes a node, recursively:
3 Whilst Haskell 98 allows recursive modules, the reason for this restriction is the im-

perfect support for recursive modules provided by current Haskell implementations.
4 Scheme is the main exception, and indeed even within the Scheme community it is

taken for granted that pattern matching macros are used by scheme programmers
in all but the most introductory of contexts.

module Tree (Tree, leaf, node, isLeaf, isNode, val, left, right) where

data Tree a

= Leaf a |

Node a (Tree a) (Tree a)

isLeaf (Leaf _) = True val (Leaf x) = x

isLeaf _ = False val (Node x _ _) = x

isNode (Node _ _ _) = True left (Node _ l _) = l

isNode _ = False right (Node _ _ r) = r

leaf = Leaf

node = Node

Fig. 6. Tree as an abstract data type

flatten :: Tree a -> [a]

flatten (Leaf x) = [x]
flatten (Node x s t)
= x : flatten s ++ flatten t

The disadvantage of this approach is the concrete nature of the definition of Tree:
in other words, the interface to the Tree type is given by a pair of constructors:

Leaf :: a -> Tree a
Node :: a -> Tree a -> Tree a -> Tree a

Leaf and Node are not only functions, but also can be used in patterns for the
Tree type. Every Tree is built by applying these constructors, and any function
over Tree can use pattern matching over its arguements.
The alternative is to make Tree an abstract type. The interface to an abstract
type is a collection of functions. Discrimination between the various cases and
selection of components needs now to be provided explicitly by functions. The
code for this case is shown in Figure 6. The selector functions can also be defined
using field names.

data Tree a
= Leaf { val :: a } |
Node { val :: a, left, right :: Tree a }

Each function defined using pattern matching needs to be redefined. Case dis-
crimination is replaced by guards, and selction by explicit selectors (given in this
case by labelled fields):

flatten :: Tree a -> [a]

flatten t
| isleaf t = [val t]
| isNode t
= val t : flatten (left t) ++ flatten (right t)

A refactoring of this sort is often preliminary to a change of representation of the
Tree type; after the refactoring this can be achieved by changing the definition
of the interface functions; no client functions need to be modified.

HaRe supports this refactoring by means of a number of elementary refact-
orings:

Add field names. Names are added to the fields of the data type. Names are
chosen by the system, but these can be changed using the renaming refact-
oring.

Add discrimiators. By default, discriminators are named ‘isCon’ for the con-
structor Con. If functions of this name already exist, other names are chosen.

Add constructors. Functions con corresponding to the constructor Con are
introduced.

Remove nested patterns. A particular problem is pressented by patterns
containing constructors from other datatypes. Using the Tree example again,
consider the fragment

f (Leaf [x]) = x+17

in which a list constructor occurs within a pattern from the Tree datatype.
We will have to replace this pattern with a variable, and thus we lose the list
pattern match too. So, we need to deal with this nested pattern first, thus:5

f (Leaf xs) = case xs of
[x] -> x+17

We leave it to readers to convince themsleves that other forms of nesting do
not require this treatment.

Remove patterns. Patterns in the Tree type can now be eliminated in terms
of the discriminators and selectors. Picking up the previous example, we will
have

f t
| isLeaf t = case (val t) of

[x] -> x+17

Create ADT interface. Move the type definition into a separate file with an
interface containing the selectors, discriminators and constructor functions.

Views [Wad87,B+] give a mechanism for pattern matching to cohabit with type
abstraction. It would be possible to augment the refactoring to include the appro-
priate view, and to retain pattern matching definitions whilst introducing type
abstraction, if the revised proposal [B+] were to be incorporated into Haskell.
5 It may also be necessary to amalgamate a number of clauses before performing this

step, since it is not possible to ‘fall through’ a case statement.

data Tree a

= Leaf { val::a, flatten:: [a] } |

Node { val::a, left,right::(Tree a), flatten::[a] }

leaf x = Leaf x [x]

node x l r = Node x l r (x : (flatten l ++ flatten r))

Fig. 7. Memoising flatten in the data representation

6.2 Inside or out?

The abstraction of Tree in Section 6.1 gives a minimal interface to the type:
values can be constructed and manipulated, but no other functions are included
in the ‘capsule’ or module which delimits the type representation.

Arguably, more functions, such as flatten in our running example. might
be included in the capsule. What are the arguments for and against this?

Inside. A function included in the capsule has access to the representation, and
so can be defined using pattern matching. This may be unavoidable or more
efficient if the interface does not export sufficient functionality.

Outside. A function defined outside the capsule need not be re-defined when
the implementation changes, whereas a function inside must be redefined.

This refactoring extends ‘move definition between modules’ since the definition
itself may also be transformed on moving in or out of the capsule.

6.3 Change of representation: memoisation

One reason for a change of representation is to support a more efficient repres-
entation of a data type. Suppose that Trees are repeatedly flattened. There is
then a case for including a field in the representation to contain this memoised
value.

Once data of this sort is included in a type, it is imperative for the consistency
of the data representation that the type is abstract, so that values are only
constucted and manipulated by functions which preserve the invariant property
that the particular field indeed represents the memoised value.

This transformation can be supported in a refactoring. The transformed ver-
sion of the running example is shown in Figure 7. The example shows that the
value is memoised in the fields named flatten. The leaf constructor establises
the invariant, and node will preserve it.

Incidentally, the memoisation is lazy: the memoised function is as strict or
lazy as the original function, so that it is possible, for example. to extract any
finite portion of the flatten field of bigTree = node 1 bigTree bigTree.

data Expr data Expr

= Epsilon | | = Epsilon | |

Then Expr Expr | Then Expr Expr |

Star Expr Star Expr |

Plus Expr

plus e = Then e (Star e)

Fig. 8. Two data types of regular expressions

6.4 Constructor or constructor function?

Figure 8 shows two variants of a type of regular expressions. The left-hand
definition makes plus syntactic sugar: it will be expanded out before any function
over Expr can be applied, and definitions for regular expressions need not treat
the plus case separately, so

literals (Plus e)
= literals (Then e (Star e))
= literals e ‘union‘ literals e
= ...

On the other hand, with the right-hand definition it is possible to treat Plus
explicitly, as in

literals (Plus e) = literals e

However, it is not just possible but necessary to define a Plus case for every
function working over the right-hand variant of Expr, thus requiring more effort
and offering more opportunity for error.6

In any particular situation, the context will be needed to determine which
approach to use. Note, however, that the transition from left to right can seen
as a refactoring: the definitions thus produced may then be transformed to yield
a more efficient version as is possible for the literals function.

6.5 Algebraic or existential type?

The traditional functional programming approach would represent a type of
shapes as an algebraic type, as shown in the left-hand side of Figure 9. Each
function defined over Shape will perform a pattern match over shape. Extending
the type to include a new kind of shape – Triangle, say – will require that all
functions have a case added to deal with a triangular shape.

6 A more persuasive example for this transformation is a range of characters within a
regular expression: one can expand [a-z] into a|b|c|...|y|z but it is much more
efficient to treat it as a new constructor of regular expressions.

data Shape data Shape

= Circle Float | = forall a. Sh a => Shape a

Rect Float Float

class Sh a where

area :: Shape -> Float area :: a -> Float

area (Circle f) = pi*r^2 perim :: a -> Float

area (Rect h w) = h*w

data Circle = Circle Float

perim :: Shape -> Float

perim (Circle f) = 2*pi*r instance Sh Circle

perim (Rect h w) = 2*(h+w) area (Circle f) = pi*r^2

perim (Circle f) = 2*pi*r

data Rect = Rect Float Float

instance Sh Rect

area (Rect h w) = h*w

perim (Rect h w) = 2*(h+w)

Fig. 9. Algebraic or existential type?

The traditional OO approach will use subclassing or ‘polymorphism’ (in the
OO sense) to implement conditional code.7 This style is also possible in a func-
tional context, using a combination of type classes and existential types. Figure
9 shows how to achieve this for a type of shapes. It is argued that an advantage
of the right-hand representation is that it makes extension of the Shape type
simpler. To add a triangle shape it is necessary to add a new instance declara-
tion; this single point in the program will contain all the necessary declarations:
in this case calculations of the area and perimeter of a triangle.

This approach is not without its drawbacks, however. In the setting of Haskell
98 a full treatment of ‘binary methods’ becomes problematic. For example it is
impossible to define == on the existential version of Shape using the standard
definition by case analysis over the two arguments. Instead, it is necessary to
convert shapes to a single type (e.g. via show) to turn a case analysis over types
into a corresponding case over values.

Each representation will be preferable in certain circumstances, just as row-
major and column-major array representations are appropriate for different al-
gorithms.8 The transformation from left to right can be seen as the result of a
sequence of simpler refactorings:

7 This is one of Fowler’s [Fow00] refactorings: Replace Conditional with Polymorphism.
8 The reference to array representations is no accident: we can see the two type defin-

itions as presenting clauses of function definitions in row- and column-major form.

data Expr = Lit Float | data Expr = Lit Float |

Add Expr Expr | Bin BinOp Expr Expr

Mul Expr Expr |

Sub Expr Expr data BinOp = Add | Mul | Sub

eval (Lit r) = r eval (Lit r) = r

eval (Add e1 e2) eval (Binop op e1 e2)

= eval e1 + eval e2 = evalOp op (eval e1) (eval e2)

eval (Mul e1 e2)

= eval e1 * eval e2 evalOp Add = (+)

eval (Sub e1 e2) evalOp Mul = (*)

= eval e1 - eval e2 evalOp Sub = (-)

Fig. 10. Layered data types

– introducing the algebraic ‘subtypes’ corresponding to the constructors of the
original type: in this case Circle and Rect;

– introducing a class definition for the functions: here the class Sh;
– introducing the instance declarations for each ‘subtype’,
– and finally introducing the existential type: in this example, Shape.

6.6 Layered data types

Figure 10 illustrates two alternative representations of a data type of arithmetic
expressions. The left-hand approach is the more straightforward: the different
sorts of arithmetic expression are all collected into a single data type. Its disad-
vantage is that the type does not reflect the common properties of the Add, Mul
and Sub nodes, each of which has two Expr fields, and each of which is treated in
a similar way. Refactoring for ‘common code extraction’ can make this similarity
explicit.

On the other hand, in the right-hand definition, the Bin node is a general
binary node, with a field from BinOp indicating its sort. Operations which are
common to Bin nodes can be written in a general form, and the pattern matching
over the original Expr type can be reconstructed thus:

eval’ (Bin Add e1 e2) = eval’ e1 + eval’ e2

This approach has the advantage that it is, in one way at least, more straightfor-
ward to modify. To add division to the expression type, it is a matter of adding
to the enumerated type an extra possibility, Div, and adding a corresponding
clause to the definition of evalOp.

Note that moving between representations requires the transformation of all
definitions that either use or return an Expr.

data Expr

= Lit Integer | -- Literal integer value

Vbl Var | -- Assignable variables

Add Expr Expr | -- Expression addition: e1+e2

Assign Var Expr -- Assignment: x:=e

type Var = String

type Store = [(Var, Integer)]

lookup :: Store -> Var -> Integer

lookup st x = head [i | (y,i) <- st, y==x]

update :: Store -> Var -> Integer -> Store

update st x n = (x,n):st

Fig. 11. Expressions and stores

6.7 Monadification

It is commonplace for Haskell programs to incorporate computational effects
of various sorts, such as input/output, exceptions and state. Haskell is a pure
language, and it is not possible simply to add side effects to the system; instead,
expressions with related actions are embedded in a monad.

A monad in Haskell is given by a constructor class, which abstracts away from
certain computational details of evaluating expressions with associated effects.
In its interface lie two functions: return which creates an expression with null
side effects, and >>= which is used to sequence and pass values between two side
effecting computations.

A natural step for the programmer is to begin by defining a pure program: one
which does no IO, for instance, and later to add IO actions to the program. This
necessitates bringing monads to the program. There are two distinct flavours of
monadification:

– a non-monadic program is ‘sequentialized’ to make it monadic; this is the
work of Erwig and his collaborators [ER04];

– a program with explicit actions – such as a state ‘threaded’ through the eval-
uation – is made into a program which explicitly uses the monadic operations
return and >>=, or indeed their ‘sugared’ version, the do notation.

An example of what is required can be see in Figures 11 and 12. Figure 11 shows
a type of side-effecting expressions, and a store type. An example of the side
effects are seen in

y := (x := x+1) + (x := x+1)

eval :: Expr -> Store -> (Integer, Store) evalST :: Expr -> State Store Integer

eval (Lit n) st evalST (Lit n)

= (n,st) = do

return n

eval (Vbl x) st evalST (Vbl x)

= (lookup st x,st) = do

st <- get

return (lookup st x)

eval (Add e1 e2) st evalST (Add e1 e2)

= (v1+v2, st2) = do

where v1 <- evalST e1

(v1,st1) = eval e1 st v2 <- evalST e2

(v2,st2) = eval e2 st1 return (v1+v2)

eval (Assign x e) st evalST (Assign x e)

= (v, update st’ x v) = do

where v <- evalST e

(v,st’) = eval e st st <- get

put (update st x v)

return v

Fig. 12. Evaluating expressions with side-effects

Evaluating this expression in a store where x has the value 3 results in y being
assigned 9: the first sub expression has the value 4, the second 5.

Figure 12 gives two versions of an evaluator for these expressions. On the
left-hand side is an evaluator which passes the Store around explicitly. The key
case is the evaluation of Add e1 e2 where we can see that e2 is evaluated in the
store st1, which may have been modified by the evaluation of e1.

On the right-hand side is the monadic version of the code. How easy is it to
transform the left-hand side to the right? It is a combination of unfolding and
folding function definitions, combined with the transformation between a where
clause and a let. Unfolding and folding of functions defined in instance declar-
ations necessitates a type analysis in order to associate uses of identifiers with
their definitions. Existing work on describing monad intoduction includes Erwig
and Ren’s monadification [ER04] and Lämmel’s monad introduction [Läm00].

6.8 Other type and data refactorings

A number of structural refactorings apply equally well to types: it is possible
to rename, delete or duplicate a type definition, for instance. Others apply spe-
cifically to types:

Introduce a type definition. Type synonyms make a program easier to read,
but have no semantic implication.

Introduce a newtype. Oh the other hand, a newtype is a new type, rather than
a new name for an existing type. The restrictions that Haskell 98 places on
which types may be declared as instances of classes make it necessary to
introduce newtypes for composite types as instances.

Other data-related refactorings include:

Enumerated type. Replace a finite set of constants with an enumerated type;
that is a data type with a finite number of 0-ary constructors.

Maybe types. Convert a Maybe type to a list or an Either; these can be seen
as transformations of particular monads, as can the conversion from (the
constant functor) Bool to a Maybe type.

Currying and uncurrying. It is possible to group, ungroup and reorder ar-
gument lists to functions and types.

Algebraic types. Convert between tuples and one-constructor algebraic types;
between homogeneous tuples and lists.

Type generalisation. A type definition may refer to a particular type, as the
right-hand definition of Expr in Figure 10 refers to BinOp; this reference
can become an additional parameter to the definition, with compensating
changes to be made to the remainder of the program.

Some of these refactorings are already implemented in HaRe; others are being
developed. The next section offers users the possibility of implementing refact-
orings for themselves.

7 Designing your own refactorings: the HaRe API

The HaRe system has a layered architecture, illustrated in Figure 13. It is a
Haskell program, so ultimately depends on a Haskell compiler for implementa-
tion. The Programatica toolset [Hal03] provides the front end functionality, and
the traversals and analyses are written using Strafunski [LV01].

7.1 The HaRe API

Using these libraries we have built other libraries of utilities for syntax ma-
nipulation: functions to collect all free identifiers in an expression, substitution
functions and so forth.

Two library layers are necessary because of our need to preserve program
layout and comments. In common with the vast majority of compilers, Pro-
gramatica’s abstract syntax tree (AST) omits comments, and contains only a
limited amount of source code location information.
To keep track of complete comment and layout data we work with the token
stream output by the lexical analyser, as well as the AST. When a program is
modified we update both the AST and the token stream, and we output the

Composite refactorings

Primitive refactorings

RefacUtils

RefacLocUtils

Programatica Strafunski

Fig. 13. The HaRe architecture

source code program by combining the information held by them both. This
necessitates that the utilities we design must manipulate both AST and token
stream; we provide two libraries to do this.

RefacUtils: this library hides the token stream manipulation, offering a set
of high-level tree manipulation functions which will manipulate syntactic
fragments; operations provided include insert, substitute, swap and so forth.
These are built on top of our other library, which is described next.

RefacLocUtils: this library provides the functionality to manipulate the token
stream and AST directly; it is the user’s responsibility to maintain consist-
ency between the two, whereas with RefacUtils this is guaranteed by the
library.

In the general course of things we would expect the majority of users to work
with RefacUtils.

7.2 A design example

An illustrative example is given by the refactoring which swaps the first two ar-
guments of a function. The essence of this transformation is the function doSwap:

doSwap pn = applyTP (full_buTP (idTP ‘adhocTP‘ inMatch
‘adhocTP‘ inExp
‘adhocTP‘ inDecls

))

inMatch ((HsMatch loc fun pats rhs ds)::HsMatchP)

| pNTtoPN fun == pn

= case pats of

(p1:p2:ps) -> do

pats’ <-swap p1 p2 pats

return (HsMatch loc fun pats’ rhs ds)

_ -> error "Insufficient arguments to swap."

inMatch m = return m

inExp exp@((Exp (HsApp (Exp (HsApp e e1)) e2))::HsExpP)

| expToPN e == pn

= swap e1 e2 exp

inExp e = return e

Fig. 14. Swapping arguments in a pattern match and a function application

a bottom-up tree transformation which is the identity except at pattern matches,
function applications and type declarations. The adhocTP combinator of Strafun-
ski is ad hoc in the sense that it applies its left hand argument except when
the right hand one can be applied; the TP suffix denotes that this is a ’type
preserving’ traversal. The details of the expression and definition manipulation
functions are in Figure 14. Note that swap will in general swap two syntactic
fragments within an AST, and so will be usable in many contexts. The code in
Figure 14 also illustrates the Programatica ‘two level’ syntax in action: the Exp
constructors witness the recursive knot-typing.9

The code in Figure 14 makes the ‘swap’ transformation but raises an error at
any point where the function is used with less than two arguments. In a full im-
plementation this condition would be checked prior to applying the refactoring,
with two possibilities when the condition fails.

– No action is taken unless all applications have at least two arguments.
– Compensating action is taken in cases with fewer arguments. In this case it is

possible to replace these instances of a function f, say, with calls to flip f,
where flip f a b = f b a. Note that in particular this handles ‘explicit’
applications of a function of the form f $ a $ b.

Full details of the API and function-by-function Haddock [Had] documentation
are contained in the HaRe distribution. Details of implementing a number of
fusion transformations are given in [Ngu04].

9 The two-level syntax is exemplified by a definition of lists. First a type constructor
function is defined, data L a l = Nil | Cons a l and then the recursive type is
defined to be the fixed point of L, thus: newtype List a = List (L a (List a)).
Since types cannot be recursive in Haskell, the fixed point introduces a wrapping
constructor, List here. For example, under this approach the list [2] will be given
by the term List (Cons 2 (List Nil)).

7.3 A domain-specific language for refactoring

Users who want to define their own refactorings can potentially interact with
the system in two quite different ways. First, it is possible to build refactorings
using the API already discussed; this required users to understand details of
Strafunski, Haskell syntax in Programatica and the API Itself.

A simpler, but more limited, approach is to provide set of combining forms, or
domain-specific language, for the existing refactorings, in analogy with the tactic
(and tactical) languages of LCF-style proof assistants such as Isabelle[NPW02].
In more detail, users could be offered combinators for

sequencing a list of refactorings;
choice between a number of alternatives; and
repetition of a given refactoring, whilst it is applicable.

Examples of how the DSL might be used are already evident: lifting a definition
to the top level (of a module) can be effected by repeatedly lifting it one level;
the full ADT refactoring is given by sequencing a number of simpler operations.
Building this DSL is a current research topic for the project.

8 Reflecting on refactoring

The work we have seen so far raises a number of questions and directions for
future work.

8.1 The refactoring design space

In implementing refactorings it becomes apparent that a single refactoring can
often have a number of variants, and it is not clear which of these should be
implemented. We introduce the different sorts of variation through a series of
examples.

All, one or some? In introducing a new definition by selecting an expression,
should the definition just replace the single identified instance of the expression,
all instances of that expression (in the module) or should the user be asked to
select precisely those instances to be replaced?

Compensation or not? In lifting a definition to the top level, what should
be done if there are bindings used in the definition which are not in scope at
the top level? It is possible to compensate for this by adding extra parameters
(λ-lifting), or the implementation may simply disallow this refactoring.

Modify or preserve? Generalisation as outlined in Section 4 modifies the
generalised function itself (format), changing calls to the function throughout
the project. An alternative is to define a generalised function, format’ say, and
to re-define format as an instance of this.

One advantage of this approach is that it localises the changes to a single
module. Moreover the type of the function is unchanged, so that any uses of

the function outside the project will not be compromised. A disadvantage is
the proliferation of names: the original function and its generalisation are both
visible now.

How much to preserve? A refactoring should not change the behaviour of the
program, but underneath this requirement lie a number of possibilities. It would
be possible to require that the meaning of every definition was unchanged, but
that would preclude a generalisation, which changes not only the function but
its type as well.

More realistically, it would be possible to require that the meaning of the main
program should be unchanged. This allows for a whole variety of refactorings
which don’t preserve meaning locally, but which do work ‘under the hood’. To
give two examples:

– The semantics of Haskell draws subtle distinctions between function bindings
and lambda expressions, for instance, which are only apparent for partially-
defined data values. Arguably these should not be allowed to obstruct trans-
formations which can substantially affect program design.

– More problematic is a refactoring which replaces lists by sets, when the lists
are essentially used to store a collection of elements.10

To verify the conditions of the last transformation in a tool would be a substantial
challenge; this is the point at which a tool builder has to realise that the worth
of the tool comes from implementing a set of clearly-defined, simple and useful
refactorings, rather than attempting to be comprehensive.

Not (quite) a refactoring? Some operations on programs are not precisely
refactorings, but can be supported by the same infrastructure, and would be of
value to programmers. Examples include:

– Add a new constructor to a data type:11 this should not only add the con-
structor but also add new clauses to definitions which use pattern matching
over this type.

– Add a field to a constructor of a data type: this would require modification
to every pattern match and use of this constructor.

– Create a new skeleton definition for a function over a data type: one clause
would have to be introduced for each constructor.

8.2 What does the work say for Haskell?

Building a tool like HaRe makes us focus on some of the details of the design of
Haskell, and how it might be improved or extended.

The correspondence principle. At first sight it appears that there are cor-
respondences between definitions and expressions [Ten79], thus:
10 This is illustrated in the case study [TR03].
11 It is arguable that this is a refactoring, in fact. Adding a constructor only has an

effect when that constructor is used, although this could arise indirectly through use
of a derived instance of Read.

Expressions Definitions

Conditional if ... then ... else ... guard
Local definition let where
Abstraction \p -> ... f p = ...
Pattern matching case x of p ... f p = ...

In fact, it is not possible to translate freely between one construct and its corres-
pondent. In general, constructs associated with definitions can be ‘open ended’
whereas expressions may not.

Take a particular case: a clause of a function may just define values for certain
arguments because patterns or guards may not exhaust all the possibilities;
values for other arguments may be defined by subsequent clauses. This is not
the case with if ... then ... else ... and case: speaking operationally,
once entered they will give a value for all possible arguments; it is not possible
to fall through to a subsequent construct.

Arguably this reflects a weakness in the design of Haskell, and could be
rectified by tightening up the form of definitions (compulsory otherwise and so
forth), but this would not be acceptable to the majority of Haskell users.

Scoped instance declarations. In Haskell it is impossible to prevent an in-
stance declaration from being exported by a module. The lack of scoped class
instances is a substantial drawback in large projects. The specific difficulty we
experienced was integrating libraries from Programatica and Strafunski which
defined subtly different instances of the same class over the same type.

The module system. There are certain weaknesses in the module system: it is
possible to hide certain identifiers on importing a module, but it is not possible
to do the same in an export list, for instance.

Layout. In designing a tool which deals with source program layout, a major
headache has been caused by tabs, and the different way in which they can be
interpreted by different editors (and editor settings). We recommend that all
users work with spaces in their source code.

Haskell 98 / GHC Haskell. Whilst we have built a system which supports
full Haskell 98, it is apparent that the majority of larger-scale Haskell systems
use the de facto standard, GHC Haskell. We hope to migrate HaRe to GHC in
due course, particularly if we are able to use the GHC front end API currently
under development.

8.3 An exercise for the reader

Readers who are interested in learning more about refactoring are encouraged to
use the HaRe tool to support exploring refactoring in a particular project. Any
non-trivial project would be suitable: the game of minesweeper [Tho] provides a
nicely open-ended case study.

8.4 Future work

High on our priority list is to implement refactorings which will extract ‘similar’
pieces of program into a common abstraction: this is often requested by potential
users. We also expect to migrate the system to deal with hierarchical libraries,
libraries without source code and ultimately to use the GHC front end to support
full GHC Haskell in HaRe.

8.5 Refactoring elsewhere

These notes have used Haskell as an expository vehicle, but the principles apply
equally well to other functional languages, or at least to their pure subsets.

Programming is not the only place where refactoring can be useful. When
working on a presentation, a proof, a set of tests and so forth similar redesigns
take place. Formal support for proof re-construction could be added to proof
assistants such as Isabelle.

In a related context, there is often interest in providing evidence for a pro-
gram’s properties or behaviour. This evidence can be in the form of a proof,
test results, model checks and so forth. This raises the challenge of evolving
this evidence as the program evolves, through both refactorings and changes of
functionality.

References

B+. Warren Burton et al. Views: An Extension to Haskell Pattern Matching. Pro-
posed extension to Haskell; http://www.haskell.org/development/views.

html.
Blu. The BlueJ system. http://www.bluej.org/.
BR. John Brandt and Don Roberts. Refactory. http://st-www.cs.uiuc.edu/

users/brant/Refactory/.
DJH02. Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Specific-

ation for the Haskell 98 Module System. In ACM Sigplan Haskell Workshop,
2002.

Ecl. The Eclipse project. http://www.eclipse.org/.
ER04. Martin Erwig and Deling Ren. Monadification of functional programs. Science

of Computer Programming, 52(1-3):101–129, 2004.
Flo79. Robert W. Floyd. The paradigms of programming. Commun. ACM, 22(8):455–

460, 1979.
Fow00. Martin Fowler. Refactoring: Improving the Design of Existing Code. Object

Technology Series. Addison-Wesley, 2000.
GN93. W.G. Griswold and D. Notkin. Automated assistance for program restructur-

ing. ACM Transactions on Software Engineering and Methodology, 2, 1993.
Had. The Haddock documentation system for Haskell. http:/www.haskell.org/

haddock.
Hal03. Thomas Hallgren. Haskell Tools from the Programatica Project (Demo Ab-

stract). In ACM Sigplan Haskell Workshop, 2003.
HaR. The HaRe system. http://www.cs.kent.ac.uk/projects/refactor-fp/

hare.html.

http://www.haskell.org/development/views.html
http://www.haskell.org/development/views.html
http://www.bluej.org/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://www.eclipse.org/
http:/www.haskell.org/haddock
http:/www.haskell.org/haddock
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html
http://www.cs.kent.ac.uk/projects/refactor-fp/hare.html

Läm00. R. Lämmel. Reuse by Program Transformation. In Greg Michaelson and
Phil Trinder, editors, Functional Programming Trends 1999. Intellect, 2000.
Selected papers from the 1st Scottish Functional Programming Workshop.

LHJ95. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: San Francisco, California. ACM Press, 1995.

LP03. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In Proceedings of the Workshop on
Types in Language Design and Implementation. ACM, 2003.

LP04. Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of International Conference on
Functional Programming 2004. ACM Press, 2004.

LRT03. Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refactoring
Functional Programs. In ACM Sigplan Haskell Workshop, 2003.

LRT04. Huiqing Li, Claus Reinke, and Simon Thompson. Progress on HaRe: the
Haskell Refactorer. Poster presentation at the International Conference on
Functional Programming, Snowbird, Utah. ACM, 2004.

LV01. Ralf Lämmel and Joost Visser. Generic Programming with Strafunski, 2001.
http://www.cs.vu.nl/Strafunski/.

Ngu04. Chau Nguyen Viet. Transformation in HaRe. Technical report, Comput-
ing Laboratory, University of Kent, 2004. http://www.cs.kent.ac.uk/pubs/

2004/2021.
NPW02. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A

Proof assistant for Higher-Order Logic. Springer, 2002.
Opd92. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,

University of Illinois at Urbana-Champaign, 1992.
Rus00. Daniel J. Russell. FAD: Functional Analysis and Design Methodology. PhD

thesis, University of Kent, 2000.
Ten79. Robert D. Tennent. Principles of Programming Languages. Prentice Hall,

1979.
Tho. Simon Thompson. Minesweeper. http://www.cs.kent.ac.uk/people/staff/

sjt/craft2e/Games/.
TR03. Simon Thompson and Claus Reinke. A Case Study in Refactoring Functional

Programs. In Brazilian Symposium on Programming Languages, 2003.
UML. The Unified Modeling Language. http://www.uml.org/.
Wad87. Philip Wadler. Views: a way for pattern-matching to cohabit with data ab-

straction. In Proceedings of 14th ACM Symposium on Principles of Program-
ming Languages. ACM Press, January 1987. (Revised March 1987).

http://www.cs.vu.nl/Strafunski/
http://www.cs.kent.ac.uk/pubs/2004/2021
http://www.cs.kent.ac.uk/pubs/2004/2021
http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/Games/
http://www.cs.kent.ac.uk/people/staff/sjt/craft2e/Games/
http://www.uml.org/

	Refactoring Functional Programs

