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Preface

Constructive Type theory has been a topic of research interest to computer
scientists, mathematicians, logicians and philosophers for a number of years.
For computer scientists it provides a framework which brings together logic
and programming languages in a most elegant and fertile way: program
development and verification can proceed within a single system. Viewed
in a different way, type theory is a functional programming language with
some novel features, such as the totality of all its functions, its expressive
type system allowing functions whose result type depends upon the value
of its input, and sophisticated modules and abstract types whose interfaces
can contain logical assertions as well as signature information. A third
point of view emphasizes that programs (or functions) can be extracted
from proofs in the logic.

Up until now most of the material on type theory has only appeared in
proceedings of conferences and in research papers, so it seems appropriate
to try to set down the current state of development in a form accessible to
interested final-year undergraduates, graduate students, research workers
and teachers in computer science and related fields – hence this book.

The book can be thought of as giving both a first and a second course in
type theory. We begin with introductory material on logic and functional
programming, and follow this by presenting the system of type theory itself,
together with many examples. As well as this we go further, looking at
the system from a mathematical perspective, thus elucidating a number
of its important properties. Then we take a critical look at the profusion
of suggestions in the literature about why and how type theory could be
augmented. In doing this we are aiming at a moving target; it must be
the case that further developments will have been made before the book
reaches the press. Nonetheless, such an survey can give the reader a much
more developed sense of the potential of type theory, as well as giving the
background of what is to come.
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Outline

It seems in order to give an overview of the book. Each chapter begins with
a more detailed introduction, so we shall be brief here. We follow this with
a guide on how the book might be approached.

The first three chapters survey the three fields upon which type theory
depends: logic, the λ-calculus and functional programming and construc-
tive mathematics. The surveys are short, establishing terminology, notation
and a general context for the discussion; pointers to the relevant literature
and in particular to more detailed introductions are provided. In the second
chapter we discuss some issues in the λ-calculus and functional program-
ming which suggest analogous questions in type theory.

The fourth chapter forms the focus of the book. We give the formal
system for type theory, developing examples of both programs and proofs
as we go along. These tend to be short, illustrating the construct just
introduced – chapter 6 contains many more examples.

The system of type theory is complex, and in chapter which follows we
explore a number of different aspects of the theory. We prove certain results
about it (rather than using it) including the important facts that programs
are terminating and that evaluation is deterministic. Other topics examined
include the variety of equality relations in the system, the addition of types
(or ‘universes’) of types and some more technical points.

Much of our understanding of a complex formal system must derive
from out using it. Chapter six covers a variety of examples and larger
case studies. From the functional programming point of view, we choose to
stress the differences between the system and more traditional languages.
After a lengthy discussion of recursion, we look at the impact of the quan-
tified types, especially in the light of the universes added above. We also
take the opportunity to demonstrate how programs can be extracted from
constructive proofs, and one way that imperative programs can be seen as
arising. We conclude with a survey of examples in the relevant literature.

As an aside it is worth saying that for any formal system, we can really
only understand its precise details after attempting to implement it. The
combination of symbolic and natural language used by mathematicians is
surprisingly suggestive, yet ambiguous, and it is only the discipline of having
to implement a system which makes us look at some aspects of it. In the
case of TT , it was only through writing an implementation in the functional
programming language Miranda1 that the author came to understand the
distinctive role of assumptions in TT , for instance.

The system is expressive, as witnessed by the previous chapter, but
are programs given in their most natural or efficient form? There is a

1Miranda is a trade mark of Research Software Limited



v

host of proposals of how to augment the system, and we look at these in
chapter 7. Crucial to them is the incorporation of a class of subset types, in
which the witnessing information contained in a type like (∃x :A) . B(x) is
suppressed. As well as describing the subset type, we lay out the arguments
for its addition to type theory, and conclude that it is not as necessary as
has been thought. Other proposals include quotient (or equivalence class)
types, and ways in which general recursion can be added to the system
without its losing its properties like termination. A particularly elegant
proposal for the addition of co-inductive types, such as infinite streams,
without losing these properties, is examined.

Chapter eight examines the foundations of the system: how it compares
with other systems for constructive mathematics, how models of it are
formed and used and how certain of the rules, the closure rules, may be
seen as being generated from the introduction rules, which state what are
the canonical members of each type. We end the book with a survey of
related systems, implemented or not, and some concluding remarks.

Bibliographic information is collected at the end of the book, together
with a table of the rules of the various systems.

We have used standard terminology whenever were able, but when a
subject is of current research interest this is not always possible.

Using the book

In the hope of making this a self-contained introduction, we have included
chapters one and two, which discuss natural deduction logic and the λ-
calculus – these chapters survey the fields and provide an introduction to
the notation and terminology we shall use later. The core of the text is
chapter four, which is the introduction to type theory.

Readers who are familiar with natural deduction logic and the λ-calculus
could begin with the brief introduction to constructive mathematics pro-
vided by chapter three, and then turn to chapter four. This is the core of
the book, where we lay out type theory as both a logic and an functional
programming system, giving small examples as we go. The chapters which
follow are more or less loosely coupled.

Someone keen to see applications of type theory can turn to chapter
six, which contains examples and larger case studies; only occasionally will
readers need to need to refer back to topics in chapter five.

Another option on concluding chapter four is to move straight on to
chapter five, where the system is examined from various mathematical per-
spectives, and an number of important results on the consistency, express-
ibility and determinacy are proved. Chapter eight should be seen as a
continuation of this, as it explores topics of a foundational nature.
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Chapter seven is perhaps best read after the examples of chapter six,
and digesting the deliberations of chapter five.

In each chapter exercises are included. These range from the routine
to the challenging. Not many programming projects are included as it
is expected that readers will to be able to think of suitable projects for
themselves – the world is full of potential applications, after all.
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Introduction

Types are types and propositions are propositions; types come from pro-
gramming languages, and propositions from logic, and they seem to have
no relation to each other. We shall see that if we make certain assumptions
about both logic and programming, then we can define a system which is
simultaneously a logic and a programming language, and in which proposi-
tions and types are identical. This is the system of constructive type theory,
based primarily on the work of the Swedish logician and philosopher, Per
Martin-Löf. In this introduction we examine the background in both logic
and computing before going on to look at constructive type theory and its
applications. We conclude with an overview of the book proper.

Correct Programming

The problem of correctness is ever-present in computing: a program is
written with a particular specification in view and run on the assumption
that it meets that specification. As is all too familiar, this assumption
is unjustified: in most cases the program does not perform as it should.
How should the problem be tackled? Testing cannot ensure the absence
of errors; only a formal proof of correctness can guarantee that a program
meets its specification. If we take a näıve view of this process, we develop
the program and then, post hoc, give a proof that it meets a specification. If
we do this the possibility exists that the program developed doesn’t perform
as it ought; we should instead try to develop the program in such a way
that it must behave according to specification.

A useful analogy here is with the types in a programming language. If we
use a typed language, we are prevented by the rules of syntax from forming
an expression which will lead to a type error when the program is executed.
We could prove that a similar program in an untyped language shares this
property, but we would have to do this for each program developed, whilst
in the typed language it is guaranteed in every case.

1



2 INTRODUCTION

Our aim, then, is to design a language in which correctness is guaran-
teed. We look in particular for a functional programming language with
this property, as semantically the properties of these languages are the
most straightforward, with a program simply being a value of a particular
explicit type, rather than a state transformer.

How will the new language differ from the languages with which we are
familiar?

• The type system will have to be more powerful. This is because we
will express a specification by means of a statement of the form

p :P

which is how we write ‘the value p has the type P ’. The language of
types in current programming languages can express the domain and
range of a function, say, but cannot express the constraint that for
every input value (of numeric type), the result is the positive square
root of the value.

• If the language allows general recursion, then every type contains
at least one value, defined by the equation x = x. This mirrors the
observation that a non-terminating program meets every specification
if we are only concerned with partial correctness. If we require total
correctness we will need to design a language which only permits the
definition of total functions and fully-defined objects. At the same
time we must make sure that the language is expressive enough to be
usable practically.

To summarise, from the programming side, we are interested in develop-
ing a language in which correctness is guaranteed just as type-correctness is
guaranteed in most contemporary languages. In particular, we are looking
for a system of types within which we can express logical specifications.

Constructive Logic

Classical logic is accepted as the standard foundation of mathematics. At
its basis is a truth-functional semantics which asserts that every proposition
is true or false, so making valid assertions like A ∨ ¬A, ¬¬A⇒ A and

¬∀x.¬P (x)⇒ ∃x.P (x)

which can be given the gloss

If it is contradictory for no object x to have the property P (x),
then there is an object x with the property P (x)
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This is a principle of indirect proof, which has formed a cornerstone of mod-
ern mathematics since it was first used by Hilbert in his proof of the Basis
Theorem about one hundred years ago. The problem with the principle is
that it asserts the existence of an object without giving any indication of
what the object is. It is a non-constructive method of proof, in other words.
We can give a different, constructive, rendering of mathematics, based on
the work of Brouwer, Heyting, Bishop and many others, in which every
statement has computational content; in the light of the discussion above
it is necessary to reject classical logic and to look for modes of reasoning
which permit only constructive derivations.

To explain exactly what can be derived constructively, we take a differ-
ent foundational perspective. Instead of giving a classical, truth-functional,
explanation of what is valid, we will explain what it means for a particular
object p to be a proof of the proposition P . Our logic is proof-functional
rather than truth-functional.

The crucial explanation is for the existential quantifier. An assertion
that ∃z.P (z) can only be deduced if we can produce an a with the property
P (a). A proof of ∃z.P (z) will therefore be a pair, (a, p), consisting of an
object a and a proof that a does in fact have the property P . A universal
statement ∀z.Q(z) can be deduced only if there is a function taking any
object a to a proof that Q(a). If we put these two explanations together, a
constructive proof of the statement

∀x.∃y.R(x, y)

can be seen to require that there is a function, f say, taking any a to a
value so that

R(a, f a)

Here we see that a constructive proof has computational content, in the
shape of a function which gives an explicit witness value f a for each a.

The other proof conditions are as follows. A proof of the conjunction
A∧B can be seen as a pair of proofs, (p, q), with p a proof of A and q of B.
A proof of the implication A ⇒ B can be seen as a proof transformation:
given a proof of A, we can produce a proof of B from it. A proof of the
disjunction A ∨ B is either a proof of A or a proof of B, together with
an indication of which (A or B). The negation ¬A is defined to be the
implication A ⇒ ⊥, where ⊥ is the absurd or false proposition, which has
no proof but from which we can infer anything. A proof of ¬A is thus a
function taking a proof of A to a proof of absurdity.

Given these explanations, it is easy to see that the law of the excluded
middle will not be valid, as for a general A we cannot say that either A or
¬A is provable. Similarly, the law of indirect proof will not be valid.
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Having given the background from both computing and logic, we turn
to examining the link between the two.

The Curry Howard Isomorphism

The central theme of this book is that we can see propositions and types
as the same, the propositions-as-types notion, also known as the Curry
Howard isomorphism, after two of the (many) logicians who observed the
correspondence.

We have seen that for our constructive logic, validity is explained by
describing the circumstances under which ‘p is a proof of the proposition
P ’. To see P as a type, we think of it as the type of its proofs. It is then
apparent that familiar constructs in logic and programming correspond to
each other. We shall write

p :P

to mean, interchangeably, ‘p is of type P ’ and ‘p is a proof of proposition
P ’.

The proofs of A ∧ B are pairs (a, b) with a from A and b from B —
the conjunction forms the Cartesian product of the propositions as types.
Proofs of A ⇒ B are functions from A to B, which is lucky as we use the
same notation for implication and the function space. The type A ∨ B is
the disjoint union or sum of the types A and B, the absurd proposition,
⊥, which has no proofs, is the empty type, and so on.

The correspondence works in the other direction too, though it is slightly
more artificial. We can see the type of natural numbers N as expressing
the proposition ‘there are natural numbers’, which has the (constructive!)
proofs 0, 1, 2, . . ..

One elegant aspect of the system is in the characterisation of inductive
types like the natural numbers and lists. Functional programmers will
be familiar with the idea that functions defined by recursion have their
properties proved by induction; in this system the principles of induction
and recursion are identical.

The dual view of the system as a logic and a programming language
can enrich both aspects. As a logic, we can see that all the facilities of
a functional programming language are at our disposal in defining func-
tions which witness certain properties and so forth. As a programming
language, we gain various novel features, and in particular the quantified
types give us dependent function and sum types. The dependent function
space (∀x : A) . B(x) generalises the standard function space, as the type
of the result B(a) depends on the value a : A. This kind of dependence is
usually not available in type systems. One example of its use is in defining
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array operations parametrised on the dimension of the array, rather than
on the type of the array elements. Dependent sum types (∃x : A) . B(x)
can be used to represent modules and abstract data types amongst other
things.

More radically, we have the possibility of combining verification and
programming, as types can be used to represent propositions. As an ex-
ample consider the existential type again. We can think of the elements
of (∃x : A) . B(x) as objects a of type A with the logical property B(a),
witnessed by the proof b :B(a). We can give a third interpretation to p :P ,
in the case that P is an existential proposition:

(a, b) : (∃x :A) . B(x)

can be read thus:

a of type A meets the specification B(x), as proved by b :B(a)

This fulfills the promise made in the introduction to logic that we would
give a system of types strong enough to express specifications. In our case
the logic is an extension of many-sorted, first-order predicate logic, which is
certainly sufficient to express all practical requirements. The system here
integrates the process of program development and proof: to show that a
program meets a specification we provide the program/proof pair.

As an aside, note that it is misleading to read p :P as saying ‘p meets
specification P ’ when P is an arbitrary proposition, an interpretation which
seems to be suggested by much of the literature on type theory. This is
because such statements include simple typings like

plus : N ⇒ N ⇒ N

in which case the right-hand side is a woeful under-specification of addition!
The specification statement is an existential proposition, and objects of that
type include an explicit witness to the object having the required property:
in other words we can only state that a program meets its specification
when we have a proof of correctness for it.

We mentioned that one motivation for re-interpreting mathematics in
a constructive form was to extract algorithms from proofs. A proof of a
statement like

∀x. ∃y. R(x, y)

contains a description of an algorithm taking any x into a y so that R(x, y).
The logic we described makes explicit the proof terms. On the other hand
it is instead possible to suppress explicit mention of the proof objects,
and extract algorithms from more succinct derivations of logical theorems,
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taking us from proofs to programs. This idea has been used with much
success in the Nuprl system developed at Cornell University, and indeed in
other projects.

Background

Our exposition of type theory and its applications will make continual refer-
ence to the fields of functional programming and constructivism. Separate
introductions to these topics are provided by the introduction to chapter 2
and by chapter 3 respectively. The interested reader may care to refer to
these now.

Section 9.2 contains some concluding remarks.



Chapter 1

Introduction to Logic

This chapter constitutes a short introduction to formal logic, which will
establish notation and terminology used throughout the book. We assume
that the reader is already familiar with the basics of logic, as discussed in
the texts [Lem65, Hod77] for example.

Logic is the science of argument. The purposes of formalization of logical
systems are manifold.

• The formalization gives a clear characterisation of the valid proofs
in the system, against which we can judge individual arguments, so
sharpening our understanding of informal reasoning.

• If the arguments are themselves about formal systems, as is the case
when we verify the correctness of computer programs, the argument
itself should be written in a form which can be checked for correctness.
This can only be done if the argument is formalized, and correctness
can be checked mechanically. Informal evidence for the latter require-
ment is provided by Principia Mathematica [RW10] which contains
numerous formal proofs; unfortunately, many of the proofs are in-
correct, a fact which all too easily escapes the human proof-reader’s
eye.

• As well as looking at the correctness or otherwise of individual proofs
in a formal theory, we can study its properties as a whole. For ex-
ample, we can investigate its expressive strength, relative to other
theories, or to some sort of meaning or semantics for it. This work,
which is predominantly mathematical in nature, is called mathemat-
ical logic, more details of which can be found in [Men87a] amongst
others.

7
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As we said earlier, our aim is to provide a formal system in which arguments
for the validity of particular sentences can be expressed. There are a number
of different styles of logical system – here we look at natural deduction
systems for first propositional and then predicate logic.

1.1 Propositional Logic

Propositional logic formalises arguments which involve the connectives such
as ‘and’, ‘or’, ‘not’, ‘implies’ and so on. Using these connectives we build
complex propositions starting from the propositional variables or atomic
propositions.

Definition 1.1 Our syntax is given formally by stating that a formula is
either

• a propositional variable X0, X1, X2, . . ., or

• a compound formula of the form

(A ∧B) (A⇒ B) (A ∨B)

⊥ (A⇔ B) (¬A)

where A and B are formulas.

The compound formulas above are intended to represent the following in-
formal combinations

A and B A implies B A or B

False A if and only if B not A

We shall adopt the convention that capital italic letters A, B,. . . stand for
arbitrary formulas. (In more formal terms these are variables in the meta-
language which is used to discuss the object language introduced by the
syntax definition above.) We shall also omit brackets from formulas when
no ambiguity can result.

There are two parts to the description of a logical system. We have
just introduced the language in which the assertions or propositions are
written, we must now describe what are the valid arguments. The valid
arguments are called the proofs or derivations of the system.

The general form of an argument is to infer a conclusion on the basis
of some (or possibly no) assumptions. Larger derivations are built up in-
ductively from smaller ones by the application of deduction rules. The
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simplest derivations are introduced by the rule of assumptions, which states
that any formula A can be derived from the assumption of A itself.

Assumption Rule
The proof

A

is a proof of the formula A from the assumption A.
More complex derivations are built by combining simpler ones. The

first example of a rule which builds a composite derivation is the rule of
conjunction introduction. Derivations of the two halves of the conjunction
are combined by this rule to give a derivation of the conjunction itself.

∧ Introduction
From proofs of A and B we can infer A ∧B by the rule of conjunction in-
troduction. The rule is written

A B

A ∧B
(∧I)

The assumptions upon which the proof of A ∧ B depends are those of the
proofs of A and B combined.

A simple proof can be built from the two rules we have seen so far

A B

(A ∧B)
(∧I)

A C

(A ∧ C)
(∧I)

((A ∧B) ∧ (A ∧ C))
(∧I)

At the leaves of the tree which represents the proof we find the assumptions,
A, appearing twice, and B and C appearing once. Applying the introduc-
tion rule for conjunction three times, we have inferred the conjunction from
its constituent parts.

The rule above was called the ∧-introduction rule, since it shows how
a formula whose top-level connective is a conjunction can be introduced.
The rule states that we can introduce a conjunction when we have proofs
of its two component halves. Conversely, we have a rule which states what
we can infer on the basis of a conjunction; in other words it tells us when
we can eliminate a conjunction.

∧ Elimination
From a proof of A∧B we can infer both A and B by the rules of conjunction
elimination. The rules are written

A ∧B

A
(∧E1)

A ∧B

B
(∧E2)
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The assumptions upon which the proofs of A and B depend are those of
the proof of A ∧B.

We have another example which combines the use of the rules of introduc-
tion and elimination. From the assumption (A ∧B) ∧ C we have

(A ∧B) ∧ C

A ∧B
(∧E1)

A
(∧E1)

and

(A ∧B) ∧ C

A ∧B
(∧E1)

B
(∧E2)

(A ∧B) ∧ C

C
(∧E2)

B ∧ C
(∧I)

Putting these proofs together we have

(A ∧B) ∧ C
...
A

(A ∧B) ∧ C
...

B ∧ C

A ∧ (B ∧ C)
(∧I)

This proof exhibits the associativity of the conjunction operation, a fact
with which we are familiar. Note that the single assumption upon which
the proof depends is the formula (A∧B)∧C, with the assumption appearing
at three different points in the proof.

There is another way in which we can read the elimination rules. Note
that the introduction rule states that we can infer A ∧ B from A and B.
The elimination rules state that this is (essentially) the only way we can
infer it, since it states that if we can prove A ∧ B then we can prove each
of the component formulae.

In giving the rules for implication, ⇒, we first take an informal look at
what the connective is meant to mean. We think of A⇒ B as expressing A
implies B or that we can deduce B from A. In other words we would like to
conclude A⇒ B when we have a deduction of B assuming A. What are the
assumptions upon which this new proof of A ⇒ B depends? All those on
which the proof of B depends, except the assumption A itself. The reason
that we no longer depend upon A is that A has become the hypothesis in
the formula A ⇒ B — this expresses through a formula of the logic that
we can deduce B from A.

This is reinforced by the elimination rule for ⇒which states that given
proofs of A and A⇒ B, we can infer B. Now we state the rules.
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⇒ Introduction
From a proof of the formula B, which may depend upon the assumption

A amongst others, we can infer the formula A ⇒ B from the same set of
assumptions with A removed. We write this thus

[A]
...
B

A⇒ B
(⇒ I)

where the square brackets around the A indicate that all occurrences of the
assumption A in the proof of B are to be discharged. It should be stressed
that the proof of the formula B need not contain the assumption A for this
rule to be applied. We shall see an example of this in the proof of

B ⇒ (A⇒ B)

which appears later in this section.
In a substantial proof there will be many occurrences of rules which

discharge assumptions. In order to make the link between the discharged
assumption and the instance of the rule discharging it, we use labels , as in
the schematic

[A]1
...
B

A⇒ B
(⇒ I)1

We shall see further examples of the use of labels after seeing the rule for
implication elimination.

⇒ Elimination
From proofs of the formulas A and A ⇒ B we can infer the formula B.

The assumptions upon which the proof of B depends are those of the proofs
of A and A⇒ B combined. The rule is written

A A⇒ B

B
(⇒ E)

Now we can consider a more complicated example,

A B

A ∧B
(∧I) (A ∧B)⇒ C

C
(⇒ E)
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We can discharge the three assumptions B, A and (A ∧ B) ⇒ C in turn,
giving first

A [B]1

A ∧B
(∧I) (A ∧B)⇒ C

C
(⇒ E)

B ⇒ C
(⇒ I)1

and finally

[A]2 [B]1

A ∧B
(∧I) [(A ∧B)⇒ C]3

C
(⇒ E)

B ⇒ C
(⇒ I)1

A⇒ (B ⇒ C)
(⇒ I)2

((A ∧B)⇒ C)⇒ (A⇒ (B ⇒ C))
(⇒ I)3

In this example, we see how a deduction can be free of assumptions. As the
deduction proceeds, we eliminate all the assumptions we have introduced.
Other formulas we can derive in this way include A⇒ A, derived thus:

[A]
A⇒ A

(⇒ I)

and the formula B ⇒ (A⇒ B), “if B is true then it is a consequence of any
formula A”, which is deduced as follows. First observe that in describing
the introduction rule, we said that the deduction of B from A may involve
the assumption A. It is not forced to, and we can infer A ⇒ B from a
proof of B not involving A. In proving B ⇒ (A ⇒ B) we first introduce
the assumption B, then discharge the assumption A, and finally discharge
the assumption B. It is written thus

[B]2

A⇒ B
(⇒ I)1

B ⇒ (A⇒ B)
(⇒ I)2

Note that there is no occurrence of an assumption labelled 1 — this indi-
cates that the discharge of A is trivial, as we discussed above.

The third connective we consider is the disjunction operator, the formula
A∨B meaning A or B. How can we introduce a disjunction? When one of
the disjuncts is valid.

∨ Introduction
We can introduce A ∨ B if we have either a proof of A or a proof of B.
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The assumptions of the proof of A ∨ B are those of the proof of A or B.
We write the rules thus:

A

A ∨B
(∨I1)

B

A ∨B
(∨I2)

Suppose we know that a particular formula C is a consequence of A and
is a consequence of B — it should then be a consequence of A ∨ B. This
gives the law of ∨ elimination

∨Elimination
If we have a proof of A ∨ B, a proof of C from A (i.e. a proof of C

which might have A amongst its assumptions) and a proof of C from B
then we can infer C. The assumption of A in the first proof of C, and the
assumption of B in the second are discharged. This is written:

A ∨B

[A]
...
C

[B]
...
C

C
(∨E)

A further example is given by the following derivation in which we see
discharge of assumptions due to both (⇒ I) and (∨E). We look at a proof
in which we have a disjunctive assumption A ∨ B. The elimination rule is
one way to use the assumption: we prove a result assuming A and then
assuming B, from these proofs we get a proofs from A ∨ B. Suppose that
we also assume (A⇒ C) ∧ (B ⇒ C), now

A
(A⇒ C) ∧ (B ⇒ C)

(A⇒ C)
(∧E1)

C
(⇒ E)

and in an analogous way we have the result from the assumption B,

B
(A⇒ C) ∧ (B ⇒ C)

(B ⇒ C)
(∧E2)

C
(⇒ E)

Using disjunction elimination, we have

A ∨B

[A]1

(A⇒ C) ∧ (B ⇒ C)
...
C

[B]1

(A⇒ C) ∧ (B ⇒ C)
...
C

C
(∨E)1
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and now we discharge the remaining assumptions to give

[A ∨B]2 , [(A⇒ C) ∧ (B ⇒ C)]3
...
C

((A ∨B)⇒ C)
(⇒ I)2

((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C)
(⇒ I)3

The final connective we introduce is ‘absurdity’, or ‘the false proposi-
tion’, , ⊥, using which we can define negation. How is ⊥ characterised?
The fact that ⊥means contradiction or absurdity suggests that there is no
way of introducing the proposition and so no introduction rule. How do
we eliminate ⊥? If it occurs, then we have absurdity, implying everything.
This rule is sometimes known under the Latin ‘ex falso quodlibet’.

⊥Elimination
From a proof of ⊥ we can infer any formula A. The assumptions of the

latter proof are those of the former. This is written thus:

⊥
A

(⊥E)

We define the negation of A, ¬A by

¬A≡df (A⇒ ⊥)

We can show that the standard introduction and elimination rules for ¬
which follow

[A]
...
B

[A]
...
¬B

¬A
(¬I)

A ¬A

B
(¬E)

can be derived from the definition and the rules given above. In a similar
way we define the bi-implication, A⇔ B by

(A⇔ B)≡df (A⇒ B) ∧ (B ⇒ A)

and we can derive rules for A⇔ B from this.

Exercises

1.1. Give a proof of the transitivity of implication, by showing that we can
derive A⇒ C from the assumptions A⇒ B and B ⇒ C.
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1.2. Give a proof of ((A ∨B)⇒ C)⇒ ((A⇒ C) ∧ (B ⇒ C)).
1.3. Give a proof of (A⇒ (B ⇒ C))⇒ ((A ∧B)⇒ C).
1.4. Give proofs of (A⇒ B)⇒ (B ⇒ A) and A⇒ ¬¬A.
1.5. From the assumption (B ∨ C) prove ¬(¬A ∧ ¬B).
1.6. Give derivations of the rules (¬I) and (¬E) given above. In other

words

• Show that from proofs of B and ¬B from the assumption A among
others, we can find a proof of ¬A without the assumption A.

• Show that from proofs of A and ¬A we can find a proof of any propo-
sition B.

The system introduced above is intuitionistic, constructive. Such sys-
tems form the main focus of this book, but it is worth remarking on the
means by which we extend the system to a classical one. Classical logic is
based on a truth-functional theory of meaning, in which every proposition is
considered to be either true or false. This means that it is a general truth
that for every proposition A, A ∨ ¬A is true — the law of the excluded
middle. To put this in the form of the rules above, we have a rule with no
hypotheses:

A ∨ ¬A
(EM)

Alternative rules which characterise classical logic (as an extension of the
intuitionistic logic above) are the rule of double negation

¬¬A

A
(DN)

and the (classical) rule of proof by contradiction

[¬A]
...
B

[¬A]
...
¬B

A
(CC)

Exercises

1.7. Show that the three characterisations of classical logic (as an extension
of the intuitionistic system above) are equivalent.
1.8. Using one of the classical systems, give a derivation of the formula

((A⇒ B)⇒ A)⇒ A, which is known as Pierce’s Law.
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1.2 Predicate Logic

In this section we look at predicate logic, that is the logic of properties or
predicates. In our exploration of propositional logic, the simplest proposi-
tions were “atomic” or unanalysed. Here we build a system in which the
propositions are built up from statements to the effect that certain objects
have certain properties, or that certain objects are equal.

Syntactically, our language will have two categories, formulas and terms.

Definition 1.2 Terms are intended to denote objects, and have one of
the forms below:

individual variables or simply variables, v0, v1, v2, . . .. We shall write
x, y, z, u, v, . . . for arbitrary individual variables in the following ex-
position.

individual constants c0, c1, c2, . . .. We shall use a, b, c, . . . for arbitrary
constants below.

composite terms These are formed by applying function symbols to other
terms .Each function symbol has an arity, 1,2,. . . ; an n-ary function
symbol fn,m takes n argument terms t1, . . . , tn in forming the term

fn,m(t1, . . . , tn)

We will use f, g, h . . . to denote arbitrary function symbols in what
follows.

We will use s, t, t1, . . . as a notation for arbitrary terms.
Note that we can think of constants as 0-ary function symbols, if we so

wish, and also that the variables we have introduced here are intended to
stand for objects, and not for propositions as did our propositional variables
above. Our propositions are formed as follows.

Definition 1.3

Atomic formulas are of two forms. The first is

Pn,m(t1, . . . , tn)

where Pn,m is an n-ary predicate symbol and t1, . . . , tn are terms.
This formula is intended to express the fact that the relation rep-
resented by predicate symbol Pn,m holds of the sequence of values
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denoted by t1, . . . , tn. We will use P,Q,R, . . . for arbitrary predicate
symbols.

Equality is taken to be a primitive of the system, so another class of
formulas are the equalities

t1 = t2

where t1 and t2 are terms.

Propositional combinations of formulas under the propositional con-
nectives ∨,∧,⇒,⇔,¬.

Quantified formulas

∀x.A ∃x.B

where as in the propositional case we use A,B, . . . for arbitrary for-
mulas, as well as using x for an arbitrary variable.

The quantifiers ∀ — for all — and ∃ — there exists — are intended to
express the assertions that a particular formula holds for all objects and for
some object, respectively. (Hence the name ‘quantifier’; quantified formulas
express the quantity of objects with a particular property.)

To reinforce the intuitive interpretation of the quantifiers, we now look
at their use in expressing various properties. In each particular case, there
will be an intended domain of application of the quantifiers, so that “for
all” will mean “for all fish”, “for all real numbers” and so on. We assume
for these examples that our domain of discourse is the natural numbers, so
that the quantifiers will range over 0, 1, 2, . . .. Moreover, we assume that
the (infix) predicate symbol < is chosen so that x < y expresses

‘ y is greater than x ’

Suppose first that f is a function. We say that a value is in the range
of f if it is the value of f at some argument. How can we state in logical
terms that m is the maximum value in the range? First we say that m is
in the range

∃i.(f(i) = m)

and then that m is greater than or equal to every element in the range

∀j.(f(j) ≤ m)
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The complete property is expressed by the conjunction of the formulas:

∃i.(f(i) = m) ∧ ∀j.(f(j) ≤ m)

A second example shows that the order in which we write different quan-
tifiers is significant. What does

∀x.∃y.(x < y)

express intuitively? For every x, there is a y greater than x. Clearly this is
true, as given a particular x we can choose y to be x + 1. The ys asserted
to exist can, and in general will, be different for different xs — y can be
thought of as a function of x, in fact. On the other hand

∃y.∀x.(x < y)

asserts that there is a single number y with the property that

∀x.(x < y)

That is, this y is greater than every number (including itself!), clearly a
falsehood.

Exercises

1.9. With the same interpretation for the predicate x < y as above, ex-
press the property that “between every distinct pair of numbers there is a
number”.
1.10. How would you express the following properties of the function f

(from natural numbers to natural numbers, for example)
f is a one-to-one function
f is an onto function
the function f respects the relation <?

1.2.1 Variables and substitution

Before we supply the rules for the quantifiers, we have to consider the rôle of
variables, and in particular those which are involved in quantified formulas.
Remember that when we define a procedure in a programming language like
Pascal, the formal parameters have a special property: they are ‘dummies’
in the sense that all the occurrences of a formal parameter can be replaced
by any other variable, so long as that variable is not already ‘in use’ in the
program. Quantified variables have a similar property. For instance, the
formula

∀x.∀y.(P (x, y)⇒ P (y, x))
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expresses exactly the same property as

∀w.∀q.(P (w, q)⇒ P (q, w))

Now we introduce some terminology.

Definition 1.4 An occurrence of a variable x within a sub-formula ∀x.A
or ∃x.A is bound; all other occurrences are free. We say that a variable x
occurs free in a formula A if some occurrence of x is free in A. A variable
x is bound by the syntactically innermost enclosing quantifier ∀x or ∃x,
if one exists, just as in any block-structured programming language.

The same variable may occur both bound and free in a single formula.
For example, the second occurrence of x is bound in

∀y.(x > y ∧ ∀x.(P (x)⇒ P (y)) ∧Q(y, x))

whilst the first and third occurrences are free.
In what follows we will need to substitute arbitrary terms, t say, for

variables x in formulas A. If the formula A is without quantifiers, we simply
replace every occurrence of x by t, but in general, we only replace the free
occurrences of x by t — the bound variable x is a dummy, used to express
a universal or existential property, not a property of the object named x.

There is a problem with the definition of substitution, which has not
always been defined correctly by even the most respected of logicians! The
term t may contain variables, and these may become bound by the quan-
tifiers in A. This is called variable capture. Consider the particular
example of

∃y.(y > x)

This asserts that for x we can find a value of y so that x < y holds. Suppose
that we substitute the term y + 1 for x. We obtain the expression

∃y.(y > y + 1)

(‘+’ is an infix function symbol — an addition to the notation which we
shall use for clarity). The y in the term y+1 which we have substituted has
been captured by the ∃y quantifier. The name of the quantified variable was
meant to be a dummy; because of this we should ensure that we change its
name before performing the substitution to avoid the capture of variables.

In the example we would first substitute a new variable, z say, for the
bound variable y, thus:

∃z.(z > x)
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and after that we would perform the substitution of y + 1 for x,

∃z.(z > y + 1)

We shall use the notation A[t/x] for the formula A with the term t
substituted for x. The definition is by induction over the syntactic structure
of the formula A. First we define substitution of t for x within a term s,
for which we use the notation s[t/x]. In the definition we also use ‘≡’ for
‘is identical with’.

Definition 1.5 The substitution s[t/x] is defined thus:

• x[t/x]≡df t and for a variable y 6≡ x, y[t/x]≡df y

• For composite terms

(fn,m(t1, . . . , tn))[t/x] ≡df fn,m(t1[t/x], . . . , tn[t/x])

Definition 1.6 The substitution A[t/x] is defined as follows

• For atomic formulas,

(Pn,m(t1, . . . , tn))[t/x] ≡df Pn,m(t1[t/x], . . . , tn[t/x])

(t1 = t2)[t/x] ≡df (t1[t/x] = t2[t/x])

• Substitution commutes with propositional combinations, so that

(A ∧B)[t/x] ≡df (A[t/x] ∧B[t/x])

and so on

• If A ≡ ∀x.B then A[t/x]≡df A.
If y 6≡ x, and A ≡ ∀y.B then

– if y does not appear in t, A[t/x]≡df ∀y.(B[t/x]).

– if y does appear in t,

A[t/x]≡df ∀z.(B[z/y][t/x])

where z is a variable which does not appear in t nor B. (Note
that we have an infinite collection of variables, so that we can
always find such a z.)

• Substitution into A ≡ ∃x.B is defined in an analogous way to ∀x.B.
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• In general, it is easy to see that if x is not free in A then A[t/x] is A

We shall use the notation above for substitution, but also on occasions
use a more informal notation for substitution. If we use the notation A(t)
we intend this to mean A[t/x] where the variable x should be understood
from the context. Note that in writing A(x), say, we neither mean that x
occurs in the formula A nor that it is the only variable occurring in A if it
occurs; it is simply used to indicate sufficient contextual information.

Throughout the book we shall identify formulas which are the same
after change of bound variables.

Exercises

1.11. Identify the free and bound variables in the formula

∀x.(x < y ∧ ∀z.(y > z ⇒ ∃x.(x > z)))

and show to which quantifier each bound variable is bound.
1.12. Suppose we want to rename as y the variable z in the formula

∀z.∃y.(z < y ∧ y < z)

explain how you would change names of bound variables to avoid variable
capture by one of the quantifiers.

1.2.2 Quantifier rules

The rules for the quantifiers will explain how we are to introduce and elim-
inate quantified formulas. In order to find out how to do this we look at
the ways in which we use variables. There are two distinct modes of use,
which we now explain.

First, we use variables in stating theorems. We intend free variables to
be arbitrary values, such as in the trigonometrical formula

sin2x + cos2x = 1

and indeed we could equally well make the formal statement

∀x.(sin2x + cos2x = 1)

This is a general phenomenon; if x is arbitrary then we should be able to
make the inference

A

∀x.A

This will be our rule for introducing ∀, once we have decided what we mean
by ‘arbitrary’.
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On the other hand, in the process of proving a theorem we may use
variables in a different way. If we make an assumption with a free x, x > 0
say, and then prove a result like

∀z.(z ≤ x ∨ z ≥ 0)

then this result is not true for all x. (Try x = −1!). This is precisely
because the x is not arbitrary — we have assumed something about it:
that it is greater than zero. In other words, we can say that x is arbitrary
if and only if x does not appear free in any of the assumptions of the proof
of the result.

We can now state formally our introduction rule for the universal quan-
tifier:

∀ Introduction
For any formula A, which may or may not involve the free variable x, we

can from a proof of A infer ∀x.A if x is arbitrary, that is if x does not occur
free in any of the assumptions of the proof of A(x). This is called the side
condition of the rule.

A

∀x.A
(∀I)

The assumptions of the proof derived are the same as those of the proof of
A. Note that the formula A may or may not involve the free variable x,
and may involve free variables other than x.

The elimination rule for ∀ is easier to state. It says that a universally
quantified formula is true for an arbitrary object, and so is true of any term.
We express this by substituting the term for the quantified variable.

∀ Elimination
From a proof of ∀x.A(x) we can infer A(t) for any term t.

∀x.A(x)
A(t)

(∀E)

With our notation for substitution as above, we would write

∀x.A

A[t/x]
(∀E)

Now we turn to the existential quantifier. There is a certain duality
between the two quantifiers and we find it reflected in the rules. The
simpler of the rules to state is the existential introduction rule: it states
that if we can prove a substitution instance of a formula, then we can infer
the existentially quantified statement.
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∃ Introduction
If for a particular term t we can prove A(t) then clearly we have demon-

strated that there is some object for which A is provable.

A(t)
∃x.A(x)

(∃I)

Alternatively, we write

A[t/x]
∃x.A

(∃I)

In order to frame the existential elimination rule we have to decide what
we are able to deduce on the basis of ∃x.A. Let us return to the informal
discussion we started on page 21. We looked there at an argument which
had an assumption of the form

x > 0

What is the force of such an assumption? It is to assume the existence of
an object greater than zero, and to name it x. Now, suppose that on the
basis of this we can prove some B which does not mention x; if we also
know that indeed the existential assumption is valid, that is we know that

∃x.(x > 0)

then we can infer B outright, discharging the assumption.

∃Elimination

∃x.A

[A]
...
B

B
(∃E)

where x is not free in B or any of the assumptions of the proof of B, except
for A itself, in which it may be free. (This stipulation is the side condition
for the application of the rule.) The assumption A is discharged by the
application of this rule, so that the assumptions of the resulting proof are
those of the proof of ∃x.A together with all those from the proof of B apart
from A.

Thinking of the rule in programming terms, we can think of it as intro-
ducing a temporary (or ‘local’) name x for the object asserted to exist by
the formula ∃x.A.

Returning to our informal discussion a second time, we can perhaps see
more clearly a duality between the two quantifiers and their treatment of
formulas with free variables.
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• The formula A involving the free variable x has universal content
when x is arbitrary, that is when it occurs in the conclusion of an
argument (and not in the assumptions.)

• The formula A has existential content when it occurs as an assump-
tion, introducing a name for the object assumed to have the property
A.

We can give another informal reading of the quantifiers. ∀ and ∃ behave
like a large (in fact infinite) conjunction and disjunction:

∀x.A(x) ≡ A(a) ∧A(b) ∧ . . .

∃x.A(x) ≡ A(a) ∨A(b) ∨ . . .

if the objects in the domain of discourse are a, b, . . .. We can see the rules
for ∀ elimination and ∃ introduction agree with this analogy immediately,
and in fact the same is true of the other rules. To introduce C ∧D we have
to have proofs of C and D. To introduce

A(a) ∧A(b) ∧ . . .

we need proofs for A(a), A(b), . . . and so on. In other words, we need a
proof for arbitrary x, which is exactly what the rule states. The rule for
elimination of ∨ suggests the following for existential elimination:

∃x.A(x)

[A(a)]
...
B

[A(b)]
...
B . . .

B

We obtain our rule by replacing all the individual proofs of B from A(a),
A(b) and so forth by a proof from A(x) for an arbitrary x.

1.2.3 Examples

Now we put these rules to some use in a series of examples.
For the first example we assume

θ ≡df ∀x.(P (x)⇒ Q(x))

∃x.P (x)

and try to prove that

∃x.Q(x)
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Informally the inference is clear, but what do we do in our system? We
have a universal assumption, θ, and the rule of universal elimination tells
us that we can use any instance

P (x)⇒ P (x)

of θ in our proof. If we adopt a backwards reading of the rule of existential
elimination, then we see how to use an existential assumption.

To use an existential assumption ∃x.P (x) , use the instance
P (x) and finally discharge this using the rule (∃E).

Proceeding thus we have

P (x)
∀x.(P (x)⇒ Q(x))

(P (x)⇒ Q(x))
(∀E)

Q(x)
(⇒ E)

From this we can infer ∃x.Q(x) (even though x is free in one of the assump-
tions — there are no restrictions on the rule (∃I)), and finally by existential
elimination we have:

∃x.P (x)

[P (x)]1
∀x.(P (x)⇒ Q(x))

(P (x)⇒ Q(x))
(∀E)

Q(x)
(⇒ E)

∃x.Q(x)
(∃I)

∃x.Q(x)
(∃E)1

For our second example, suppose we make the assumption that every
object is either an apple or a banana:

∀x.(A(x) ∨B(x))

and that both apples and bananas are tasty:

∀x.(A(x)⇒ T (x))

∀x.(B(x)⇒ T (x))

We will show that everything is tasty, ∀x.T (x).
Applying the universal elimination rule three times we have

(A(y) ∨B(y))

(A(y)⇒ T (y))

(B(y)⇒ T (y))
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and then we can infer T (y) on the basis of the second of these and the
assumption A(y), using (⇒ E).

A(y)
∀x.(A(x)⇒ T (x))

(A(y)⇒ T (y))
(∀E)

T (y)
(⇒ E)

We can similarly infer T (y) from B(y) and the universal statement, and
are then in a position to apply (∨E). (In the diagram which follows the
hypotheses of the central proof are listed vertically.)

∀x.(A(x) ∨B(x))
(A(y) ∨B(y))

(∀E)

[A(y)]1

∀x.(A(x)⇒ T (x))
...

T (y)

[B(y)]1

. . .
...

T (y)

T (y)
(∨E)1

∀ introduction is then applied, giving

...
∀x.T (x)

(∀I)

Our final example concerns the proof of

∃y.∀x.A(x, y)⇒ ∀x.∃y.A(x, y)

The reader might like to refer back to the discussion on page 18 above.
Remembering the rule of implication introduction, it is sufficient to prove

∀x.∃y.A(x, y)

on the assumption of

∃y.∀x.A(x, y)

We have an existential assumption, so stripping off the quantifier we can
by the rule (∃E) use instead the assumption

∀x.A(x, y)

Using (∀E) we have

∀x.A(x, y)
A(x, y)

(∀E)
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and by (∃I)

...
∃y.A(x, y)

(∃I)

Now, we can deduce
...

∀x.∃y.A(x, y)
(∀I)

using (∀I), since x is not free in the assumptions (and therefore arbitrary).
We complete the proof with applications of (∃E) and (⇒ I):

[∃y.∀x.A(x, y)]2

[∀x.A(x, y)]1

A(x, y)
(∀E)

∃y.A(x, y)
(∃I)

∀x.∃y.A(x, y)
(∀I)

∀x.∃y.A(x, y)
(∃E)1

∃y.∀x.A(x, y)⇒ ∀x.∃y.A(x, y) (⇒ I)2

Exercises

1.13. Explain how the side conditions in the proof rules prevent the con-
struction of a proof of

∀x.∃y.A(x, y)⇒ ∃y.∀x.A(x, y)

analogous to the proof of

∃y.∀x.A(x, y)⇒ ∀x.∃y.A(x, y)

above.
1.14. Assuming that the variable x is not free in B, prove that the following
formulas are equivalent, i.e. each can be proved on the assumption of the
other

∀x.(A(x)⇒ B)

((∃x.A(x))⇒ B)

1.15. Using the previous exercise, or otherwise, argue that the following
formulas are equivalent:

¬(∃x.A(x)) ∀x.¬A(x)

and show that

∃x.¬A(x)⇒ ¬∀x.A(x)

Would you expect the converse of the final result to be provable?



28 CHAPTER 1. INTRODUCTION TO LOGIC



Chapter 2

Functional Programming
and λ-Calculi

Type theory has aspects of both a logic and a functional programming lan-
guage. We have seen a brief introduction to logic in chapter 1; here we
first survey current practice in functional programming and then look at a
number of λ-calculi, which are formal theories of functions. The λ-calculus
was invented in the nineteen thirties by Church as a notation for functions,
with the aim of developing a foundation for mathematics. As with much of
the work of that time, the original aim was not met, but the subject itself
has become an object of study in its own right. Interest in the λ-calculus
has grown again in the last two decades as it has found a role in the foun-
dations of computing science, in particular through its model theory, which
underpins much of denotational semantics. The theory usually studied is
the untyped λ-calculus, and we look at this first. We are lucky to have
the encyclopaedic [Bar84] to refer to for proofs, bibliographic and historical
information and so forth. Any important result in the untyped λ-calculus
is to be found there, together with (at least!) one proof of it.

Running through our material, we first look at variable binding and sub-
stitution, which are central to the λ-calculus. Variables are bound when
a function is formed by abstraction, and when a function is applied, the
formal parameters are replaced by their actual counterparts by substitu-
tion. We then look at the relations of evaluation, or reduction, ‘→→’ and
convertibility ‘↔↔ ’, the latter of which represents a form of equality over
the λ-expressions. We discuss these from a general standpoint, which will
form a foundation for similar discussions for type theory. In particular
we look at the determinacy of computation (the Church-Rosser property)

29
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and termination properties of evaluation, or as they are more commonly
known, the normalisation properties of expressions. We draw a distinction
between different kinds of reduction rule — the computation and equiv-
alence rules — which again we will carry through into the body of the
book. After a short look at the expressiveness of the untyped system, we
turn to an examination of typed theories, which more closely reflect current
functional programming practice. We highlight the difference between the
typed and untyped by showing that the former is strongly normalising —
all evaluation sequences are finite, meaning that, in particular, every pro-
gram terminates. We give a proof of this theorem, which forms a model
for other results of this sort in its proof by induction over types and its
formulation of a strong induction hypothesis, a method first introduced by
William Tait. Augmenting the type structure with product types and nat-
ural numbers, we finish by returning to the discussion of computation and
equivalence rules in the context of a typed language.

The survey [Hue90b] gives a useful overview of typed λ-calculi.

2.1 Functional Programming

The functional style of programming has been growing in popularity over
the last thirty years, from its beginnings in early dialects of LISP, to the
present day and the availability of a number of production-quality lan-
guages like Haskell, Hope, Miranda, and Standard ML (SML) amongst
others [HW90, BMS80, Tur85, Har86]. Although there are differences be-
tween them, there is a wide degree of consensus about the form of the
systems, which provide

First-class functions: Functions may be passed as arguments to and re-
turned as results of other functions; they may form components of
composite data structures and so on. An example is the map func-
tion. It takes a function, f say, as argument, returning the function
which takes a list, x say, as argument and returns the list resulting
from applying f to every item in x.

Strong type systems: The language contains distinctions between dif-
ferent values, classing similar values into types. The typing of values
restricts the application of operators and data constructors, so that
errors in which, for example, two boolean values are added, will not
be permitted. Moreover, and this is what is meant by the adjective
‘strong’, no run-time errors can arise through type mismatches.

Polymorphic types: A potential objection to strong typing runs thus:
in an untyped language we can re-use the same code for the identity
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function over every type, after all it simply returns its argument. Sim-
ilarly we can re-use the code to reverse a linked list over structurally
similar lists (which only differ in the type of entries at each node)
as the code is independent of the contents. We can accommodate
this kind of genericity and retain strong typing if we use the Hindley-
Milner type system, [Mil78], or other sorts of polymorphic type. The
type of the identity function becomes * -> *, where * is a type vari-
able, indicating that the type of the function is a functional type, in
which the domain and range type are the same. This means that it
can be used on booleans, returning a boolean, on numeric functions
returning a numeric function, and so on.

Algebraic types: Lists, trees, and other types can be defined directly
by recursive definitions, rather than through pointer types. The
mechanism of algebraic types generalises enumerated types, (variant)
records, certain sorts of pointer type definitions, and also permits type
definitions (like those of lists) to be parametrised over types (like the
type of their contents). Pattern matching is usually the means by
which case analyses and selections of components are performed.

Modularity: The languages provide systems of modules of varying degrees
of complexity by means of which large systems can be developed more
easily.

One area in which there are differences is in the mechanism of evaluation.
The SML system incorporates strict evaluation, under which scheme ar-
guments of functions are evaluated before the instantiated function body,
and components of data types are fully evaluated on object formation. On
the other hand, Miranda and Haskell adopt lazy evaluation, under which
function arguments and data type components are only evaluated when
this becomes necessary, if at all. This permits a distinctive style of pro-
gramming based on infinite and partially-defined data structures. There
are advantages of each system, and indeed there are hybrids like Hope+
[Per89] which combine the two.

This is not the place to give a complete introduction to functional pro-
gramming. There is a growing number of good introductory textbooks
on the subject [BW88, Rea89, Wik87], as well as books looking at the
foundations of the subject [Hue90a] and at current research directions
[Pey87, Tur90]. We shall look at the topics described above as we de-
velop our system of type theory; first, though, we investigate the lambda
calculus, which is both a precursor of current functional programming lan-
guages, having been developed in the nineteen thirties, and an abstract
version of them.
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In what follows we use the phrase ‘languages like Miranda’ – it is meant
to encompass all the languages discussed above rather than simply Miranda.

2.2 The untyped λ-calculus

The original version of the λ-calculus was developed by Church, and studied
by a number of his contemporaries including Turing, Curry and Kleene. It
provides a skeletal functional programming language in which every object
is considered to be a function. (An alternative view of this, propounded
by [Sco80] amongst others, is of a typed theory containing a type which is
isomorphic with its function space.) The syntax could not be simpler.

Definition 2.1
There are three kinds of λ-expression (we use e, f, e1, e2, . . . for arbitrary
λ-expressions). They are:

Individual variables or simply variables, v0, v1, v2, . . .. We shall write
x, y, z, u, v, . . . for arbitrary individual variables in the following.

Applications (e1e2). This is intended to represent the application of ex-
pression e1 to e2.

Abstractions (λx . e) This is intended to represent the function which
returns the value e when given formal parameter x.

The notation above can become heavy with brackets, so we introduce the
following syntactic conventions.

Definition 2.2 The syntax of the system is made more readable by the
following syntactic conventions:

C1 Application binds more tightly than abstraction, so that λx . xy means
λx . (xy) and not (λx . x)y.

C2 Application associates to the left, implying that xyz denotes (xy)z and
not x(yz).

C3 λx1 . λx2 . . . . λxn . e means λx1 . (λx2 . . . . (λxn . e))

The crux of the calculus is the mechanism of λ-abstraction. The ex-
pression

λx . e

is the general form that functions take in the system. To specify a function
we say what is its formal parameter, here x, and what is its result, here e.
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In a functional language like Miranda we give these definitions by equations
which name the functions, such as

f x = e

and in mathematical texts we might well talk about the function f given
by

f(x) = e

In the λ-calculus we have an anonymous notation for the function which
introduces the function without giving it a name (like f). The parameter
x is a formal parameter and so we would expect that the function

λx . λy . xy

would be indistinguishable from

λu . λv . uv

for instance. Formally, as we saw in the chapter on logic, such variables x
are called bound, the λ being the binding construct.

How do we associate actual parameters with the formals? We form
applications

(λx . e1) e2

To evaluate these applications, we pass the parameter: we substitute the
actual parameter for the formal, which we denote

e1[e2/x]

As for the binding constructs of logic, the quantifiers, we have to be careful
about how we define substitution, which we do, after saying formally what
it means to be bound and free.

Definition 2.3 An occurrence of a variable x within a sub-expression λx . e
is bound; all other occurrences are free. The occurrence of x in λx. is the
binding occurrence which introduces the variable – other occurrences are
called applied. We say that a variable x occurs free in an expression f if
some occurrence of x is free in f . A variable x is bound by the syntactically
innermost enclosing λ, if one exists, just as in any block-structured pro-
gramming language. An expression is closed if it contains no free variables,
otherwise it is open .
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The same variable may occur both bound and free in an expression. For
example, the first applied occurrence of x in

(λx . λy . yx)((λz . zx)x)

is bound, but the second and third applied occurrences are free.

Definition 2.4 The substitution of f for the free occurrences of x in e,
written e[f/x], is defined thus:

• x[f/x]≡df f and for a variable y 6≡ x, y[f/x]≡df y

• For applications, we substitute into the two parts:

(e1 e2)[t/x] ≡df (e1[t/x] e2[t/x])

• If e ≡ λx . g then e[f/x]≡df e.
If y is a variable distinct from x, and e ≡ λy . g then

– if y does not appear free in f , e[f/x]≡df λy . g[f/x].

– if y does appear free in f ,

e[f/x]≡df λz . (g[z/y][f/x])

where z is a variable which does not appear in f or g. (Note
that we have an infinite collection of variables, so that we can
always find such a z.)

• In general, it is easy to see that if x is not free in e then e[f/x] is e

Convention on Expression Equivalence: We shall not distinguish be-
tween expressions which are equivalent up to change of bound variable
names in what follows. (As an aside, this convention which is easy to state,
and indeed for us to follow, is surprisingly difficult to implement.)

As we said, we evaluate expressions by passing parameters in function
applications. We formalise this by the following reduction or computation
rules.

Definition 2.5 The rule of β-reduction states that for all x, e and f , we
can reduce the application

(λx . e)f →β e[f/x]
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Definition 2.6 A sub-expression of a lambda expression of the form (λx . e)f
is called a (β-)redex. We write g →β g′ if g′ results from applying β-
reduction to a redex within g. Alternatively we can say that if e→β e′

then

(fe)→β (fe′)

(eg)→β (e′g)

λy . e→β λy . e′

Definition 2.7 We write e →→ f if there is a sequence of zero or more
reductions so that

e ≡ e0→β · · · →β en ≡ f

representing a sequence of reduction steps. We call such an f a reduct of
e.

In the section which follows we look further at the reduction relation→→.
One point is worthy of note before we do that. We have only introduced
one argument functions into our theory; is this a restriction? It is not, as
we can represent a two argument function by a function which takes its
arguments one at a time. The addition function, for example, would be
represented by

λx . λy . (x + y)

where we assume (purely for illustrative purposes) that the language con-
tains the + operator. This form of representation is known as the curried
form in honour of Haskell B. Curry, and has the property that it is sensible
to pass to it one of its arguments only. In this case, for instance,

(λx . λy . (x + y)) 4

is the function which adds four to its argument.

Exercises

2.1. Investigate the reduction behaviour of the following terms

(λx . x)((λy . (λz . z))(λx . x))

(λx . xxx)(λx . xxx)
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2.3 Evaluation

The reduction relation, →→, of the previous section embodies what it is for
one expression to reduce to another by a number of elementary computation
steps. We can ask a number of fundamental questions about this relation.

It is somewhat artificial to examine evaluation in the context of the
untyped λ-calculus, since all we have in this context are functions, and
we do not usually consider functions to be objects which can be evaluated
themselves, rather we work in typed systems and print only the results of
evaluating expressions of ground type, like numbers, pairs of booleans and
so forth. Nonetheless we can both establish some terminology and begin
discussions here, even if we will have more to say later.

First, if the relation describes evaluation, what is it that expressions
evaluate to? There are a number of answers to this.

Definition 2.8

Normal Form: An expression is in normal form if it contains no redexes.

Head Normal Form: All expressions of the form

λx1 . . . . λxn . ye1 . . . em

where y is a variable, e1, . . . , em are arbitrary expressions and n and
m are greater than or equal to zero, are in head normal form.

Weak Head Normal Form: All expressions which are either λ-abstractions
or of the form

ye1 . . . em

where y is a variable, e1, . . . , em are arbitrary expressions and m is
greater than or equal to zero, are in weak head normal form.

Definition 2.9 We say that e′ is a normal form (head normal form, etc.)
of e if e→→ e′ and e′ is in normal form (head normal form, etc.).

The three definitions above are given in inclusion order: normal forms
are head normal forms which are themselves weak head normal forms.
Neither of the converses holds; λx . (x((λx . xx)(λx . xx))) is in head nor-
mal form but not in normal form (and indeed has no normal form) whilst
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λy . ((λx . xx)(λx . xx)) is a weak head normal form with no head normal
form. Both these examples use the term

Ω ≡df (λx . xx)(λx . xx)

which has the property that Ω→β Ω and only to Ω, thus proving that it has
no normal form; indeed it has no weak head normal form. Whatever the
notion of answer, an attempt to evaluate Ω results in an undefined answer,
since computation fails to terminate.

It is clear why we can think of a normal form as being the result of
a computation, but how do the other definitions arise? It might at first
be thought that any expression without a normal form is in some sense
equivalent to Ω in being undefined, but the position is not so simple. A
crucial example is the function

F ≡df λf . ((λx . f(xx))(λx . f(xx)))

which has the following properties. It has no normal form, so computation
of it fails to terminate, yet when applied to an argument f it returns a fixed
point of the function f , that is an object with the property

(F f)→→ f (F f)

In many cases the computation of the application will terminate – consider
the case that f is a constant function whose value is a normal form. We
can characterise the property of F as being able to yield an answer (normal
form) in some context, even though it has no normal form itself. Wadsworth
has shown that it is precisely those functions which have a head normal
form, so in evaluating functions it seems more sensible only to compute to
normal form, if we wish computations on ‘meaningful’ objects to terminate.
More details on this analysis can be found in the useful discussion of section
2 of [Bar84]. Not every functional expression has a head normal form, the
simplest case being λx.Ω.

In evaluating functional expressions we might choose to halt evaluation
as soon as a functional form λx.e is reached – this gives rise to the notion of
weak head normal form which has recently been discussed in [Pey87, Abr90].

The context for this discussion about termination, the untyped λ-calculus,
is somewhat artificial since it contains no true printable values such as num-
bers or characters. We therefore defer discussion of the form that results
(or canonical values) take until section 2.11.

Whichever notion we choose, we can see that there are expressions whose
evaluation fails to terminate. No sequence of reductions starting from Ω
ends in a weak head normal form.

Another problem is of determinacy: do different sequences of reductions
give the same final value if they terminate? An important result here is the
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Theorem 2.10 (Church-Rosser) For all e,f and g, if e→→ f and e→→ g
then there exists h such that f →→ h and g →→ h.

A proof of the Church-Rosser theorem is found in [Bar84]. The proofs
use a form of induction over the syntactic structure of terms, usually called
structural induction.

Definition 2.11 The method of structural induction states:
To prove the result P (e) for all λ-expressions e it is sufficient to

• Prove P (x) for all variables x.

• Prove P (e f) assuming that P (e) and P (f) hold.

• Prove P (λx . e) assuming that P (e) holds.

The Church-Rosser theorem has the important corollary that.

Theorem 2.12 If a term has a normal form then it is unique.

Proofs of these results can be found in the encyclopaedic [Bar84]. Note
that neither head normal forms nor weak head normal forms of expressions
are unique.

The result on unique normal forms tells us that terminating reduction
sequences all end in the same normal form. There are expressions with
normal forms which have non terminating reduction sequences, an example
being

(λx . λy . y) Ω

The whole expression forms a redex which reduces to λy . y, in normal form.
If we choose repeatedly to reduce the redex Ω we have a non-terminating
reduction sequence. Can we always find a terminating sequence if one
exists?

Definition 2.13 If an expression contains more than one redex, then we
say that the leftmost outermost redex is that found by searching the
parse tree top-down, going down the left hand subtree of a non-redex ap-
plication before the right. In other words we make a preorder traversal of
the parse tree looking for the first node which is a redex.

In the following expressions the leftmost-outermost redex is marked by
a brace, with the others marked by a bar.

(λx . xx)((λy . y)(λz . z))︸ ︷︷ ︸
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((λw .w)(λx . xx)︸ ︷︷ ︸)((λy . y)(λz . z))

((λw .w)((λx . xx)(λx . x))︸ ︷︷ ︸)((λy . y)(λz . z))

Theorem 2.14 (Normalisation) indexNormalisation theorem!untyped λ-
calculus The reduction sequence formed by choosing for reduction at each
stage the leftmost-outermost redex will result in a normal form, head nor-
mal form or weak head normal form if any exists.

Proofs of the normalisation theorem can be found in [Bar84].
The strategy of choosing the leftmost-outermost redex at each stage

corresponds to the lazy evaluation mechanism, although the latter is opti-
mised to avoid duplication of evaluation caused by duplication of redexes.
The strict or applicative order discipline will not always lead to termina-
tion, even when this is possible: arguments may not terminate even if their
values are not needed for the evaluation of the expression as a whole.

There is a second basic rule of reduction, called η-reduction. It states
that

Definition 2.15 η-reduction. For all x and e, if x is not free in e then
we can perform the following reduction.

λx . (ex)→η e

It is not clear that this is strictly a rule of computation. The expressions
on the two sides of the reduction symbol have the same computational
behaviour on all arguments, since

(λx . (ex)) y→β e y

for arbitrary y. The rule identifies certain (terms for) functions which
have the same behaviour, yet which are represented in different ways. In
a context in which we distinguish printable values from others, the beta
rule will be sufficient, computationally , to ensure the same results from the
application of η-equivalent functions.

We generally consider η-reduction as an adjunct to β-reduction, and we
define their joint transitive closure in the obvious way. We can prove a
Church-Rosser theorem for this relation (see, again, [Bar84] for details).

It seems more appropriate to read the η rule as symmetrical, equating
its two sides. We look at this idea in the next section.

Exercises

2.2. Show that if we write I for λx . x then

λx . x(II) λx . xI
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are both head normal forms of λx . (Ix)(II)
2.3. Prove theorem 2.12 from theorem 2.10.
2.4. By showing that the leftmost-outermost reduction sequence is infinite,
argue that the following expressions fail to have normal form.

Ω (λf . ((λx . f(xx))(λx . f(xx))))(λx . λy . x)

2.4 Convertibility

Our introduction to the λ-calculus has focussed so far on the computation
relations →β , →→ and →η . We can also ask the more general question
of which expressions have the same computational behaviour. This section
introduces a number of convertibility relations, that is equivalence rela-
tions which are also substitutive: equivalent expressions substituted into
equivalent contexts are equivalent.

The relations ‘→β ’ and ‘→η ’ are asymmetrical: the left hand side is (in
some sense) simplified in transition to the right hand side. The relations
generate two convertibility relations, ↔↔ and ↔↔ βη:

Definition 2.16 . ‘↔↔ ’ is the smallest equivalence relation extending ‘→→’
Explicitly, e ↔↔ f if and only if there is a sequence e0 , · · · , en with n ≥ 0
e ≡ e0, en ≡ f and for each i, 0 ≤ i < n, ei →→ ei+1 or ei+1 →→ ei.
A similar relation based on β and η reduction together is called βη-convertibility.

As a consequence of the Church-Rosser theorems, two expressions e and
f will be (βη-)convertible if and only if there exists a common (βη-)reduct
of e and f . If one of them has a normal form then the other has the same.

Two functions with normal forms are convertible if and only if they have
the same normal form; in particular we fail to identify

λy . (λx . (yx)) λy . y

Applied to an argument z, the functions give equivalent results, as they
β-reduce to

(λx . (zx)) z

which themselves have the same behaviour as functions. It is for this reason
that βη-convertibility is defined. βη-convertibility is the smallest substitu-
tive equivalence relation R extending ↔↔ which is extensional , meaning
that if (f y) R (g y) for y a variable, then f R g. This result is again found
in the encyclopaedic [Bar84].

The convertibility relations are not necessary to explain the computa-
tional behaviour of λ-expressions; they are used when we reason about the
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behaviour of expressions, in particular they can tell us which functions have
the same behaviour, and which transformations (of one expression into an-
other) are permissible. We shall return to this topic in section 2.11, after
discussing typed λ-calculi.

Exercises

2.5. Show that if e has the form λy . e′ where x is not free in e′ then

(λx . ex)→β e

2.5 Expressiveness

The untyped λ-calculus is a simple theory of (pure) functions, yet compu-
tationally it is as strong as other fundamental theories of computation. It
is Turing-complete, exhibiting an equivalence with Turing computability.
One half of this equivalence consists in showing that objects such as the
natural numbers, booleans and so forth can be represented as λ terms, and
that recursive functions can be defined over them. Yet again, Barendregt
provides a suitable reference for this material. One representation of the
natural numbers is as the iterators, n being represented by

λf . λx . f (f . . . f (f︸ ︷︷ ︸
n

x) . . .)

which are in normal form. To derive recursive functions, with definitions
like

f x≡df . . . f . . .

which can be written

f ≡df λx. . . . f . . .

we need to be able to solve equations of the form

f ≡df R f

where R is a λ term. In fact we can define operations, F , called fixed
point combinators which solve these equations thus:

F R→→ R (F R)

Two examples are the expressions:

θθ where θ ≡df λa . λb . (b(aab)))
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F ≡df λf . ((λx . f(xx))(λx . f(xx)))

Each of these expressions has a head normal form, but neither has a normal
form. This is a general property of fixed point combinators, since

λx . (F x) →β λx . (x (F x))
→β λx . (x (x (F x)))
→β . . .

and F has a normal form if and only if λx . (F x) has. This is an interesting
point: here we have meaningful functions which cannot be represented by
expressions in normal form, showing that the class of meaningful expres-
sions extends beyond those with normal form.

2.6 Typed λ-calculus

The untyped λ-calculus is powerful, containing as it does the fixed point
combinators, representatives of all the common base types and their combi-
nations under standard type-forming operations. The disadvantage of this
power is the fact that our programs can continually break the stipulations
of our conceptual type system, which permits only numbers to be added
and so forth.

Another aspect of the system is the presence of non-termination: we
have seen that not every term has even a weak head normal form. Any
attempt to evaluate Ω results in a non-terminating computation. Ω does
not have a legitimate type in any type system, except those which include a
reflexive type C isomorphic to its function space (C ⇒ C). Terms with the
computational behaviour of Ω are introduced by a fixed point combinator:

F (λx . x) →β (λx . x) (F (λx . x))
→β (F (λx . x))
→β . . .

and the existence of such a combinator does not contradict the type disci-
pline, despite the fact that the definitions of the previous section are not
typeable, containing as they do applications of objects to themselves.

We now examine a number of typed λ-calculi of differing expressive
strength which will culminate in the system of constructive type theory
itself.

In this chapter we are able to develop separately first the types and
then the terms of the theory. We begin by defining a system with function
types (and a number of base types), progressively adding further types and
objects.
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Definition 2.17 Given a set B of base types, we form the set S of simple
types closing under the rule of function type formation. This states that
if σ and τ are types then so is (σ ⇒ τ). We assume that ‘⇒’ is right
associative, and omit brackets accordingly.

In typed lambda calculi each λ-expression (or term, we use these inter-
changeably) has a type. We shall write

e :τ

for ‘e is a λ-expression of type τ ’. We specify the type of each defined
λ-expression below.

Definition 2.18 The expressions of the typed λ-calculus have three forms.

Individual variables or simply variables, vτ,0, vτ,1,τ,2 , . . ., for each type
τ .

vτ,i :τ

We shall write xτ , yτ , zτ , . . ., with or without type subscripts for ar-
bitrary individual variables in what follows.

Applications If e1 : (σ ⇒ τ) and e2 :σ then

(e1 e2) :τ

We can only form an application when the type of the argument is
the same as the type of the domain of the function.

Abstractions If x :σ and e :τ then

(λxσ . e) : (σ ⇒ τ)

The type of an abstraction is a function type, whose domain is the
type of the formal parameter and whose range is the type of the
function body (or result).

Many notions defined in the untyped case carry over to here. These
include the substitution mechanism, β- and η-reduction and convertibil-
ity and the notions of canonical element: normal form, head normal form
etcetera. It is easy to see that convertible expressions must be of the same
type.

Many results carry over too. The Church-Rosser theorems for β and
βη-reduction have the same proofs. Given a variable xσ, we are unable to
form the application xσxσ and thus unable to define Ω and the fixed point
combinators we saw above. This is no accident, as we can prove
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Theorem 2.19 (Strong Normalisation) Every reduction sequence ter-
minates.

This important result is proved in the next section, and also in [FLO83].
Clearly the system is less expressive than the untyped calculus; precise
details are also found in [FLO83].

We can present the calculus in a slightly different form, closer to the
practice in programming languages. Instead of there being an infinite class
of variables for each type we can simply take one (infinite) class of variables.
When we use a variable we assume it is associated with a type: we call this a
type assumption but it might be more familiar as a declaration in a language
like Pascal. We then assign types to expressions in the type context of a
number of type assumptions. We will write Γ, . . .for such contexts, using
Γ, x :τ for the context Γ with the type assumption x :τ added. We assume
throughout that all contexts Γ are consistent in containing at most one
occurrence of each variable – we can give any expression a type using the
appropriate inconsistent context. Writing

Γ ` e :τ

for ‘e has the type τ in the context Γ’, the syntax rules become

Definition 2.20

Individual variables For any context Γ,

Γ, x :τ ` x :τ

Applications If

Γ ` e1 : (σ ⇒ τ)

and

Γ ` e2 :σ

then

Γ ` (e1 e2) :τ

As before, we can only form an application when the type of the
argument is the same as the type of the domain of the function.
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Abstractions If

Γ, x :σ ` e :τ

then

Γ ` (λxσ . e) : (σ ⇒ τ)

The type of an abstraction is a function type, whose domain is the
type of the formal parameter and whose range is the type of the
function body (or result).

The rule giving the type of an abstraction has one unusual aspect. The
assumption that x : σ is used in typing the body of the function, e, but is
not needed to give a type to the function itself. Why is this? In general
the variable x will appear free in the expression e — we cannot type an
expression containing a free variable without knowing the type for the vari-
able, and this is given by the assumption. On the other hand, in (λxσ . e)
x is bound and associated with the type σ it is assumed to have in the ex-
pression e, which is the scope of that particular declaration of the variable
x.

Exercises

2.6. Show that

λx . λy . λz . (xz)(yz) : (σ ⇒ τ ⇒ ρ)⇒ (σ ⇒ τ)⇒ (σ ⇒ ρ)

2.7. Explain why λx . xx and the fixed point combinator F are not terms
of the typed λ-calculus.

2.7 Strong normalisation

This section introduces a result which is important both in itself and be-
cause of its method of proof. This method, introduced in [Tai67] and known
as the reducibility method, is a general means of proof for systems which
are typed. It involves an induction over the complexity of the types, rather
than over syntactic complexity, which we saw was the major method of
proof for untyped systems.

Theorem 2.21 (Strong Normalisation) For all expressions e of the sim-
ply typed λ-calculus, all reduction sequences beginning with e are finite.
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How should the proof proceed? One method we cannot use is a straight-
forward structural induction, as a proof using this alone would carry over
to the untyped case, where we know that not even the terms with normal
form are strongly normalising. The method we use will involve an induction
over the structure of types:

Definition 2.22 The method of Induction over Types states that to
prove the result P (τ) for all types τ it is sufficient to

• Prove P (σ) for all base types σ ∈ B. This is called the base case.

• Prove P (σ ⇒ τ) assuming that P (σ) and P (τ) hold. This is called
the induction step.

As is common in proofs by induction, in order to prove a property
R(e) of every expression e we in fact prove a strengthening R′ of R. This is
because the obvious induction hypothesis will not be strong enough to work
at the induction step. This is the case with the property of e is strongly
normalising which we abbreviate ‘e is SN’: two terms e and e′ may be
strongly normalising without it being clear that the application (e e′) is so.
(It will of course be strongly normalising by the proof we construct, but
that begs the question of how we establish it.)

Definition 2.23 We say that an expression e of type τ is stable, written
e ∈ ‖τ‖ if

• If e is of base type and e is SN, or

• If e is of type σ ⇒ τ and for all e′ in ‖σ‖, (e e′) ∈ ‖τ‖

Stability is designed to be preserved by application, so that it is easier
to see that it will be carried through that case of the induction. Note also
that we use the type system in an essential way in this definition: we define
stability for a function type in terms of stability for its domain and range
types.

Before we begin the proof of the theorem, we note the following prop-
erties of the class of strongly normalising terms.

Lemma 2.24 If x is a variable then

(a) x ∈ SN

(b) If e1, . . . , ek ∈ SN then xe1 . . . ek ∈ SN .

(c) If ex ∈ SN then e ∈ SN .
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(d) If e ∈ SN then (λx . e) ∈ SN

Proof: (a) This is obvious, as the variable contains no redex.

(b) Any reduction sequence from xe1 . . . ek will have the form

xe1 . . . ek→β . . . →β xf1 . . . fk→β xg1 . . . gk→β . . .

where at each stage for exactly one index j, fj →β gj and for the others,
fi ≡ gi. This means that if there is an infinite reduction sequence from
xe1 . . . ek then there must be one from one of the eis, a contradiction to
their being SN.

(c) A reduction sequence from ex will either have the form

ex→β e1x→β e2x→β . . . →β enx→β . . .

or the form

ex→β e1x→β . . . →β (λy . f) x→β f [x/y]→β f1[x/y]→β f2[x/y]→β . . .

where

λy . f →β λy . f1→β λy . f2→β . . .

is a reduction sequence continuing e→β e1→β . . .. In either case an infinite
sequence starting at ex gives rise one starting at e.

(d) A reduction sequence starting at λx . e will have the form

λy . e→β λy . e1→β λy . e2→β . . .

where

e→β e1→β e2→β . . .

and so an infinite sequence starting at λy . e gives rise to another starting
at e. 2

The proof of the theorem itself is based on two further lemmas. In
the first we show that stable objects are strongly normalising (at the same
time showing that variables are stable), and in the second we show that all
objects are stable.

Lemma 2.25 (a) If e ∈ ‖τ‖ then e ∈ SN

(b) If xe1 . . . en :τ and e1, . . . , en ∈ SN then xe1 . . . en ∈ ‖τ‖

(c) If x :τ then x ∈ ‖τ‖.
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Proof: We prove (a), (b) and (c) by a simultaneous induction over the
type τ .

Base case: τ is a base type. The property (a) is true by definition of
stability for a base type.
For (b), if e1, . . . , en ∈ SN then by lemma 2.24, part (b), xe1 . . . ek will be
strongly normalising, and since τ is a base type, the expression is stable.
Finally, to prove (c) observe that any variable is strongly normalising and
therefore stable if it is of base type.

Induction step: We assume that τ is the type (σ ⇒ ρ) and that the
results (a), (b) and (c) hold for the types σ, ρ.
To prove (a) we assume that e ∈ ‖τ‖. We have to prove that e is SN. Take
x of type σ. By (c) for σ, x is stable, and so by the definition of stability
for e, ex will be stable. ex is of type ρ and so by (a) for ρ, ex is SN. Using
lemma 2.24 part (c), e is therefore SN.
Now we show (b). To prove that xe1 . . . en ∈ ‖τ‖ we need to show that
xe1 . . . enf is in ‖ρ‖, if f ∈ ‖σ‖. By hypothesis e1, . . . , en ∈ SN and by (a)
for σ, f is also SN. The expression xe1 . . . enf is of type ρ and so by (b) for
ρ,

xe1 . . . enf ∈ ‖ρ‖

as required.
Finally, we show (c). Suppose that f in ‖σ‖. By (a) for σ, f is SN, and
since the expression (xf) has type ρ, by (b) for ρ, (xf) is in ‖ρ‖, so x is
stable. 2

Our task now is to show that all expressions are stable. We aim to do this
by structural induction over the expressions. We know that variables are
stable by the previous result, and we prove easily that application preserves
stability: indeed this was a motivation of the definition. The case of λ-
abstraction is more tricky. We aim to prove that λx . f is stable, assuming
f is, and so we have to prove that for all stable g of the appropriate type,

(λx . f) g

is stable. This expression reduces to f [g/x]. We need to deduce the sta-
bility of the former from that of the latter. In fact we need to prove a
generalisation of this to get the induction to work, which readers can see
for themselves by trying a direct proof. The generalisation is clause (b) of
the next lemma.

Before we state the lemma, we give another definition.

Definition 2.26 A s-instance e′ of an expression e is a substitution in-
stance e′ ≡ e[g1/x1, . . . , gr/xr] where the gi are stable expressions.
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Lemma 2.27 (a) If e and f are stable then so is (ef).

(b) For all k ≥ 0, if f [g/x]h1 . . . hk ∈ ‖τ‖ and g ∈ SN then

(λx . f)gh1 . . . hk ∈ ‖τ‖

(c) All s-instances e′ of expressions e are stable.

Proof: We prove the clauses one at a time.

(a): If e ∈ ‖σ ⇒ τ‖ and f ∈ ‖σ‖ then by definition of stability for the
function space, (ef) ∈ ‖τ‖, in other words (ef) is stable.

(b): This we prove by induction over the type τ .
Base case: Suppose first that τ is of base type. We need to prove that
(λx . f)gh1 . . . hk is strongly normalising assuming that f [g/x]h1 . . . hk and
g are.
Consider the general form of a reduction sequence starting from

(λx . f)gh1 . . . hk

Redexes will either be contained in f , g and h1,. . .hk or consist of the head
redex (λx . f)g. All sequences will take either the form

(λx . f)gh1 . . . hk →→ (λx . f ′)g′h′1 . . . h′k

→β f ′[g′/x]h′1 . . . h′k

→β . . .

or the form

(λx . f)gh1 . . . hk →→ (λx . f ′)g′h′1 . . . h′k

→β . . .

in which the top-level redex is not reduced in subsequent computation. In
the first case, since

f [g/x]h1 . . . hk →→ f ′[g′/x]h′1 . . . h′k

the sequence must be finite, as f [g/x]h1 . . . hk is strongly normalising. In
the second case, can we have an infinite reduction sequence without ever
reducing the top-level redex? A sequence of this form will consist of a
number of parallel sequences, for f , g and h1, . . . , hk. Such a sequence can
be factored into two separate sequences, one starting with g and the other
containing no g reductions. The sequence of g reductions will be finite, as
g is SN, and the other sequence will be finite as it can be transformed into
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a corresponding sequence of reductions of the term f [g/x]h1 . . . hk in which
no g reductions take place. Any such sequence must also be finite, so the
expression (λx . f)gh1 . . . hk is SN.
Induction step: Suppose that τ is the functional type (σ ⇒ ρ). To show
that (λx . f)gh1 . . . hk ∈ ‖τ‖ we need to show that

(λx . f)gh1 . . . hkh ∈ ‖ρ‖

for every h in ‖σ‖. Now, since f [g/x]h1 . . . hk ∈ ‖τ‖,

f [g/x]h1 . . . hkh ∈ ‖ρ‖

and so by (b) for the type ρ, we have (λx . f)gh1 . . . hkh ∈ ‖ρ‖ as required.
This completes the proof of (b).

(c): We prove (c) by structural induction over the expressions e. There
are three cases.
Case: Variables. For variables x, x′ will either be the stable expression
g, when the substitution has the form [. . . , g/x, . . .], or when x is not the
target of a substitution, x′ is x which is stable by lemma 2.25, part (c).
Case: Application. If e has the form (e1e2) then an s-instance of e will
have the form (e′1e

′
2) where e′i is an s-instance of ei. By induction, each of

e′i is stable, and by lemma 2.27, part (a), the application (e′1e
′
2) is stable.

Case: Abstraction. Suppose that e has the form λx . f . We need to show
that every substitution instance of this is stable. These instances have the
form λx . f ′ where f ′ is a substitution instance of f . Now, how do we prove
the stability of λx . f ′? We have to show that

(λx . f ′) g

is stable for stable g. By lemma 2.25, part (a), g is SN, so applying lemma
2.27, part (b) with k = 0 it is sufficient to show that f ′[g/x] is stable. This
is also an s-instance of f and by induction it is stable. This completes the
proof of this case, part (c) of the proof and therefore the proof itself. 2

Proof: (Theorem 2.21)
By part (c) of lemma 2.27, every expression is stable (as it is the trivial
substitution instance of itself), and by lemma 2.25(a), all stable expressions
are strongly normalising. 2

2.8 Further type constructors: the product

The simply typed λ-calculus could not be simpler: we have only some
unspecified base types, carrying no operations, and a single form of type
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construction, the function space. We can extend the system in two different
ways, adding both new base types and new constructors. First we look at
type constructors.

Familiar type constructors include the product type and the disjoint
sum (or disjoint union). In Pascal these together are embodied in the
variant record type. The addition of these is standard; we review briefly
the addition of the product type to the simply typed λ-calculus now.

• To the definition of types we add the third clause that σ× τ is a type
if σ and τ are.

• We add two clauses to the definition of expressions:

Pairs If x :σ and y :τ then

(x, y) : σ × τ

The pair (x, y) is a member of the product type.
Projections If p : σ × τ then fst p :σ and snd p :τ . The operations

fst and snd project a pair onto its components.

• To the rules of computation we add the rules

fst (p, q)→ p snd (p, q)→ q

which show that fst and snd do indeed behave as projection opera-
tions, and we ask also that reduction is preserved by pairing, so that
if

p→ p′

then

(p, q)→ (p′, q) (q, p)→ (q, p′)

• To the rules we can also add

(fst p, snd p)→ p

for p of product type. This implies the extensionality rule that an
element of a product type is characterised by its components, since if

fst p ↔↔ fst q snd p ↔↔ snd q

then

p ↔↔ (fst p, snd p) ↔↔ (fst q, snd q) ↔↔ q
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We have added the operations fst and snd as primitives. Alternatively
we could think of them as constants, belonging to particular types. For this
to work here we need to add a collection of constants, one for each product
type, thus:

fstσ,τ : (σ × τ)⇒ σ

sndσ,τ : (σ × τ)⇒ τ

Our notation is made unwieldy by this addition; common practice in such
situations is to omit the type subscripts from these constants — in any
expression generated by the rules above we can deduce the type of each
instance from the context.

A second alternative is to add two constants, but to allow each of them
to have many types. fst would have the type (σ × τ) ⇒ σ for all the
types σ and τ . This is the idea of polymorphism which we mentioned in
our introduction to functional programming on page 30. To make this
introduction in a disciplined way we need to strengthen the type system
to allow polymorphic types — a further extension of the calculus. The
literature on polymorphism is extensive: [Mil78, Rey90].

A second distinction, touched upon in 2.4 was the distinction between
β and η reduction. We have a similar distinction between the two rules

fst (p, q)→ p snd (p, q)→ q

and the rule

(fst p, snd p)→ p

We shall call rules of the first sort computation rules and those of the
latter kind equivalence rules, as their main purpose is to develop a con-
vertibility relation. A common distinction between the two pairs derives
from an examination of the types of the objects they relate: the computa-
tion rules relate objects of arbitrary type:

(λx . e)f →→ e[f/x]

fst (p, q)→ p

where e and p are of arbitrary type. On the other hand, the equivalence
rules relate elements of restricted type. In the case of η reduction

λx . (ex)→η e
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for the left hand side to be a term of the typed calculus, e must be of a
function type. Similarly, in

(fst p, snd p)→ p

for fst p and snd p to be well-formed, p must be of product type. We will
take up this discussion further below, after adding a base type.

Exercises

2.8. Show that

λx . λy . λz . (x (y, z)) : ((σ × τ)⇒ ρ)⇒ (σ ⇒ τ ⇒ ρ)

and that

λx . λy . (x (fst y) (snd y)) : (σ ⇒ τ ⇒ ρ)⇒ ((σ × τ)⇒ ρ)

2.9 Base Types: Natural Numbers

Computations are usually performed over concrete types, such as numbers,
booleans, characters and so forth. Here we look at how the natural numbers
can be added to the typed λ-calculi above.

• We add the type N to our set of base types (we may have B = {N}).

• To the syntax of expressions we add two clauses

Numbers 0 is of type N , and if n :N then succ n :N .

Primitive Recursion For all types τ , if

e0 :τ f : (N ⇒ τ ⇒ τ)

then

Prec e0 f : N ⇒ τ

Prec is called the primitive recursor, and the term above is
intended to be the primitive recursive function F defined by the
equations

F 0 ≡df e0

F (n + 1) ≡df f n (F n)

To ensure the term does represent the function we add compu-
tation rules for Prec, thus:
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• The reduction rules for Prec are

Prec e0 f 0→ e0

Prec e0 f (n + 1)→ f n (Prec e0 f n)

• We can also define equivalence rules for Prec. Given a function

h : N ⇒ τ

we can give a definition of a function taking exactly the same values
as h by primitive recursion thus:

F 0 ≡df h 0

F (n + 1) ≡df f n (F n)

where

f n m ≡df h (n + 1)

h and the function just defined take the same values at every numeral
0, succ 0, succ (succ 0) and so on: we state that the two functions are
themselves equivalent by adding the reduction rule:

Prec (h 0) (λn . λm . h (n + 1)) → h

for h of type N ⇒ τ . Again, it is worth noting that the types of
the objects related by this rule are not completely arbitrary: they are
functions over the domain N .

We can extend the strong normalisation result of section 2.7 to a system
containing product types and a base type of natural numbers. We retain the
notion that expressions of type N are stable if and only if they are strongly
normalising, and add the clause that pairs p are stable if and only if their
components fst p and snd p are. It is not hard to show that all stable
objects are strongly normalising; we then have to show that all objects are
stable.

To do this we need an auxiliary result analogous to lemma 2.27, part
(b), stating that if all the expressions accessible by a single reduction from
the expression Prec e0 f t are stable, then so is the expression itself. We
prove this by a type induction.
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Given this result, the proof of stability of all terms proceeds by a struc-
tural induction, with an auxiliary induction over the natural numbers in
the proof that

Prec e0 f t

is stable for stable e0, f and t.
Further details of this proof can be found in [Tai67, GLT89, Tro73]

Exercises

2.9. Give primitive recursive definitions of addition and multiplication.

2.10 General Recursion

A further step is to add an operator R for general recursion. This should
have the property that

R f → f (R f)

so that (R f) is a fixed point of the functional term f . This is a much
stronger notion than primitive recursion (which is definable in terms of R
and a number of primitive operations — details can be found in [Cut81])
and introduces non-terminating computations. In general, any recursively
defined object will have at least one non terminating reduction sequence,

R f → f (R f)
→ f (f (R f))
→ . . .

→ fn (R f)
→ . . .

and some have all such sequences non terminating:

R (λx . x) → (λx . x) (R (λx . x))
→ R (λx . x)
→ . . .

we can see that although there are many fixed points of the identity func-
tion, computationally we have the ‘least defined’, which simply loops for-
ever.

The semantic explanation of general recursion in the definition of objects
and types has lead to the development of denotational semantics, which was
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initiated by the work of Scott and Strachey in the late sixties. The values
computed by general recursive functions are members of domains, which
reify the ideas of approximation and limit by which we can give an informal
explanation of recursion. More details can be found in the excellent [Sch86].

In type theory we adopt a different approach, keeping to systems in
which normalisation, at least in some form, is assured.

2.11 Evaluation revisited

This section allows us to round off earlier discussions, in sections 2.3, 2.4
and 2.8, about evaluation, the various kinds of (head,. . . ) normal form and
computation and equivalence rules.

In a (typed) functional programming language like Miranda, we can
ask for the system to evaluate expressions of any type. If the object is a
function, the result of the evaluation is simply the message

<function>

This reflects the fact that we can print no representation of the function
qua transformation, but only in some intensional way by a normal form for
its code.

In addition to this, the ultimate values computed by programs will be
finite — as finite beings we cannot wait an infinite time for a complete
print-out, however close we feel we come sometimes! We would therefore
argue that the values which we seek as final results of programs are non-
functional.

Definition 2.28 The order of a type is defined thus, writing ∂(τ) for the
order of τ :

∂(τ) = 0 if τ ∈ B

∂(τ × σ) = max(∂(τ), ∂(σ))
∂(τ ⇒ σ) = max(∂(τ) + 1, ∂(σ))

Definition 2.29 The terms we evaluate are not only zeroth-order, i.e. of
ground type, they also have the second property of being closed containing
as they do no free variables. The results will thus be closed (β-)normal
forms of zeroth-order type. It is these that we call the printable values.

In our example λ-calculus, the closed normal forms in N are

0, succ 0, succ (succ 0), . . .
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in other words are 0 and succ n where n itself is in normal form.
For a pair of printable types, (τ × σ), the closed normal forms will be

(t, s)

where t,s are closed normal forms of type τ and σ.
How do we prove that these are the only printable values of these types?

We consider the (notationally) simpler case omitting product types. An
induction over the structure of numerical terms suffices:

• A variable is not closed.

• 0 is a normal form

• succ t We argue by induction for t.

• (f e) where f is of functional type. Closed terms of this type have
three forms

– λx . t or Prec t1 t2 If f has either of these forms, we have a
contradiction, since (f e) will form a redex (by induction for e
in the case of Prec).

– (g h) where g is an application. First we expand g fully as an
application, writing the term as

g1 g2 . . . gk h

Each of the gi is closed, and g1 must be of function type. Also
g1 is not an application so g1 g2 must be a redex in contradiction
to f , (that is g h), being in normal form

A similar argument establishes the result when product types are added.
What is important to note here is that we have no redexes for the equiv-
alence rules here: we have reached a normal form excluding such redexes
without applying the reduction rules. Clearly this depends upon our twin
assumptions of

Closure This excludes terms of the form

(fst p, snd p)

where p is a variable of type N ×N , say.

Printable types This excludes the obvious η-redexes, such as

λx . λy . (xy)

which can occur within closed terms of functional type.
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We therefore feel justified in making the distinction between the two kinds
of rule which we called computation and equivalence rules above. The
computation rules suffice for the evaluation of particular terms, whilst the
equivalence rules are used when reasoning about the general behaviour of
functions (applied to terms which may contain variables).



Chapter 3

Constructive Mathematics

The aim of this brief chapter is to introduce the major issues underlying the
conflict between ‘constructive’ and ‘classical’ mathematics, but it cannot
hope to be anything other than an hors d’oeuvre to the substantial and
lengthy dialogue between the two schools of thought which continues to
this day.

Luckily, there are other sources. Bishop gives a rousing call to the
constructive approach in the prologue to [BB85], which is followed by a
closely argued ‘Constructivist Manifesto’ in the first chapter. Indeed the
whole book is proof of the viability of the constructivism, developing as it
does substantial portions of analysis from such a standpoint. It contains a
bibliography of further work in the field.

An invaluable historical account of the basis of the conflict as well as
subsequent activity in the field can be found in the historical appendix
of [Bee85]. The first part of [Bee85], entitled ‘Practice and Philosophy of
Constructive Mathematics’, also gives a most capable summary of both the
scope and the foundations of constructive mathematics. [Dum77] is also a
good introduction, looking in detail at the philosophy of intuitionism, and
the recent survey [TvD88] also serves its purpose well.

Bishop identifies constructivism with realism, contrasting it with the
idealism of classical mathematics. He also says that it gives mathematical
statements ‘empirical content’, as opposed to the purely ‘pragmatic’ nature
of parts of classical mathematics, and sums up the programme of [BB85]
thus ‘to give numerical [i.e. computational ] meaning to as much as possible
of classical abstract analysis’.

A constructive treatment of mathematics has a number of interlinked
aspects. We look at these in turn now.

59
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Existence and Logic

What constitutes a proof of existence of an object with certain properties?
A mathematician will learn as a first-year undergraduate that to prove
∃x.P (x) it is sufficient to prove that ∀x.¬P (x) is contradictory. The con-
structivist would argue that all this proof establishes is the contradiction:
the proof of existence must supply a t and show that P (t) is provable.
Proofs of existential statements abound in mathematics: the fundamental
theorem of algebra states that a polynomial of degree n has n complex
roots; the intermediate value theorem asserts that continuous functions
which change sign over a compact real interval have a zero in that interval,
just to take two examples.

Sanction for proof by contradiction is given by the law of the excluded
middle

A ∨ ¬A

which states in particular that

∃x.P (x) ∨ ¬∃x.P (x)

If ∀x.¬P (x), which is equivalent to ¬∃x.P (x), is contradictory, then we
must accept ∃x.P (x). Our view of existence thus leads us to reject one
of the classical logical laws, which are themselves justified by an idealistic
view of truth: every statement is seen as true or false, independently of any
evidence either way. If we are to take the strong view of existence, we will
have to modify in a radical way our view of logic and particularly our view
of disjunction and existential quantification.

Bishop gives the interesting example that the classical theorem that ev-
ery bounded non-empty set of reals has a least upper bound, upon which
results like the intermediate value theorem depend, not only seems to de-
pend for its proof upon non-constructive reasoning, it implies certain cases
of the law of the excluded middle which are not constructively valid. Con-
sider the set of reals {rn | n ∈ N} defined by

rn ≡df 1 if P (n)
≡df 0 if not

The least upper bound of this set is 1 if and only if ∃x.P (x); we can certainly
tell whether the upper bound is 1 or not, so

∃x.P (x) ∨ ¬∃x.P (x)

As a consequence of this, not only will a constructive mathematics depend
upon a different logic, but also it will not consist of the same results. One
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interesting effect of constructivising is that classically equivalent results
often split into a number of constructively inequivalent results, one or more
of which can be shown to be valid by constructive means.

The constructive view of logic concentrates on what it means to prove
or to demonstrate convincingly the validity of a statement, rather than con-
centrating on the abstract truth conditions which constitute the semantic
foundation of classical logic. We examine these proof conditions now.

To prove a conjunction A ∧B we should prove both A and B; to prove
A ∨ B we should prove one of A,B, and know which of the two we have
proved. Under this interpretation, the law of the excluded middle is not
valid, as we have no means of going from an assertion to a proof of either
it or its negation. On the other hand, with this strong interpretation, we
can extract computationally meaningful information from a proof of A∨B,
as it allows us to decide which of A or B is proved, and to extract the
information contained in the proof of whichever of the two statements we
have.

How might an implication A ⇒ B be given a constructive proof? The
proof should transform the information in a proof of A into similar infor-
mation for B, in other words we give a function taking proofs of A into
proofs of B. A proof of a universally quantified formula ∀x.P (x) is also a
transformation, taking an arbitrary a into a proof of the formula P (a). We
shall have more to say about the exact nature of functions in the section
to come.

Rather than thinking of negation as a primitive operation, we can define
the negation of a formula ¬A to be an implication,

A⇒ ⊥

where ⊥ is the absurd proposition, which has no proof. A proof of a negated
formula has no computational content, and the classical tautology ¬¬A⇒
A will not be valid — take the example where A is an existential statement.

Finally, to give a proof of an existential statement ∃x.P (x) we have to
give two things. First we have to give a witness , a say, for which P (a) is
provable. The second thing we have to supply is, of course, the proof of
P (a). Now, given this explanation, we can see that a constructive proof of

∃x.P (x) ∨ ¬∃x.P (x)

constitutes a demonstration of the limited principle of omniscience. It gives
a decision procedure for the predicates P (x) over the natural numbers, say,
and can be used to decide the truth or otherwise of the Goldbach Conjec-
ture, as well as giving a solution to the halting problem. It therefore seems
not to be valid constructively, or at least no constructive demonstration of
its validity has so far been given!
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Given the explanation of the logic above, we can see that we have to
abandon many classical principles, like ¬¬A⇒ A, ¬(¬A∧¬B)⇒ (A∨B),
¬∀x.¬P (x)⇒ ∃x.P (x) and so on.

We shall see in the section to come that as well as modifying our logic
we have to modify our view of mathematical objects.

Mathematical objects

The nature of objects in classical mathematics is simple: everything is a
set. The pair of objects a and b ‘is’ the set {{a}, {a, b}} and the number 4
‘is’ the set consisting of

∅ , {∅} , { ∅, {∅} } , { ∅, {∅}, { ∅, {∅} } }

Functions are represented by sets of pairs constituting their graph, so that
the successor function on the natural numbers is

{ (0, 1), (1, 2), (2, 3), . . . }

which is itself shorthand for

{ {{∅}, {∅, {∅}}} , {{{∅}}, {{∅}, { ∅, {∅} }}} . . .

Objects like this are infinite, and an arbitrary function graph will be in-
finitary, that is it will have no finite description. Such objects fail to have
computational content: given the finitary nature of computation, it is im-
possible completely to specify such an object to an algorithm. This is an
example of a fundamental tenet of constructive mathematics:

Every object in constructive mathematics is either finite, like
natural or rational numbers, or has a finitary description, such
as the rule

λx . x + 1

which describes the successor function over the natural numbers

The real numbers provide an interesting example: we can supply a descrip-
tion of such a number by a sequence of approximations, (an)n say. This
sequence is finitary if we can write down an algorithm or rule which allows
us to compute the transformation

n 7→ an

for all n. (We shall return to the example of the reals below.)
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A second aspect of the set theoretic representation is the loss of distinc-
tion between objects of different conceptual type. A pair is a set, a number
is a set, a function is a set, and so on. We are quite justified in forming a
set like

(3, 4) ∪ 0 ∪ succ

although its significance is less than crystal clear! This does not reflect
usual mathematical practice, in which the a priori distinctions between
numbers, functions and so on are respected. In other words, the objects of
mathematics are quite naturally thought of as having types rather than all
having the trivial type ‘set’. We summarise this by saying that

Constructive mathematics is naturally typed.

One obvious consequence of this is that quantification in a constructive
setting will always be typed.

If we accept that a typed system is appropriate, what exactly do we
mean by saying that ‘object a has type A’? To understand what this
means, we must explain type-by-type what are the objects of that type,
and what it means for two objects of the type to be equal. For instance,
for the type of functions, A ⇒ B, we might say that objects of the type
are (total) algorithms taking objects of A to objects of B, and that two
algorithms are deemed equal if they give the same results on every input
(the extensional equality on the function space).

Each object a should be given in such a way that we can decide whether
it is a member of the type A or not. Consider an example. Suppose that
we say that the real numbers consist of the class of sequences (an)n which
are convergent, that is which satisfy

∀n.∃m.∀i ≥ m.∀j ≥ m . |ai − aj | < 1/n

When presenting such a sequence it is not sufficient to give the sequence,
it must be presented with the witness that it has the property required.
In this case the witnessing information will be a modulus of convergence
function µ together with a proof that

∀n.∀i ≥ µ(n).∀j ≥ µ(n) . |ai − aj | < 1/n

This is an example of the general principle:

Principle of Complete Presentation. Objects in construc-
tive mathematics are completely presented, in the sense that if
an object a is supposed to have type A then a should contain
sufficient witnessing information so that the assertion can be
verified.
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This is a principle to which Bishop adheres in principle, but to smooth the
presentation of the results, he adopts a policy of systematic suppression
of the evidence, invoking it only when it is necessary. This schizophrenic
attitude will also pervade the systems we shall introduce.

There is a relationship between this view and the classical. The con-
structive model of objects like the reals can be seen as related to the classi-
cal; witnessing evidence which can always be provided by a non-constructive
existence proof in the classical setting is incorporated into the object itself
by the constructivist.

A final area of note is equality over infinite objects like the reals. For
the natural numbers, we can judge whether two objects are equal or not,
simply by examining their form. For the reals, we are not interested so
much in the syntactic form of two numbers as their respective limits. Two
reals (an)n, (bn)n (we suppress the evidence!) have the same limit, and so
are deemed equal, if

∀n.∃m.∀i ≥ m.∀j ≥ m . |ai − bj | < 1/n

We cannot expect that for an arbitrary pair of reals that we can decide
whether a = b or a 6= b,as one consequence of this is the limited principle
of omniscience. A final precept which is useful here is

Negative assertions should be replaced by positive assertions
whenever possible.

In this context we replace ‘6=’ by a notion of ‘apartness’. Two real numbers
(an)n, (bn)n are separated, a#b, if

∃n.∃m.∀i ≥ m.∀j ≥ m . |ai − bj | > 1/n

This is a strong enough notion to replace the classically equivalent inequal-
ity. We shall return to the topic of the real numbers in section 7.6.

Formalizing Constructive Mathematics

The reader should not conclude from the foregoing discussion that there is a
‘Golden Road’ to the formalization of constructive mathematics. The type
theory which we explore below represents one important school of many,
and we should say something about them now. [Bee85] provides a very
useful survey addressing precisely this topic, and we refer the reader to this
for more detailed primary references. The text covers theories like Intu-
itionistic set theory (IZF), Feferman’s theories of operations and classes,
[Fef79], as well as various formalized theories of rules, all of which have
been proposed as foundations for a treatment of constructive mathematics.
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One area which is overlooked in this study is the link between category
theory and logic, the topic of [LS86]. This link has a number of threads,
including the relationship between the λ-calculus and cartesian closed cat-
egories, and the category-theoretic models of intuitionistic type theory pro-
vided by toposes. The interested reader will want to follow up the primary
references in [LS86].

Conclusion

We have seen that constructive mathematics is based on principles quite
different from classical mathematics, with the idealistic aspects of the latter
replaced by a finitary system with computational content. Objects like
functions are given by rules, and the validity of an assertion is guaranteed
by a proof from which we can extract relevant computational information,
rather than on idealist semantic principles. We lose some theorems, such
as

Theorem 3.1 (Intermediate Value Theorem - Classical)
Suppose that f is continuous on [0, 1] with f(0) < 0 and f(1) > 0, then
there is an r ∈ [0, 1] with f(r) = 0.

All is not lost, and we can prove the weaker

Theorem 3.2 (Intermediate Value Theorem - Constructive)
Suppose that f is continuous on [0, 1] with f(0) < 0 and f(1) > 0, then

for all ε > 0 there is an r ∈ [0, 1] with |f(r)| < ε.

The constructive version states that we can get arbitrarily close to the
root, and of course, that is all we could expect to do, from a computational
point of view. In this respect, we have in the latter theorem a truer picture
of our ‘empirical’ capabilities.

For other examples, and more cogent pleading of the constructivist case,
we would heartily recommend the opening passages of [BB85]. Indeed, the
whole book will repay detailed study. We now pass on to looking at our
formal system for type theory.
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Chapter 4

Introduction to Type
Theory

This chapter forms the focus of the book, drawing together the three themes
of logic, functional programming and constructive mathematics into a single
system, which we investigate, develop and criticise in the chapters to come.
The short discussion of constructive mathematics introduced the idea that
proofs should have computational content; we saw that to achieve this goal,
the underlying logic of the system needed to be changed to one in which
we only assert the validity of a proposition when we have a proof of the
proposition. Because of this, the system we define is different from those
of the first chapter, deriving as it does statements of the form

‘p is a proof of the proposition P ’,

which we write thus:

p : P

Central to type theory is the duality between propositions and types, proofs
and elements: a proof of a proposition T can be seen as a member of the
type T , and conversely. Ideas which come from one side of the divide can
be re-interpreted on the other, enriching both fields. We first present type
theory as a logical system, and then re-interpret the derivation rules as
rules for program construction in a typed functional language, with p : P
read as

‘p is a member of the type P ’

67
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The chapter begins with an informal examination of what it means for some-
thing to be a proof of a formula of propositional logic. Before introducing
the formal system itself, we look at the general form that the rules will take,
and establish some important terminology which will distinguish between
the formal proof objects, like p above, and derivations of the statements,
or judgements, like p :P .

With each connective or type forming operation we associate four kinds
of rule. The familiar rules of introduction and elimination describe how
certain propositions can be proved. From the programming point of view
they assert the existence of certain objects of certain types; in other words,
they specify the syntax of a programming language. To describe a language
we need to supply not only the syntax but also also to explain how to
evaluate or run programs written in the language. The computation rules
explain this, with

e1 → e2

denoting ‘e1 reduces to e2 in one step of computation’; their logical inter-
pretation is a description of how proof objects may be simplified. We also
give a formation rule which embodies the syntax of the connective: this
presentation of the syntax together with the rules of the system is one of
the distinctive features of type theory, and it is necessary because of the
interdependence in the definitions of types and values.

The formal presentation of the logical rules for propositional calculus is
followed by a number of examples, in which we see standard functions like
composition serving as proofs of familiar statements like

(A⇒ B)⇒ (B ⇒ C)⇒ (A⇒ C)

After this we introduce the logical notions of universal and existential quan-
tifiers, which when given a programming interpretation, define dependent
function spaces and modules, amongst other things.

Programming is dependent on the presence of data types such as the
booleans, the finite types and the natural numbers, which are introduced
next. The one and zero element types are also representatives of the logical
statements Truth and Falsity, truth having the trivial proof, and falsity
having none. Infinite data types are characterised by principles of definition
by recursion and proof by induction; as we cannot define every case of a
function or examine every case in a proof, we need these indirect methods.
The two methods go hand-in-hand, as we define an object by recursion
and then prove any property of the object by induction. One of the most
elegant aspects of the type theoretic approach is that the two are identical
— a proof by induction is nothing other than a proof object defined using
recursion.
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This recursive characterisation carries over to other types, and we look
at binary trees as an example of a general well-founded type construction.

The primitive propositions introduced thus far are the types bool, N
and so on. The assertion of the identity

a =A b

of two values a and b of type A forms a fundamental atomic proposition, or
type. Here we can see the interdependence between the definitions of types
and values in the language: a =A b is a type of the language if a and b are
values of type A.

There is another relation linking items, generated by ‘ → ’: two ex-
pressions are convertible if a sequence of forwards or backwards reductions
using ‘→ ’ leads from the first to the second: as each step leads from equals
to equals, convertible expressions are deemed to be equal internally, so that
we can use the relation ‘=’ to reason about the computational behaviour
of programs. This means that our system gives an integrated treatment of
programming and verification: we can prove a program correct, or develop
it from a specification, in the same system in which the program is written.

4.1 Propositional Logic: an Informal View

Our first view of the material is an informal account of what it is to have
a proof of a proposition built using the connectives ∧,⇒,∨ and ⊥. Recall
that we use the notation p : P for ‘p is a proof (or demonstration) of the
proposition P ’.
Looking at the connectives in turn, we have.

A ∧B A proof of A ∧ B will be a pair of proofs p and q, p : A
and q : B. The reasons for this should be obvious. In or-
der to demonstrate that A ∧ B is valid we have to be able
to demonstrate the validity of both A and B separately, and
from a proof of the conjunction we can extract proofs of the
component propositions. (It is interesting to observe that this
property will hold for classical systems as well as for construc-
tive ones.)

A⇒ B A proof of A ⇒ B consists of a method or function which
transforms any proof of A into a proof of B. Clearly, then,
given proofs a of A and f of A ⇒ B we can derive a proof of
B by applying the proof transformer f to a.
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A ∨B A proof of A ∨ B will either be a proof of A or be a proof
of B, together with an indication of which formula the proof
is of. This is quite different from the classical reading of ∨.
A classical logician can assert (or prove, depending upon the
particular system) the proposition A ∨ ¬A as a general result.
However, there are cases in which it is clear that we can prove
neither the proposition A nor its negation ¬A. Note that from
a constructive proof of A ∨ B we can read off a proof of one
of A,B and moreover know which it proves. This is not the
case for the classical disjunction; witness the classically valid
A ∨ ¬A.

⊥ There is no proof of the contradictory proposition ⊥.

Definition 4.1 Implicit in these descriptions is a description of proofs of
¬A and A⇔ B, since we choose to define them by:

¬A ≡df A⇒ ⊥

A⇔ B ≡df (A⇒ B) ∧ (B ⇒ A)

We see that a proof of ¬A is a function which transforms proofs of A into
proofs of ⊥. A proof of A ⇔ B is a pair of functions, one transforming
proofs of A into proofs of B, and the other taking proofs of B to proofs of
A.

To give a flavour of the approach, let us develop a proof of the propo-
sition

(A ∧B)⇒ (B ∧A)

This proof will be a function, taking proofs of A ∧ B to proofs of B ∧ A.
Suppose we are given a proof p of A∧B — we know that it consists of two
halves, p1 : A and p2 : B. Given these component parts we can build
the proof of B ∧ A: it is simply (p2, p1). If we write fst and snd for the
functions which extract the first and second components, then the proof of
the implication takes the form

λp.(snd p, fst p)

A second example is provided by a proof of

( ( (A ∨B)⇒ C ) ∧ A )⇒ C

Our proof will again be a function, taking a proof of

( (A ∨B)⇒ C ) ∧ A (4.1)
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into a proof of C. What does a proof of (4.1) look like? It is a pair of
proofs, the first, q say, is of

(A ∨B)⇒ C

and the second, r say, of A. Now, from a proof of A we can build a proof
of A ∨ B, simply by labelling it as a proof of the left-hand formula, inl r.
Now, q is a proof of (A∨B)⇒ C and so is a function from proofs of A∨B
to proofs of C. We can therefore apply it to the proof inl r to get a proof
of C, as required. The full proof can be written

λ(q, r).q(inl r)

where we use a lambda abstraction over a pattern to indicate that the
argument will be a pair.

Clearly, if we are to build more complex proofs along these lines then
we must give a formal notation for these proofs, and for the way that we
derive the proof objects.

4.2 Judgements, Proofs and Derivations

Recall the form that our logic took in chapter 1. There we gave rules which
took the form of the example which follows.

A B

A ∧B
(∧I)

The rule above should be read, in full,

If A is valid and B is valid then A ∧B is valid

or more generally under a set Γ of assumptions,

If A is valid assuming Γ and B is valid assuming Γ then A ∧B
is valid assuming Γ.

Schematically, it should be written

A is valid B is valid

(A ∧B) is valid
(∧I)

The rules tell us how one judgement, (A ∧ B) is valid , can be inferred
from a number of others.

The system of rules we introduce here is similar, except that the form
of the judgements is different. Our constructive approach to mathematics
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means that we are not interested in validity alone, but in explicit demon-
strations or proofs of propositions. The judgements we introduce therefore
have the form ‘p : P ’ which should be read ‘the object p is a proof of the
proposition P ’.

The rule to introduce conjunctions, according to the explanation in the
previous section, will be

p : A q : B

(p, q) : (A ∧B)
(∧I)

The rules are to be used just as were the logical rules in chapter 1, to
produce derivations of judgements: a rule is applied to derivations of the
judgements above the line to produce a derivation of the judgement below
the line. Note that this is a change of terminology from the earlier chapter;
there we used rules to give proofs of judgements — here we use rules to
derive judgements which themselves contain proof objects or constructions.
To re-iterate, proofs and propositions form the object language; derivations
are the means by which we infer judgements concerning the object language.
Derivations are built inductively by applying the deduction rules. If we now
introduce the rules for conjunction elimination, we will be able to look at
an example which we examined informally a little earlier.

r : (A ∧B)
fst r : A

(∧E1)
r : (A ∧B)
snd r : B

(∧E2)

Here we see a derivation of the judgement (snd r, fst r) : (B ∧A)

r : (A ∧B)
snd r : B

(∧E2)
r : (A ∧B)
fst r : A

(∧E1)

(snd r, fst r) : (B ∧A)
(∧I)

The proof object derived is the pair (snd r, fst r) which is shown to prove
(B ∧A) assuming that r is a proof of (A ∧B).

As in our earlier treatment of logic, derivations can be based on assump-
tions, and these assumptions can be discharged by certain of the rules. We
will use the same notation for discharge as we did earlier.

Note that as there is no possibility of ambiguity, we have used the same
names for the proof rules, (∧I), (∧E) and so on, as we did in the chapter
covering logic.

Some of our rules will involve another judgement, which asserts that a
particular sequence of symbols is a formula:

A is a formula
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For conjunction, for instance, we write

A is a formula B is a formula

(A ∧B) is a formula
(∧F )

Rules of this sort are called formation rules as they explain the circum-
stances under which a particular formula can be formed. In other words,
they are the rules of syntax for the language of propositions. We might
think it simpler to state the rules quite separately (by means of BNF for
example), but we shall see later, in section 4.10, that some formulas are
only well-formed if certain judgements are derivable, linking syntax and
derivations inextricably.

For each connective we shall specify four different kinds of rule. Each
will have introduction and elimination rules, which are used to introduce
and eliminate formulae involving the particular connective. As we discussed
above, we shall also have the formation rule. Finally, each connective will
have computation rules which tell us how proofs of formulas involving
that connective can be simplified. This is a new idea, and we look at a
brief example of it now. Recall the way that we treated ∧ in the previous
section. If p was a proof of A and q a proof of B, then (p, q) is a proof
of A ∧ B. Now, given such a proof we can extract proofs of A and B by
applying fst and snd. All that these do is to extract the first and second
components of the pair, so we want to say that

fst (p, q) → p snd (p, q) → q

and it is this computational information about the operations fst and snd
which appears in the computation rules. The symbol ‘→ ’ is read ‘reduces
to’ (and should be compared to the reduction symbol of the lambda calculus
from section 2.2.) We use the symbol→→ for the closure of this relation, see
section 4.11 below.

4.3 The Rules for Propositional Calculus

We first give the rules for the ∧ connective, as we set them out above.

Formation Rule for ∧
A is a formula B is a formula

(A ∧B) is a formula
(∧F )

Introduction Rule for ∧
p : A q : B

(p, q) : (A ∧B)
(∧I)
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Elimination Rules for ∧
r : (A ∧B)
fst r : A

(∧E1)
r : (A ∧B)
snd r : B

(∧E2)

Computation Rules for ∧

fst (p, q) → p snd (p, q) → q

these are simply the rules we introduced informally in our discussion above.
Recall that we characterised proofs of the conjunction as pairs of proofs.

We can read the introduction and elimination rules as expressing precisely
this. The introduction rule states that all pairs of proofs are proofs of the
conjunction, but leaves open the possibility of other kinds of proof. The
elimination rule excludes any other sort of proof of the conjunction, since
it states that we can extract two component proofs from any proof of the
pair. In other words we can read the elimination rule as a ‘closure’ rule.
This duality will be true for all introduction-elimination pairs. We take a
formal look at the duality in section 8.4 below.

The next set of rules concerns implication. The formation rule is standard.

Formation Rule for ⇒
A is a formula B is a formula

(A⇒ B) is a formula
(⇒ F )

Recall that we discharged an assumption in a proof when we introduced
the connective. A proof of an implication is a function transforming an
arbitrary proof of A into a proof of B. We form that transformation by
building a proof e of B assuming that we have an (arbitrary) proof, x say,
of A. The function itself is formed by lambda abstraction over the variable,
giving (λx : A) . e This expression is independent of the variable x, since
this is bound, reflecting the discharge of the assumption x :A.

Introduction Rule for ⇒
[x :A]

...
e : B

(λx :A) . e : (A⇒ B)
(⇒ I)

The notation [x : A] is used to record the fact that the assumption x : A
which will in general appear in the derivation of e :B is discharged from the
derivation of (λx :A) . e : (A⇒ B) which results from applying the rule to
the given derivation of e :B.
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In the dual case, we eliminate an implication by supplying a proof of
the hypothesis. The proof of the implication is applied to the proof of the
hypothesis to give a proof of the consequent, recalling the description of
proofs of A ⇒ B above. The elimination rule can also be read as saying
that all proofs of A ⇒ B are functions, since they can all be applied (to
proofs of the right ‘type’, A).

Elimination Rule for ⇒

q : (A⇒ B) a : A

(q a) : B
(⇒ E)

Finally, what happens if we apply the proof (λx :A) . e of A⇒ B to the
proof a : A? Recall that e was a proof of B, on the assumption that x was
a proof of A. Now, we have such a proof, a, and so we get a proof of B by
replacing x by a throughout e. We say,

Computation Rule for ⇒

((λx :A) . e) a → e[a/x]

where the notation e[a/x] means the expression e in which every free oc-
currence of x is replaced by a, and where this is done in such a way as to
avoid free variables becoming bound (exactly as we stipulated in section
2.2 above.)

What are the rules for disjunction, ∨? We have straightforward formation
and introduction rules,

Formation Rule for ∨

A is a formula B is a formula

(A ∨B) is a formula
(∨F )

Introduction Rules for ∨
q : A

inl q : (A ∨B)
(∨I1)

r : B

inr r : (A ∨B)
(∨I2)

The operator inl registers the fact that the proof available is for the left
hand disjunct, and inr registers that it is for the right, as in general we
may not be able to differentiate between the two different kinds of proof
without these ‘tags’ to distinguish between them.

The elimination rule for ∨ in chapter 1 was rather more complex, in-
volving the discharge of two premisses — we present a slight variant of it
here, but we can see that it has exactly the same motivation as our earlier
rule.
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Elimination Rule for ∨

p : (A ∨B) f : (A⇒ C) g : (B ⇒ C)
cases p f g : C

(∨E)

cases p f g is a proof of C which is built from a proof p of A∨B and from
proofs f : (A ⇒ C) and g : (B ⇒ C). How does it work? The proof p
comes either from a proof q of A, and has the form inl q or from a proof
r of B, and has the form inr r. In the first case we get a proof of C by
applying f to q, and in the second by applying g to r. Hence the name
‘cases’ and the computation rules:

Computation Rules for ∨

cases (inl q) f g → f q

cases (inr r) f g → g r

Each elimination rule has a major premiss, containing the connective to
be eliminated. The remainder are known as minor premisses. The rule
corresponding directly to the rule in chapter 1 has as its two minor premisses
proofs of C from assumptions x : A and y : B. As these two assumptions
are to be discharged the cases operation will have to bind the variables x
and y, just as the variable in the assumption is bound in an (⇒I) by the
lambda. This variant of the rule is given in section 5.3 below.

Finally, what rules do we associate with absurdity, ⊥? First we have
the formation rule,

Formation Rule for ⊥

⊥ is a formula
(⊥F )

and we have no introduction rule associated with ⊥, as we know of no
way of forming proofs of the absurd proposition. We can eliminate it freely,
thus,

Elimination Rule for ⊥
p : ⊥

abortA p : A
(⊥E)

This rule says that if we can prove absurdity (with p), then the proof
abortA p proves A. This is the second half of our characterisation of ⊥ as
absurdity. Not only do we give no method by which ⊥ can be introduced,
but in order to show that we did not simply forget to give these rules we
say that given any such proof our system must crash, and prove everything,
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the rule of ex falso quodlibet. There are no computation rules associated
with such an object — it simply registers the fact that the object is proved
directly from absurdity.

The rule for implication introduction discharges an assumption of the
form x :A where x is a variable. How do these assumptions become parts
of derivations? In order for an assumption x :A to be sensible, we need A
to be a formula. This is a sufficient condition too, so we have

Rule of Assumption

A is a formula

x :A
(AS)

We make the implicit (informal!) assumption that our sets of assump-
tions will always be consistent: we will not assume that any variable is a
proof of more than one formula. We elaborate on the details of this in the
chapter to come.

This rule is unusual, in that it shows that our assumptions do not appear
at the leaves of derivations, but rather only after a derivation that the
expression which follows the colon is indeed a formula.

In many of our examples we will relax this constraint, omitting the
derivation of ‘A is a formula’; this will only be done when the derivation
is trivial, or we simply assume, informally, that the derivation has been
performed prior to the derivation at issue.

This completes our exposition of the propositional part of type theory
— in the next section we get to the heart of our exposition, and tie the link
between functional programming (as represented by the lambda calculus)
and logic.

Exercises

4.1. Show that conjunction is associative by deriving a proof of the formula

(A ∧B) ∧ C ⇒ A ∧ (B ∧ C)

4.2. Show that the formula (¬A ∨ B)⇒ (A⇒ B) is valid by exhibiting a
proof object for it. Do you expect the converse, (A⇒ B)⇒ (¬A ∨ B), to
be provable?
4.3. Show that from the assumption x : (A ∨ ¬A) that you can derive a

proof object for the formula (¬¬A ⇒ A). Show that you can find a proof
object for the converse, (A⇒ ¬¬A) without this assumption.
4.4. Show that from the assumptions x : ((A ∧ B) ⇒ C) and y : A you

can derive a proof of B ⇒ C. What is the formula which results from the
discharge of the two assumptions, and what proof object of this formula is
given by your construction?
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4.4 The Curry Howard Isomorphism

This section forms the heart of our development of type theory. In it we
look at a remarkable correspondence, or isomorphism, linking the typed
lambda calculus and constructive logic. It has become known as the Curry
Howard Isomorphism, in tribute to Haskell B. Curry and W. Howard who
were among those first to observe it [CF58, How80]. Others include Scott,
Lauchli and Martin-Löf himself. Under the isomorphism, types correspond
to propositions and members of those types, like pairs, functions and so
on, to proofs. We were prepared for such a coincidence by the development
of constructive logic in the last section, because the proofs we introduced
there were familiar objects like pairs and functions. In the sections and
chapters which follow, we shall see the extent of this correspondence, and
the degree to which it can illuminate our understanding of both logic and
programming. This section illustrates the core of the isomorphism by giving
a reinterpretation of the rules of logic above as rules of program formation.
The rules are then seen to explain

Formation rule What the types of the system are,

Introduction and which expressions are members of
Elimination rules which types, and

Computation rule how these objects can be reduced to simpler
forms, i.e. how we can evaluate expressions.

Another way of looking at the rules is to say that the formation rules
explain the types of the language and that the introduction and elimination
rules explain the typing rules for expressions (and so explain how type
checking for the system should proceed) — together these describe the static
part of a traditional language, with the computation rules explaining the
dynamics of its behaviour. We shall see in section 4.10 that the distinction
between the static and the dynamic becomes blurred in the full system, as
type checking and computation become inextricably linked.

We now run through the rules connective by connective, changing the
judgement ‘ is a formula’ to ‘ is a type’ to reflect our different orientation.

Formation Rule for ∧

A is a type B is a type

(A ∧B) is a type
(∧F )
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Introduction Rule for ∧

p : A q : B

(p, q) : (A ∧B)
(∧I)

Elimination Rules for ∧
r : (A ∧B)
fst r : A

(∧E1)
r : (A ∧B)
snd r : B

(∧E2)

Computation Rules for ∧

fst (p, q) → p snd (p, q) → q

Read as a type, A∧B is the product of the two types, whose formation
is permitted by the formation rule. The introduction rule tells us that
members of the type include pairs (p, q) of objects, where p is taken from
the first type and q is taken from the second. The elimination rule states
that from an object of the product type we can extract objects of the two
component types, and the computation rule shows that the objects thus
extracted are indeed the two components of the pair. These two rules
therefore state that all objects of the product type are pairs.

Alternatively, we can read the elimination rules as giving the type of the
two projection operators which take us from the product type to the two
components. The computation rules give the computational definitions of
these operators. In terms of traditional programming languages, the prod-
uct type is usually called a record type. Nearly every modern programming
language features a record type.

As we suggested above, we can think of members of A⇒ B as functions
from A to B. This is perhaps not surprising, as not only do we already see
proofs of implications as functions, but also the arrow notation is suggestive
in itself. Just to re-iterate the rules,

Formation Rule for ⇒

A is a type B is a type

(A⇒ B) is a type
(⇒ F )

Introduction Rule for ⇒

[x :A]
...

e : B

(λx :A) . e : (A⇒ B)
(⇒ I)
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This rule discharges the assumption x :A.
This is the rule which introduces a lambda-abstraction, or function, as

we explained in chapter 2. It is by a use of the lambda symbol that we form
functions. We have modified the notation slightly so that the expression
includes the type of the domain of the function formed. The rule which
gives the type of function applications is

Elimination Rule for ⇒

q : (A⇒ B) a : A

(q a) : B
(⇒ E)

Finally, with the following rule we see our justification of the phrase
‘Computation Rule’:

Computation Rule for ⇒

((λx :A) . e) a → e[a/x]

This is precisely the rule of β-reduction, by which an actual parameter is
substituted for the formal parameter.
Two notes on notation:

• The notation we have given for functions is complete, in that it carries
the type of the hypothesis (or domain); it is unwieldy, however. In
most cases we shall indicate the type by a subscript, thus:

λxA . e

and in situations where there is no danger of ambiguity, we shall
simply write

λx . e

• As is traditional, we shall assume that function application is left
associative and that ‘⇒’ is right associative, meaning that

f g x

abbreviates (f g) x and that

A⇒ B ⇒ C

abbreviates A⇒ (B ⇒ C).
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What type operation does ∨ correspond to? Again, we should re-
examine the rules for the operator:

Formation Rule for ∨
A is a type B is a type

(A ∨B) is a type
(∨F )

Introduction Rules for ∨
q : A

inl q : (A ∨B)
(∨I1)

r : B

inr r : (A ∨B)
(∨I2)

Given a member q of A we have a corresponding member of A∨B, namely
inl q. Similarly, if r is in B then inr r is in A ∨ B. This introduction rule
tells us that among the members of the type A ∨ B are members of either
A or B, labelled according to their origin. As previously, the elimination
rule will ensure that only these objects are members of the type. This kind
of type is often known as a disjoint union of the two types A and B. Such
a construction appears in Pascal in the variant record construction, where
a particular record type can contain different kinds of record, according
to the value of a tag field. Pascal does not handle this construction very
happily, and it can lead to run-time type errors. In handling a variable
of variant record type the user is allowed to treat its contents as though
they are of one particular variant, rather than having to deal with all the
possible variants. As the particular variant that a value will have cannot
be predicted at compile time, errors can result.

Is there a type-secure way of dealing with such disjoint unions? Yes,
and it is given by the cases operator, specified in the elimination rule

Elimination Rule for ∨
p : (A ∨B) f : (A⇒ C) g : (B ⇒ C)

cases p f g : C
(∨E)

cases p f g is a member of C which is built from a member p of A∨B, and
from functions f : (A⇒ C) and g : (B ⇒ C).

What is the effect of this case statement? We know that the object p
should either be a (tagged) member of A, and have the form inl q or will
be a (tagged) member of B, having the form inr r. The functions f and
g are sufficient to give us a member of C in either case — in the first case
we get a member of C by applying f to q, and in the second by applying g
to r. This computational information is expressed by:

Computation Rules for ∨

cases (inl q) f g → f q
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cases (inr r) f g → g r

The last rules we gave were for the type ⊥, the absurd proposition. We
characterised this as a formula without proofs, so under our other view, it
is a type without members, the empty type.

Formation Rule for ⊥

⊥ is a type
(⊥F )

Elimination Rule for ⊥

p : ⊥
abortA p : A

(⊥E)

This rule says that if we can find a member p of the empty type then
our program should abort — we express this by saying that for any A at
all, the object abortA p is a member of A.

The final rule we saw was the rule of assumption; in order for the as-
sumption that x is a member of A to make sense, A must be a type.

Rule of Assumption

A is a type

x :A
(AS)

As we said earlier, in many of our examples we shall omit the derivation
of ‘A is a type’, assuming it has already been performed. Nonetheless, the
system does not make sense without this condition.

That completes our second reading of the rules, and shows that they
can equally well be read as

• rules for the types and objects of a typed functional programming
system and as

• rules for the propositions and proofs of a logic.

We shall explore the correspondence further in the coming sections, seeing
some of the ramifications of the correspondence in propositional logic, and
also how extensions to both the logic and the functional language have their
analogues. Finally we will explore the consequences of this correspondence
for programming methodology. Note also that we have not yet introduced
any dependent types — we do this with the identity or I types of section
4.10.
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Exercises

4.5. Given a function of type A ⇒ (B ⇒ C) how would you define a
function of type (A ∧B)⇒ C from it? How would you do the reverse?
4.6. Show that from objects x :A and y : (B ∨ C) you can derive an object

of type (A ∧B) ∨ (A ∧ C).
4.7. Show how to define a function of type

(A ∧B)⇒ (C ∧D)

from functions f :A⇒ C and g :B ⇒ D.

4.5 Some examples

In this section we look at a number of examples of derivations within type
theory. We can see how these form both proofs of propositions and ob-
jects of particular type, depending on our particular point of view. We
assume throughout this section that we have already derived the various
type hypotheses, A is a type and so forth.

4.5.1 The identity function; A implies itself

One of the simplest functions we know is the identity function, λxA . x.
How does it appear in our system?

Assuming x : A allows us to deduce that x : A. Using the rule for ⇒
introduction we have that

[x :A]
λxA . x : (A⇒ A)

(⇒ I)

giving us that the identity function has type A ⇒ A if its parameter has
type A. At the same time we have shown that the identity function is a
proof of the implication A⇒ A.

4.5.2 The transitivity of implication; function compo-
sition

Here we show that given A ⇒ B and B ⇒ C we can deduce that A ⇒ C,
in other words that implication is transitive. We first examined this as an
exercise in chapter 1 — here we build an explicit proof object. We assume
that

a : (A⇒ B) b : (B ⇒ C)
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and we make a third assumption, x :A which will be discharged during the
proof.

x :A a : (A⇒ B)
(a x) :B

(⇒ E) b : (B ⇒ C)

(b (a x)) :C
(⇒ E)

This gives an element of C, depending upon the element x of A. We now
abstract over this to give

[x :A]1 a : (A⇒ B)
(a x) :B

(⇒ E) b : (B ⇒ C)

(b (a x)) :C
(⇒ E)

λxA . (b (a x)) : (A⇒ C) (⇒ I)1

We have on the last line a derivation of a function of type A ⇒ C, as was
required.

The function derived here is the composition of the functions b and a.
If we abstract over these, we form the composition function

λa(A⇒B) . λb(B⇒C) . λxA . (b (a x))

which has type

(A⇒ B)⇒ (B ⇒ C)⇒ (A⇒ C)

Note that we have assumed that the ‘⇒’ is right-associative in writing the
type above.

A standard result in logic is

(A⇒ B)⇒ (¬B ⇒ ¬A)

Recall that we defined ¬A to be A ⇒ ⊥, so expanding the definitions we
have

(A⇒ B)⇒ ((B ⇒ ⊥)⇒ (A⇒ ⊥))

It is precisely the composition operator which gives this proof.

4.5.3 Different proofs. . .

In general, types have more than one element and a proposition can be
proved in more than one way. Taking a simple example,

λx(A∧A) . x : ((A ∧A)⇒ (A ∧A))
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as we have seen above. Also,

x : (A ∧A)
snd x : A

(∧E2)
x : (A ∧A)
fst x : A

(∧E1)

(snd x, fst x) : (A ∧A)
(∧I)

λx(A∧A) . (snd x, fst x) : ((A ∧A)⇒ (A ∧A))
(⇒ I)1

This proof is not the same as the earlier one: it swaps the two halves of
the proof of A∧A about, rather than leaving them alone as is done by the
identity function.

4.5.4 . . . and different derivations

Note also that different derivations can give rise to the same proof object,
if we apply the computation rules to the derived object. If we name the
composition function

comp≡df λf((A∧A)⇒(A∧A)) . λg((A∧A)⇒(A∧A)) . λx(A∧A) . (g (f x))

and the swap function

swap≡df λx(A∧A) . (snd x, fst x)

then it is not hard to find a derivation of

comp swap swap (a1, a2) : (A ∧A)

if we assume that a1 : A and a2 : A. Since the expression is an iterated
application of functions, the derivation will consist of a series of implica-
tion eliminations. (Note that we have used our assumption that function
application is left associative here.)

Applying the computation rules we have

comp swap swap (a1, a2)
≡df (λf . λg . λx . (g (f x))) swap swap (a1, a2)
→ (λg . λx . (g (swap x))) swap (a1, a2) by (C ⇒)
→ (λx . (swap (swap x))) (a1, a2) by (C ⇒)
→ (swap (swap (a1, a2))) by (C ⇒)
≡df (swap ((λx . (snd x, fst x)) (a1, a2)))
→ swap (snd (a1, a2), fst (a1, a2)) by (C ⇒)
→ swap (a2, a1) by (C∧)
≡df λx . (snd x, fst x) (a2, a1)
→ (snd (a2, a1), fst (a2, a1)) by (C ⇒)
→ (a1, a2) by (C∧)

There is a much simpler derivation of (a1, a2) : (A ∧ A) from the two as-
sumptions; we simply use (∧I). We shall return to the discussion of which
proof objects are to be considered to be the same in section 4.11 below.
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4.5.5 Conjunction and disjunction

Let us consider one relationship between conjunction and disjunction now.
We first look at a proof of an earlier exercise from page 15.

((A ∨B)⇒ C)⇒ ((A⇒ C) ∧ (B ⇒ C))

First we show how to prove A⇒ C from (A ∨B)⇒ C:

[x :A]1

inl x : A ∨B
(∨I1) y : (A ∨B)⇒ C

(y (inl x)) : C
(⇒ E)

λxA . (y (inl x)) : A⇒ C
(⇒ I)1

Similarly we prove B ⇒ C from (A ∨B)⇒ C:

y : (A ∨B)⇒ C
...

λwB . (y (inr w)) : B ⇒ C

Finally we can put the proofs together,

...
...

( λxA . (y (inl x)) , λwB . (y (inr w)) ) : ((A⇒ C) ∧ (B ⇒ C))
(∧I)

and if lastly we abstract over the variable y we obtain an object of the
requisite type.

Now we look at a converse to the last result, constructing a proof of

(A ∨B)⇒ C

on the basis of the assumption

p : (A⇒ C) ∧ (B ⇒ C)

The proof is simpler than the version we saw in the first chapter of the
book, on page 13. This is because in the form we saw there we would have
to make the cases operator into a binding operator — here we choose to
perform the bindings (of the hypothetical proofs of A and B) prior to the
invocation of the cases operator.

z : (A ∨B) (fst p) : (A⇒ C) (snd p) : (B ⇒ C)
cases z (fst p) (snd p) : C

(∨E)
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This is a straightforward application of the rule of disjunction elimination,
which we follow with two abstractions, first over z and then over p.

...
λz. (cases z (fst p) (snd p)) : (A ∨B)⇒ C

(⇒ I)

λp.λz. (cases z (fst p) (snd p)) :
((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C)

(⇒ I)

This completes the required derivation.

We defined the negation operator in terms of implication and absurdity.
If we replace the C above with ⊥ we can see that we have proved the
equivalence of the two propositions

¬(A ∨B) (¬A ∧ ¬B)

which is one of the de Morgan laws of classical Boolean algebra. The other
states the equivalence of

¬(A ∧B) (¬A ∨ ¬B)

Only one half of this is valid constructively, the implication

(¬A ∨ ¬B)⇒ ¬(A ∧B)

We can see why it is implausible that the converse is valid constructively.
We would need to extract a proof of (¬A ∨ ¬B) from a proof of ¬(A ∧B).
To find a proof of a disjunction we need to be able to prove one of the
disjuncts, but there is no way of seeing which of ¬A and ¬B is valid given
an arbitrary proof of ¬(A ∧B).

Exercises

4.8. Show that the following formulas are valid, by giving a proof object
for each of them.

A⇒ ¬¬A

(B ∨ C)⇒ ¬(¬B ∧ ¬C)

(A⇒ B)⇒ ((A⇒ C)⇒ (A⇒ (B ∧ C)))

4.9. Show that the following formulas are equivalent, by proving each
assuming the other. Can you think of what is going on in terms of the
functions involved here?

(A ∧B)⇒ C A⇒ (B ⇒ C)
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4.10. Show that the de Morgan formula

(¬A ∨ ¬B)⇒ ¬(A ∧B)

is valid by giving an object of type

((A⇒ C) ∨ (B ⇒ C))⇒ ((A ∧B)⇒ C)

4.11. Giving appropriate types to the variables a, b and c, give derivations
of the following judgements.

λa.λb.a : A⇒ (B ⇒ A)

and

λa.λb.λc.(ac)(bc) : (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

4.6 Quantifiers

In this section we introduce the rules which govern the behaviour of the
universal and existential quantifiers in constructive type theory. The dif-
ferences between classical and constructive logic are most apparent when
investigating the meaning of ‘∃’, the existential quantifier. To assert

∃x.P

constructively, we need to have some object x so that

P

is valid. Because our language is typed, we shall only concern ourselves
with typed or bounded quantifications, of the form

(∃x :A) . P

where A is a type, the quantifiers being labelled with their domain of dis-
course. A proof of an existential statement (∃x :A) . P consists of two items.
These are the witness of the property, w : A, together with a proof that
P holds of the witness, i.e. that P [w/x] holds. Recall that the notation
P [w/x] was introduced in chapter 1 for the substitution of the term w for
the variable x in the formula P .

How do we explain the universal quantifier? A proof of

(∀x :A) . P

should express the fact that P [a/x] is valid for every a in A. A proof will
therefore be a transformation or function which takes us from any a in A
to a proof of P [a/x].
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As for the propositional connectives, our rules are of four kinds. We
start by giving the rules for the universal quantifier.

Formation Rule for ∀

A is a formula

[x :A]
...

P is a formula

(∀x :A) . P is a formula
(∀F )

This shows a rather more subtle formation rule than we have seen so
far. There are two hypotheses

• The first is that A is a formula, or type.

• The second, that P is a formula, on the assumption that x is a variable
of type A.

This is an analogue, at the level of types, of the rule of λ-abstraction, in
which the typing of the expression forming the body of the function depends
upon the hypothesis which types the bound variable. We have not yet seen
how to build type expressions (or propositions) which depend upon free
variables; these result from our introducing the atomic propositions of the
system, including equality in section 4.10, and through reflection principles
which are consequences of the introduction of universes (see section 5.9).

If we can prove P by a proof p which may depend upon the assumption
of the existence of a variable, x say, of type A, then we are entitled to
assert the universal generalisation, abstracting over the variable x, as long
as x is not free in any other of the assumptions upon which the proof
depends. This is just the condition of being arbitrary which we discussed
in our introduction to logic earlier. Note also that formally any remaining
occurrences of x in the assumptions would be a ‘dangling reference’ to an
object outside its scope, as it were.

Introduction Rule for ∀
If in a proof p of P no assumptions other than x : A contain x free, then

we can infer the universal generalisation of P by means of the lambda
abstraction of p over x. This abstraction discharges the assumption x.

[x : A]
...

p : P

(λx :A) . p : (∀x :A) . P
(∀I)
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As is to be expected, when we eliminate a universal quantifier, we go to
a particular instance,

Elimination Rule for ∀
a : A f : (∀x :A) . P

f a : P [a/x]
(∀E)

Now, we have seen that our two rules respectively form parametric
proofs of universal generalisations and apply such proofs to individual el-
ements of A. The result of such an application should be the substitution
of a for x in the parametric proof:

Computation Rule for ∀
((λx :A) . p) a → p[a/x]

It is interesting to see that we have naturally thought of some formulas
as formulas, P being an example, and others, such as A, as types. Thus
the dual interpretations can be mixed. Note also that the rules are similar
to those for the connective ‘⇒’. Indeed if the formula P is replaced by B
which does not involve the variable x, we have exactly the rules as stated
on page 74, because we shall not need to use the assumption that x : A
in the proof of ‘B is a formula’ if B has already been established to be a
formula.

As a type, we also have a generalisation of the function space. This
is one in which the type of the result, P [a/x] depends upon the value of
the argument a in A. This is not permitted in almost all the type systems
of existing programming languages, because apparently it would break the
static nature of the type system which allows type checking to proceed
separately from program execution. In this case, the situation is different;
even though the static and dynamic are mixed, we avoid the risk of non-
termination. We will say more about applications of the dependent function
space, as the universally quantified type has become known, in section 6.3
below.

Another important use of the dependent product type is in representing
forms of type polymorphism. This arises when we have types whose members
are themselves types, such types often being known as universes.

Now we turn to the existential quantifier. The formation rule is the
exact analogue of the rule for the universal quantifier.

Formation Rule for ∃

A is a formula

[x :A]
...

P is a formula

(∃x :A) . P is a formula
(∃F )
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We can introduce an existential quantifier when we have an object with
the appropriate property:

Introduction Rule for ∃
a : A p : P [a/x]

(a, p) : (∃x :A) . P
(∃I)

The precise formulation of the rule of existential elimination is compli-
cated. The most straightforward version from the point of view of the type
(∃x : A).P is to view it as a type of pairs. The obvious elimination rules
are those which project a pair onto its first and second components.

Elimination Rules for ∃ (Projections)

p : (∃x :A) . P

Fst p : A
(∃E′

1)
p : (∃x :A) . P

Snd p : P [Fst p/x]
(∃E′

2)

This rule is unusual in mentioning a proof, in this case p, on the right hand
side of a ‘colon’ judgement. We look at variants of the rule below in section
5.3.

The computation rules for Fst and Snd generalise the rules for con-
junction.

Computation Rules for ∃

Fst (p, q) → p Snd (p, q) → q

If the formula P does not contain the variable x free, then the rules outlined
here can be seen to be the same (modulo trivial syntactic changes) to those
for the conjunction. If we wish, we can read A∧B as a syntactic shorthand
for (∃x :A) . B in the case that B does not depend on x.

How do we interpret (∃x : A) . P as a type? There are a number of
readings, which we shall explore at some length below. These include

• A generalisation of the binary product type, in which the type of the
second component P [a/x] depends upon the value of the first, a.

• An (infinitary) sum type. We can think of the type as the union of
the types P [a/x] for all a in A, in which objects in the type P [a/x]
are paired with the ‘tag’ a indicating from which of the summands
the element comes. This interpretation gives rise to the nomenclature
‘dependent sum type’ which is used for the type.

• A subset of the type A, consisting of those elements a which have the
property P . In keeping with the constructivist philosophy, we pair
each object a with the evidence P [a/x] that it belongs to the subset.
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• A type of modules, each of which provides an implementation (of type
A) of the specification P , together with evidence that the implemen-
tation meets the specification.

We will look at these interpretations further below, in section 6.3.

We have yet to see how to form formulas with free variables; we will
have to wait until we consider the equality type and universes below. Before
we do that we look at some example proofs using the quantifiers and then
investigate ‘base’ types such as booleans and natural numbers.

4.6.1 Some example proofs

In this section we present three examples of the use of the quantifier rules.
First we examine a standard result from the logic of the universal quan-

tifier. Let us assume that

r : (∀x :A) . (B ⇒ C)

and that

p : (∀x :A) . B

(Recall that in general the variable x will be free in B and C). We aim to
prove the formula (∀x :A) . C, that is to construct an element of this type.
First, instantiating both hypotheses using the assumption x :A we have

x :A r : (∀x :A) . (B ⇒ C)
r x : B ⇒ C

(∀E)

and

x :A p : (∀x :A) . B

p x : B
(∀E)

Putting the two together, eliminating the implication and eliminating the
assumption x :A by a ∀ introduction, we have

[x :A]1

r : (∀x :A) . (B ⇒ C)
...

r x : B ⇒ C

[x :A]1

p : (∀x :A) . B
...

p x : B

(r x)(p x) : C
(⇒ E)

(λx :A) . ((r x)(p x)) : (∀x :A) . C
(∀I)1
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In the proof above the assumptions of the two hypothetical proofs are listed
one above the other, rather than next to each other; this makes the repre-
sentation of the derivation easier to read. If we now abstract over both the
hypotheses (and omit the typings on the variables) we have

λr.λp.λx.(r x)(p x)

which is of type

(∀x :A) . (B ⇒ C)⇒ (∀x :A) . B ⇒ (∀x :A) . C

if we choose to omit the type annotations on the variables. This function is
familiar to functional programmers as the S combinator, as well as proving
the formula

(A⇒ (B ⇒ C))⇒ (A⇒ B)⇒ (A⇒ C)

in the case that B and C do not involve the variable x.

Next we prove the equivalence between the following pair of formulae

((∃x :X) . P )⇒ Q (∀x :X) . (P ⇒ Q)

in the case that x is not free in Q. (It is not valid in general — think of the
case when P and Q are the same.) Reading the rule (∀I) backwards, we
see that to find an object of type (∀x :X) . (P ⇒ Q) it is sufficient to find
an object in (P ⇒ Q) assuming we have an x in X. To find an object of
type (P ⇒ Q) it is enough to find an object of type Q assuming an object
of type P (as well as the object of type X we assumed earlier). Building
the proof tree backwards we have

?? : Q

λpP . ?? : (P ⇒ Q)
(⇒ I)

λxX . λpP . ?? : (∀x :X) . (P ⇒ Q)
(∀I)

There are constraints on the form of proof of ?? here. We can only introduce
a universal quantifier or an implication abstracting over the variable y, say,
in the case that y is free only in the assumption discharged. How are we to
infer Q? Proceeding from the assumptions we have

x :X p :P
(x, p) : (∃x :X) . P

(∃I)

and then by modus ponens, we have

x :X p :P
(x, p) : (∃x :X) . P

(∃I) e : ((∃x :X) . P )⇒ Q

e (x, p) : Q
(⇒ E)
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Putting the parts together, and replacing the unknown terms ?? with actual
values, we have

[x :X]2 [p :P ]1

(x, p) : (∃x :X) . P
(∃I) e : ((∃x :X) . P )⇒ Q

e (x, p) : Q
(⇒ E)

λpP . (e (x, p)) : (P ⇒ Q)
(⇒ I)1

λxX . λpP . (e (x, p)) : (∀x :X) . (P ⇒ Q)
(∀I)2

The first abstraction, over p, is legitimate as p is free in none of the other
assumptions, and the second is OK as there is only one active assumption
at this stage. Note, however, that we cannot discharge the assumptions
in the opposite order, since x will in general be free in P and thus in the
assumption p : P .

How does the converse proof proceed?
To find a proof of an implication, we proceed with an assumption of the

antecedent formula, in this case p : (∃x : X) . P , and try to find ?? : Q.
Proceeding forward from the assumption p, we have

p : (∃x :X) . P

Snd p : P [Fst p/x]
(∃E′

2)

Using the other assumption, which is e : (∀x :X) . (P ⇒ Q), we can match
the hypothesis of this implication with P [Fst p/x] by universal elimination

p : (∃x :X) . P

Fst p : X
(∃E′

1) e : (∀x :X) . (P ⇒ Q)

(e(Fst p)) : P [Fst p/x]⇒ Q
(∀E)

Note that in the conclusion we have Q and not Q[Fst p/x], since we have
assumed that x is not free in Q, and we noted that Q[t/x] ≡ Q (for any
t) in such a case. We now apply implication elimination, and complete as
above.

[p : (∃x :X) . P ]1
...

Snd p : P [Fst p/x]

[p : (∃x :X) . P ]1

e : (∀x :X) . (P ⇒ Q)
...

(e(Fst p)) : P [Fst p/x]⇒ Q

(e(Fst p))(Snd p) : Q
(⇒ E)

λp . ((e(Fst p))(Snd p)) : ((∃x :X) . P )⇒ Q
(⇒ I)1

Is there a functional interpretation of the equivalence we have seen above?
If we consider the case in which P does not contain x free, we have the
types

(X ∧ P )⇒ Q X ⇒ (P ⇒ Q)
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These two function spaces give two different representations of binary func-
tions. In the first, the function takes a pair of arguments, of type (X ∧P ),
to a result of type Q. The other representation, which is often called the
curried form in honour of Haskell B. Curry, the λ-calculus pioneer, makes
the function higher order. By this we mean that on being passed an argu-
ment of type X, the function returns a function of type (P ⇒ Q) which
expects an argument of type P , the second half of the pair. (We often call
the first representation the uncurried form, in contrast to the latter.)

The pair of functions we derived above can be seen to map from one
function representation to another

λxX . λpP . (e (x, p))

takes separately the two arguments x and p, forms a pair from them and,
applies the uncurried function e to the result. Conversely,

λp . ((e(Fst p))(Snd p))

takes a pair p as argument, and splits the pair into its components Fst p
and Snd p, and applies the curried function e to the two halves one at a
time.

The functions perform a similar function in the general case that P
depends upon x, and we deal with dependent sum and product types.

Exercises

4.12. Give a derivation of a proof object of the formula

(∃x :X) .¬P ⇒ ¬(∀x :X) . P

Would you expect the reverse implication to be derivable?
4.13. Show that the formulas (∀x :X) .¬P and ¬(∃x :X) . P are equivalent
by deriving two functions mapping each into the other.
4.14. Derive an object of type

(∀x :X) . (A⇒ B)⇒ ((∃x :X) . A⇒ (∃x :X) . B)

What is this formula in the case that A and B are independent of the
variable x?
4.15. Derive an object of type

(∃y :Y ) . (∀x :X) . P ⇒ (∀x :X) . (∃y :Y ) . P

where in general P will contain x and y free. Under what circumstances
can you derive an object of the converse type?

(∀x :X) . (∃y :Y ) . P ⇒ (∃y :Y ) . (∀x :X) . P

Can you give a simpler reading of the formula in cases when P does not
contain both x and y free?
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4.7 Base Types

The material in the chapter so far has had different emphases. The propo-
sitional part of the system can be viewed as both a logic and a typed
λ-calculus; the quantifiers are logical constructs, but have a natural pro-
gramming interpretation. Now we introduce some base types, whose origins
lie in programming, but we shall see that they have a logical interpretation
too.

In this and subsequent sections we introduce a number of familiar types:
the booleans as an example of a finite type, finite types in general, with the
special case of the one element type, the natural numbers, and finally trees
as an example of an algebraic type.

4.7.1 Booleans

The system we are building here is one in which propositions, or formulas,
are identified with types, and vice versa. Amongst these propositions are
the propositions ⊥, or “false”, >, or “true” (which we introduce below),
and combinations of the propositions using logical connectives such as ∧
and ∨. Each of these propositions is a type: the collection of proofs of that
proposition.

Consider the case in which we want to return one of two results condi-
tional on some property. We need, informally, to be able to ask the question
and receive the answer Yes or the answer No, so we need a particular type
which contains these two values. We call this the type bool of boolean val-
ues and for the sake of tradition call the two values True and False. The
type bool is simply a finite type containing two values. The rôle of the type
is computational: we can build the expression if . . . then . . . else . . .
(where the condition is a boolean expression) in our language, allowing case
switches in computations. The value of if b then e else f is e if b evaluates
to True, otherwise it is f .

To recap, True and False are values of the type bool, whilst ⊥ and >
are the false and true propositions. Readers may be familiar with similar
distinctions between boolean values and propositions from program verifi-
cation. Languages such as Pascal contain a boolean type — if we reason
about these programs we use an external logical language to construct state-
ments about the language, we are not constructing expressions of type bool
which are expressions of the language.

We should also note that these definitions form a template for the defi-
nition of any type with a finite set of members.
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Formation Rule for bool

bool is a type
(bool F )

Introduction Rules for bool

True : bool
(bool I1)

False : bool
(bool I2)

The two rules above require no explanation. We eliminate a boolean
value by a two-way case switch, conventionally called a conditional expres-
sion. In the case of defining a finite type with n elements, we shall introduce
an n-way switch instead.

Elimination Rule for bool

tr : bool c : C[True/x] d : C[False/x]
if tr then c else d : C[tr/x]

(bool E)

This is stronger than the conventional case switch, as the type of the result
can depend upon the value of the boolean. This of course depends upon
our being able to define types C which contain free variables, which we can
think of as families of types; we have not yet done so, but will do in due
course. For the present, we can just consider the simplified form:

tr : bool c : C d : C

if tr then c else d : C
(bool E)

We embody the case switching mechanism in the following rules. The ‘then’
or ‘else’ case is selected, according to the value of the boolean:

Computation Rules for bool

if True then c else d → c

if False then c else d → d

Consider the example

if tr then False else True

This has the type bool if we assume that tr : bool. Now, by⇒ introduction,

λtrbool . ( if tr then False else True ) : (bool⇒ bool)

and this is the (Classical) negation operator on the boolean type. Similarly,

λx(bool∧bool) . ( if (fst x) then (snd x) else False )
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which has type

(bool ∧ bool)⇒ bool

is the (Classical) conjunction operation on bool. We leave it as an exercise
for the reader to identify the other boolean operations.

Again, we should note the distinction between these functions over the
boolean type, which represent the classical boolean operations, and the
connectives ∧, ∨, etc. which form propositions from other propositions, or
alternatively, which are type constructors forming types from other types.

Exercises

4.16. Define functions which behave as the disjunction (‘or’) and material
implication (‘implies’) operations over the boolean type.
4.17. Define the function

equiv : bool⇒ bool⇒ bool

so that equiv b1 b2 is True if and only if b1 and b2 are equal. This is an
equality function on the boolean type and also represents the ‘if and only
if’ connective.

4.7.2 Finite types

For n a natural number, the type Nn has n elements,

1n , 2n , . . . , nn

the subscript showing the type from which the element comes. We have
already seen a two element type, where we identify 12 with True and 22

with False.
The formation and introduction rules are

Formation Rule for Nn

Nn is a type
(NnF )

Introduction Rules for Nn

1n : Nn
(NnI) . . .

nn : Nn
(NnI)

We eliminate an element of an n element type by an n-way case switch.

Elimination Rule for Nn

e :Nn c1 :C[c1/x] . . . cn :C[cn/x]
casesn e c1 . . . cn : C[e/x]

(NnE)
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and the computation rules choose the appropriate case from the choice.

Computation Rules for Nn

casesn 1n c1 . . . cn → c1

casesn 2n c1 . . . cn → c2

. . .
casesn nn c1 . . . cn → cn

Exercises

4.18. Explain how to define the equality function

equaln : Nn ⇒ Nn ⇒ bool

4.19. The successor and predecessor of mn are (m + 1)n and (m − 1)n,
except for the predecessor of 0n, which is nn and the successor of nn which
is 0n. Give formal definitions of the functions succn and predn of type
Nn ⇒ Nn and prove that for all 0n, . . . , nn

succ (pred mn)→→ mn

4.7.3 > and ⊥
If we have a one element type, the rules may be specialised. We express
the results in a slightly different syntax, replacing N1 by >, 11 by Triv and
Cases1 by case. We obtain.

Formation Rule for >

> is a type
(>F )

Introduction Rule for >

Triv : >
(>I)

Elimination Rule for >

x :> c :C(Triv)
case x c : C(x)

(>E)

Computation Rule for >

case x c → c



100 CHAPTER 4. INTRODUCTION TO TYPE THEORY

The one element type, >, has a logical interpretation. Just as the false
proposition ‘falsity’ (which should not be confused with the object False
of type bool) was represented by the empty type, so the true proposition is
represented by the one element type. Why one element? The intuition is
that the proposition is valid for obvious reasons, so there is only one trivial
proof Triv of it.

The rules can also be interpreted in the case that n = 0, yielding the
rules for ⊥.

Exercise

4.20. Show that in the case n = 0 the rules for Nn reduce to those for ⊥.

4.8 The natural numbers

We have already seen the natural numbers as a base type of our λ-calculus
in chapter 2.

Formation Rule for N

N is a type
(NF )

Natural numbers are either zero or a successor.

Introduction Rules for N

0 : N
(NI1)

n : N

(succ n) : N
(NI2)

We eliminate natural numbers by means of definition by primitive re-
cursion. Modifying the rule we saw earlier, we have

Elimination Rule for N (Special Case)

n : N c : C f : (N ⇒ C ⇒ C)
prim n c f : C

(NE)

If we discharge the assumption that n : N , then

c : C f : (N ⇒ C ⇒ C)
λnN . (prim n c f) : (N ⇒ C)

which is the familiar rule for primitive recursion which we saw in section
2.9. Why is the rule we have presented above a special case? To answer
this we turn to our logical view of the type.

The proof principle which goes along with primitive recursion is (“math-
ematical”) induction. Suppose that we wanted to show that, for example,
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all the factorials of natural numbers are strictly positive. This assertion
takes the form

(∀n : N)(fac n > 0) ≡df (∀n : N)C(n)

What do we have to do to prove this? First of all we show that C(0) is
valid, that is we supply some c with

c : C(0)

and then we show that C(n + 1) is valid, assuming that C(n) is. In this
case we supply some

f ′ : “C(n)⇒ C(n + 1)”

In fact, the f ′ can be slightly more general,

f : “N ⇒ C(n)⇒ C(n + 1)”

Note that we have enclosed the types in inverted commas — they are not
part of our system. We can make them so, using the dependent type con-
structor:

f : (∀n : N)(C(n)⇒ C(succ n))

Given these we produce the proof:

Elimination Rule for N (General Case)

n : N c : C[0/x] f : (∀n :N) . (C[n/x]⇒ C[succ n/x])
prim n c f : C[n/x]

(NE)

Again, if we discharge the assumption n : N , we have

c : C[0/x] f : (∀n :N) . (C[n/x]⇒ C[succ n/x])
λnN . (prim n c f) : (∀n :N) . C[n/x]

which is the familiar proof of the universal statement.
The computation rule is exactly the same in the two cases. Thinking

of a computation of a recursive function we inspect the argument and then
unfold the definition according to whether we are at the base case or not.

Computation Rules for N

prim 0 c f → c

prim (succ n) c f → f n (prim n c f)

What do the rules mean in the logical case? They tell us how to build a
proof for any particular natural number that we might supply. This is, of
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course, how we justify the rule in the first place. Using C(k) for C[k/x], we
argue that C(2) is valid thus: “C(0) is valid outright, and by the inductive
case for n = 0, C(0)⇒ C(1) and applying modus ponens, we have C(1). In
a similar way, we have C(1)⇒ C(2), and so we can get C(2).”

This rule is one of the high points of type theory. Intuitively, we can
appreciate that there is an affinity between the rules for primitive recursion
and mathematical induction. Functions introduced by primitive recursion
have their properties proved by mathematical induction. What is so elegant
here, with our identification of propositions and types, is that they are
exactly the same rule.

Let us consider some examples. The successor function is defined to be

(λx : N)(succ x)

For the purposes of illustration, without recommeding this as an efficient
algorithm, we now examine the behaviour of a successor function defined
by primitive recursion:

addone 0 = 1
addone (n + 1) = (addone n) + 1

which is formalised thus:

addone≡df λxN . (prim x (succ 0) f)

where

f ≡df λnN . (λyN . (succ y))

What happens when we apply addone to the formal representative of 2,
that is succ (succ 0)?

((λx : N)(prim x(succ 0)f)) (succ (succ 0))
→ (prim (succ (succ 0)) (succ 0) f)
→ f (succ 0)(prim (succ 0) (succ 0) f)
≡ ((λn : N)(λy : y)(succ y)) (succ 0) (prim (succ 0) (succ 0) f)
→ succ(prim (succ 0) (succ 0) f)

By a similar process we see that

prim (succ 0) (succ 0) f →→ (succ (succ 0))

and so finally we see that

addone(succ (succ 0)) →→ (succ (succ (succ 0)))
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where ‘→→ ’ is generated from → à la definition 2.7. We shall look at the
successor function again when we come to look at equality, and in particular
equality of functions.

Note that to make the definition above readable, we used the device of
naming it, addone and giving explicit recursion equations for it. This helps
us to read these definitions, and it is quite possible for an implementation
either to decide whether a particular set of recursion equations constitutes
a definition by primitive recursion, or to provide a “pretty printed” version
of any primitive recursive definition. We shall continue to give these equa-
tional versions of functions defined in this and similar ways. We shall also
use ‘(n + 1)’ instead of ‘(succ n)’ whenever this can cause no confusion.

Primitive recursion is a powerful method of definition. We can define
addition thus:

add m 0 = m

add m (n + 1) = succ (add m n)

so formally we say

add≡df λm . λn . prim m (λp . λq . (succ q)) n

In a similar way

mult m 0 = 0
mult m (n + 1) = add m (mult m n)

which may be rendered formally thus:

mult≡df λm . λn . prim 0 (λp . λq . (add m q)) n

There are standard expositions about what can be defined by primitive re-
cursion over the natural numbers, a good reference being [Cut81]. Among
the functions are: the usual arithmetic operations; bounded search, pro-
viding search within a finite range for an object with a property defined
by a primitive recursive function with boolean values; definition by course-
of-values recursion and so forth. We shall look again at the various forms
of recursion available within the system below; see sections 4.9 and 5.10 as
well as 6.1.

The functions we see above are first order in that their arguments are
numbers. It is well known that there are limits to the expressibility of first
order primitive recursion. Ackermann gave a graphic example of this with
his ‘fast-growing’ function, which is proved to be non (first order) primitive
recursive in [P6́7]. The system here is more powerful, since arguments can
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be higher order, and here we give a version of the Ackermann function. The
two argument version of the function is given by the recursion equations

ack 0 n = n + 1
ack (m + 1) 0 = 1

ack (m + 1) (n + 1) = ack m (ack (m + 1) n)

We can take a higher-order view of this, defining the functions thus:

ack 0 = succ

ack (m + 1) = iter (ack m)

Where the function iter, of type

(N ⇒ N)⇒ (N ⇒ N)

iterates its argument, having the definition

iter f 0 = 1
iter f (n + 1) = f (iter f n)

This function is given by the term

λf(N⇒N) . λnN . prim n 1 (λp . λq . (f q))

which we shall call iter, and the Ackermann function itself will be given by

λnN . (prim n succ λp . λg . (iter g))

There is a limit to the expressibility of primitive recursion, even at higher or-
ders. All functions defined by primitive recursion are total, and so there are
intuitively computable functions which are not primitive recursive. Among
these are the functions which code an interpreter for the process of computa-
tion of primitive recursive functions. We return to the issue of expressibility
below.

We are not in a position to give any non-trivial examples of proof by
induction as we still have not defined any predicates which contain free
variables, a situation which we remedy in due course (in section 4.10, in
fact).

Exercises

4.21. Define the equality function

equalN : N ⇒ N ⇒ bool
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4.22. Define the function geq of type

geq : N ⇒ N ⇒ bool

so that geq n m is True if and only if n is greater than or equal to m.
[Hint: the best way to do this is to define the functions geq n by induction,
that is to define geq0 outright (by induction) and to define geq (n+1) using
geq n.]
4.23. Using geq or otherwise show how to define the bounded search func-
tion

search : (N ⇒ bool)⇒ N ⇒ N

so that search p n is the smallest l less than n so that (p l) is True, and
which is n if no such l exists.
4.24. Give a formal definition of the function sumf given by

sumf f n m≡df

m∑
i=n

(f i)

What is its type? What type has the partial application

sumf id

where id x≡df x is the identity function?

4.9 Well-founded types — trees

In this section we look at an example of how to incorporate recursive data
types like lists and trees into the system. The mechanism is similar to
the Miranda algebraic type mechanism. Martin-Löf has proposed a general
scheme to achieve this; we examine it in full generality in the following
chapter.

We call the types well-founded as they are types over which we can
define objects by recursion and prove properties by induction, as we did for
the natural numbers; informally, for this to be possible we need to be sure
that when we make a recursive definition (or an inductive proof) we never
encounter an infinite sequence of simplifications, as in the simplification
from (n + 1) to n. If we have one of these infinite sequences, then the
function will be defined on none of the values in that sequence, as each
value depends upon an earlier value; there is no foundation to the sequence
or the recursion, in other words.

We shall again see that the principles of induction and recursion are
embodied by exactly the same rule.
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Miranda type definitions for booleans and natural numbers might be given
by

bool ::= True | False
nat ::= Zero | Succ nat

The example of a general algebraic type which we shall take here is a type
of numerical trees, defined by

tree ::= Null |
Bnode nat tree tree

As we mentioned above, accompanying a definition like this we have the
two principles of proof by structural induction and definition by primitive
recursion.

Definition 4.2 Structural induction states that in order to prove P(t)
for every tree, t, it is sufficient to prove it outright for Null,

P(Null)

and to prove

P(Bnode n u v)

assuming P(u) and P(v), that is assuming the validity of the result for the
immediate predecessors u and v of the node (Bnode n u v).

Compare this with the principle of induction over the natural numbers;
we prove the result outright at 0, and prove it at (n + 1) assuming it is
valid at the (immediate) predecessor n.

Definition 4.3 Primitive recursion is a principle of definition for func-
tions. In order to define a (total) function

f : tree -> P

we need only supply a starting value,

a : P

which will be the value of f Null and a means of defining

f (Bnode n u v)

in terms of the previous values (f u) and (f v), the subtrees u and v and
the entry at the node, n. We will represent this as a function
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F : nat -> tree -> tree -> P -> P -> P

so that

f (Bnode n u v) = F n u v (f u) (f v)

In other words we define the value of (f t) in terms of the values of f on
the predecessors of t, together with the components of the node itself. This
is similar to the principle of primitive recursion over the natural numbers,
N , where we specify outright the value at 0 and specify how the value at
(n + 1) is computed from the value at n, together with n itself.

As we might expect from what we have seen above, in a constructive set-
ting the principles of proof and definition are identical. The proofs required
by structural induction will be objects

a : P(Null)

and F of type

(n:nat)->(u:tree)->(v:tree)->P(u)-P(v)->P(Bnode n u v)

The preceding type is enclosed in inverted commas as it is not a Miranda
type. In type theory this kind of type, in which the type of the result
depends upon the value of an argument, is represented using the dependent
function space, thus.

F : (∀n : N)(∀u : tree)(∀v : tree)(P (u)⇒ P (v)⇒ P (Bnode n u v))

Let us now look at the explicit form taken by the rules for trees. For-
mation is simple

Formation Rule for tree

tree is a type
(tree F )

There are two kinds of tree. A null node and a non-null node with two
immediate predecessors, a binary node, hence Bnode.

Introduction Rules for tree

Null : tree
(tree I1)

n :N u : tree v : tree
(Bnode n u v) : tree

(tree I2)

Induction and recursion are embodied by the elimination rule.
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Elimination Rule for tree

t : tree
c :C[Null/x]
f : (∀n :N) . (∀u : tree) . (∀v : tree) .

(C[u/x]⇒ C[v/x]⇒ C[(Bnode n u v)/x])
trec t c f : C[t/x]

(tree E)

To make the rule above more readable, we have listed the three hypotheses
vertically instead of in a horizontal line. We shall do this where presentation
is thus improved.

There are two computation rules for the recursion operator trec; the
first eliminates a Null tree and the second a non-null Bnode tree.

Computation Rules for tree

trec Null c f → c

trec (Bnode n u v) c f → f n u v (trec u c f) (trec v c f)

As an example, we can present the function which sums the contents of
a tree. It is defined thus

sumt Null = 0
sumt (Bnode n u v) = n + (sumt u) + (sumt v)

If we define

f ≡df λn . λt1 . λt2 . λs1 . λs2 . (n + s1 + s2)

then

λttree . (trec t 0 f)

defines the sumt function formally.
It behoves us to fit this kind of construction into a uniform framework.

Martin-Löf has done this, and indeed given an infinitary generalisation of
the construction; we postpone this until we have given an account of the
equality type.

Exercises

4.25. Define the function which returns the left subtree of a tree if it has
one, and the Null tree if not.
4.26. Define the equality function over trees.
4.27. We say that a tree (Bnode n u v) is ordered if and only if all objects
in u are smaller than or equal to n, all objects in v are greater than or
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equal to n and the trees u and v are themselves ordered. The tree Null is
ordered. Define a function

ordered : tree⇒ bool

which returns True if and only if its argument is ordered. You can assume
that the function

leq : N ⇒ N ⇒ bool

represents the ordering relation over N . How might you define this by
primitive recursion?
4.28. Define functions insert and delete of type

N ⇒ tree⇒ tree

which, respectively, insert an object into an ordered tree, preserving the
order of the tree and delete an object, if present, from the tree, preserving
the ordered property. (If in either case the tree argument is not ordered, it
is not specified how the function should behave.)

4.10 Equality

We have introduced a number of type constructors or logical operations
which can bind variables which are free in formulas, but as yet we have
no formulas containing free variables; we have no primitive predicates, in
other words. We remedy that deficiency here, introducing the equality
proposition. To assert that

‘a and b are equal elements of the type A’

we write either

a =A b

or to remind us forcibly that this is a proposition or type of the system we
sometimes use Martin-Löf’s notation of

I(A, a, b)

instead of using the (often overused) equality symbol ‘=’.
The I types have a drastic effect on the behaviour of the system, both

formally and intuitively. We shall see why as we introduce the type and
look at examples which use it.
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We now introduce the rules governing the I-proposition. First the for-
mation rule. If a and b are both elements of the type A, then I(A, a, b) is
a type.

Formation Rule for I

A is a type a :A b :A
I(A, a, b) is a type

(IF )

This is different from the type (or formula) formation rules we have seen
so far. These take the form

. . . is a type . . . is a type

. . . is a type
(. . . F )

which means that with these rules alone, we can say what are the formu-
las or types of the system independently of which elements occupy those
types. The rule of I formation breaks this rule, since a necessary condition
for I(A, a, b) to be a type is that a :A. This means that the rules generat-
ing the formulas are inextricably mixed up with the rules for derivations,
which explains our decision not to express the syntax of formulas (or types)
separately.

Now, the presence of an element in the type I(A, a, b) will indicate that
the objects a and b are taken to be equal. When can we conclude that?
The object a is equivalent to itself, so

Introduction Rule for I

a :A
r(a) : I(A, a, a)

(II)

We can derive rules which look stronger than this, a subject we defer
until the next section.

What is the content of this rule, and more to the point, what is the
structure of r(a)? This object has no internal structure, and at first sight
this seems to render it useless. However, its mere presence can allow us
to do things which would not be possible without it — we shall amplify
this after we have considered the elimination and computation rules, and
especially in our case studies.

The essence of equality is that

equals can be substituted for equals

and this is known as Leibnitz’s law, after the logician who coined it. Sup-
pose that we have some proof p of a proposition P involving a, and also
that we know that c : I(A, a, b). We should be able to infer the proposition
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P ′ resulting from us replacing some of the occurrences of a in P by b. To
capture the idea of substituting for some of the occurrences we think of P
as the formula

C[a/x, a/y]

in which a replaces two free variables x and y. In the result of our substi-
tution we replace the occurrences of y by b, thus

C[a/x, b/y]

We can of course replace all the occurrences of a by making sure that x is
not free in C. We shall use also the informal notation C(a, b) for C[a/x, b/y]
when no confusion can result. There is one extra refinement in our rule —
we allow the formula C to mention the equality proof object r too.

Elimination Rule for I

c : I(A, a, b) d : C(a, a, r(a))
J(c, d) : C(a, b, c)

(IE)

Theorem 4.4 Leibnitz’s law is derivable

Proof: Take

C(a, b, c)≡df P (b)

and suppose that

d : P (a)

that is

d : C(a, a, r(a))

Assuming that c : I(A, a, b), we can conclude that

J(c, d) : P (b)

as desired. 2

How do we eliminate the J operator? If we eliminate an r(a) we simply
return the object d

Computation Rule for I

J(r(a), d) → d

Let us consider some further properties of equality. The introduction
rule means that equality is reflexive. If a : A then the type I(A, a, a) is
inhabited by r(a).
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Theorem 4.5 Equality is symmetric

Proof: We want to prove

I(A, b, a)

on the basis of

I(A, a, b)

so we have to show that the former has an element on the basis of having
an element of the latter. Let

C(a, b, c)≡df I(A, b, a)

now, as

C(a, a, r(a)) ≡ I(A, a, a)

and as we have

r(a) : I(A, a, a)

we can apply the I-elimination rule,

z : I(A, a, b) r(a) :I(A, a, a)
J(z, r(a)) :I(A, b, a)

(IE)

which gives the result we desire. 2

Finally we show that it is transitive, making it an equivalence relation.

Theorem 4.6 Equality is transitive

Proof: Choose

C(b, c, r)≡df I(A, a, c)

then substituting c for b in C(b, b, r) takes us from I(A, a, b) to I(A, a, c).
Formally,

z : I(A, b, c) w :I(A, a, b)
J(z, w) :I(A, a, c)

(IE)

ending the proof. 2
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4.10.1 Equality over base types

When we first talked about the different sorts of rule, we observed that it
was the elimination rules which specified that all the elements of a type had
the form introduced by the introduction rules. We now show this formally,
by proving that

(∀x :bool) . (x =bool True ∨ x =bool False)

is inhabited. Recall the rule for bool-elimination

tr : bool c : C[True/x] d : C[False/x]
if tr then c else d : C[tr/x]

(bool E)

Suppose we assume that x :bool, and take the formula C to be

(x =bool True ∨ x =bool False)

Now, r(True) : True =bool True so that

(c≡df ) inl r(True) : C[True/x]

and similarly

(d≡df ) inr r(False) : C[False/x]

By the elimination rule we have

if x then c else d : C

and so

λx . if x then c else d : (∀x :bool) . (x =bool True ∨ x =bool False)

In a similar way, we can show that for the natural numbers, every number
is either zero or a successor, in other words that the type

(∀x :N) . (x =N 0 ∨ (∃y :N) . (x =N succ y))

is inhabited.

Exercise

4.29. Prove the result above for the natural numbers. Formulate and prove
a similar result for the type tree of trees of natural numbers.
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4.10.2 Inequalities

Nothing we have specified in the system so far prevents there being a single
element at each type. In order to make the system non-trivial we can add
an axiom to the effect that

ax : ¬(True =bool False)

so that True and False are distinct. This is sufficient to imply the non-
triviality of other types; we can show that 0 is not the successor of any
natural number using a definition by primitive recursion of the function

f 0 ≡df True

f (n + 1) ≡df False

This proof follows a further discussion of convertibility and equality in the
next section.

4.10.3 Dependent Types

With the introduction of the equality predicate we are able to define non-
trivial dependent types. A simple example is a family of types over a
boolean variable x which is N when that variable is True and bool when
the variable is False. Using the type constructors, we can represent the
type by

(x = True ∧N) ∨ (x = False ∧ bool)

Elements of this type are either

inl(r, n)

with r : (x = True) and n :N , or

inr(r, b)

with r : (x = False) and b :bool. An alternative representation of this type
is given by

(x = True⇒ N) ∧ (x = False⇒ bool)

whose members consist of pairs of functions (f, g) with

f : ((x = True)⇒ N)

and

g : ((x = False)⇒ bool)
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In section 5.9 below we shall see a more direct means of defining dependent
types.

From programming, an interesting example is the predecessor function
over the natural numbers. Only the positive natural numbers, (n+1), have
a predecessor, n. In traditional programming languages, we usually give
the predecessor an arbitrary value, like 0, at 0. In our language we can
represent its type thus:

(∀x :N) . ((x 6=N 0)⇒ N)

where we use x 6=N 0 as an abbreviation for ¬(x =N 0).
To define the function we need to find an element of

(x 6=N 0)⇒ N

for each x in N . We do this by primitive recursion, and so first we have to
find an element of

(0 6=N 0)⇒ N

Now, we have r(0) : (0 =N 0). Suppose we have z : (0 6=N 0). The applica-
tion of z to r(0) is in ⊥, since 0 6=N 0 is an abbreviation of

(0 =N 0)⇒ ⊥

From this we can construct abortN (z r(0)) : N , giving the element in the
case of 0. This trivial element simply reflects the fact that at zero we have
no true predecessor.

In the induction step, we have to define the predecessor of the element
(n + 1) from the predecessor of n and n itself. We simply choose the
latter. Putting these together into a formal deduction and writing C for
(x 6=N 0)⇒ N , we have first for the two cases

r(0) : (0 =N 0) [z : (0 6=N 0)]1

(z r(0)) :⊥
(⇒ E)

abortN (z r(0)) :N
(⊥E)

λz . abortN (z r(0)) : C[0/x]
(⇒ I)1

and

[n :N ]1

λq . n : C[succ n/x]
(⇒ I)

λp . λq . n : (C[n/x]⇒ C[succ n/x])
(⇒ I)

λn . λp . λq . n : (∀n :N) . (C[n/x]⇒ C[succ n/x])
(⇒ I)1
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we put these together using the N elimination rule, which introduces a
primitive recursion term, in the standard way. The predecessor function is
defined by

pred≡df λn . prim n f g

where

f ≡df λz . abortN (z r(0))

and

g ≡df λn . λp . λq . n

4.10.4 Equality over the I-types

What is the general form of elements of an I-type? For each a :A, the type
I(A, a, a) has the element r(a), but are there any other elements? We can
use the rule(IE) to show that they are all equal. Suppose that a :A, then

r(a) :I(A, a, a)

and by the rule of I-formation,

r(r(a)) : I(I(A, a, a), r(a), r(a))

Suppose we also have

p :I(A, a, a)

by the rule (IE) we can replace occurrences of r(a) by p. If we replace the
second occurrence only, we have

J(p, r(r(a))) : I(I(A, a, a), r(a), p)

showing that all elements of an I-type can be proved to be equal.

Exercise

4.30. The functions insert and delete defined in the exercises on page 109
are designed to be applied to ordered trees. Redefine them so that they are
defined only over ordered trees, in a similar way to the restricted type of
the predecessor function above.
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4.11 Convertibility

In this section we examine the rules of computation together with the re-
lation of equivalence or convertibility generated by them.

The rules of our system have two quite distinct forms and purposes. The
formation, introduction and elimination rules describe how derivations of
judgements are constructed. If we are simply interested in finding out from
the logical point of view which propositions have proofs, or are inhabited ,
then this category of rules would seem to suffice. This would be the case if
we were to omit the equality rules, but in the full system the derivability of
equality propositions is closely linked with the computability rules through
the convertibility relation and the rules of substitution.

On the other hand, if we read the rules as those of a programming
language, then the first three kinds of rule express only the syntax of the
language, specifying as they do which expressions have which type. In
programming the process of execution or evaluation is central, and it is this
that the rules express. We might ask what it is in logic that corresponds to
evaluation? It is the idea of simplification of proof objects. For example,
suppose we choose the following (partial) proof for A. ‘Given proofs a : A
and b : B, build the proof (a, b) of A ∧ B, then construct a proof of A by
taking the first component’. This is the proof fst (a, b) and the proof object
we have constructed can be reduced simply to the object a.

4.11.1 Definitions; convertibility and equality

First we give some definitions which generalise those of the simply typed
λ-calculus.

Definition 4.7 We call a sub-expression f of an expression e a free subex-
pression of the expression e if none of the free variables in f is bound within
e.

A free sub-expression of an expression e is exactly the kind of sub-
expression of an expression which could arise by substitution into e —
sub-expressions which contain variables bound within e cannot arise thus.

Definition 4.8 The rules for computation → have been introduced
construct-by-construct above. We call a sub-expression of an expression
a redex if it matches the left-hand sides of these rules. We extend the
relation → so that we write e1 → e2 when a free sub-expression f1 of e1

is a redex, and e2 results from e1 by replacing f1 with the corresponding
right-hand side, or reduct.
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Note that this is more restrictive than the definition of reduction we
had earlier, since the reduction can take place within a variable-binding
operator like λx . . . only when the expression reduced has nothing bound
by the lambda – in other words it does not contain x free. This restriction
is reasonable for the sorts of reasons we discussed in chapter 2, and makes
the reduction relation more amenable to analysis.

Definition 4.9 We define the reflexive, transitive closure of → , the re-
duction relation →→ as follows. e→→ f if and only is there is a sequence of
terms e0, . . . en so that

e ≡ e0 → · · · → en ≡ f

Definition 4.10 The relation of convertibility,‘↔↔’, is the smallest equiv-
alence relation extending ‘→→’. Explicitly, e ↔↔ f if and only if there is a
sequence e0 , · · · , en with e ≡ e0, en ≡ f so that for each i, ei →→ ei+1

or ei+1 →→ ei.

Because type expressions (or formulas) can contain embedded object (or
proof) expressions we extend the convertibility relation to type expressions
in the obvious way.

As we argued when we looked at the simply typed λ-calculus, we can
see the relation ↔↔ as a relation of equivalence. The rules of computation
replace terms with other terms which mean the same thing, according to our
intuitive idea of what the rules are intended to capture. This thus means
that two interconvertible terms have the same intended meaning, so that
they should be interchangeable as far as the judgements of the system are
concerned. We express this by means of the following rules of substitution,
which licence substitutions of interconvertible object and type expressions.

Substitution Rules

a ↔↔ b B(a) is a type
B(b) is a type

(S1)
a ↔↔ b p(a) :B(a)

p(b) :B(b) (S2)

A ↔↔ B A is a type
B is a type (S3)

A ↔↔ B p :A
p :B (S4)

(In writing these rules we have used our informal notation for substitution.
The reader may be happier to replace B(a) by B[a/x] and so on.)
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There are two corresponding rules which permit substitution for a free
variable. They can be derived from the rules above.

a :A

[x :A]
...

B is a type
B[a/x] is a type

(S5)
a :A

[x :A]
...

b :B
b[a/x] :B[a/x] (S6)

There is one other point we should emphasise about substitution and as-
sumptions. If we make a substitution of a, say, for a free variable x in
a derivation, then we should substitute a for any occurrence of x in the
assumptions other than in the assumption on x itself.

On the basis of the substitution rules we can give a strengthened version
of the rule of equality introduction. From a :A we can derive I(A, a, a). If
a ↔↔ b then we can substitute b for the second occurrence of a in I(A, a, a),
giving I(A, a, b). We write this

Introduction Rule for I

a ↔↔ b a :A b :A
r(a) :I(A, a, b)

(II ′)

This makes plain that interconvertible expressions are not only equal ac-
cording to a relation of convertibility external to the system, but also can
be proved equal (by the trivial proof object r(a)).

With this strengthening of the equality proposition we can reason about
the computational behaviour of expressions inside the system. We give an
example in the next subsection.

4.11.2 An example – Adding one

In this subsection we show that two methods of adding one over the natural
numbers have the same result for all arguments. We shall be slightly infor-
mal in our syntax, but this is only done to make the exposition more read-
able; nothing significant is being omitted. Recall our definition of addone
from page 102.

addone≡df λx. prim x 1 succ′

where we write 1 for succ 0 and succ′ for λy.λz.succ z. Our aim is to prove
that

addone x =N succ x
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is inhabited for every x in N . We do this by induction, of course, and we
begin by looking at the base case.

succ 0

is in normal form

addone 0
≡ (λx.prim x 1 succ′) 0
→ prim 0 1 succ′

→ 1
≡ succ 0

so that the expressions succ 0 and addone 0 are interconvertible, and so by
(II ′) the type (addone0 =N succ0) is inhabited, establishing the base case.

Now assuming that

z : addone x =N succ x (4.2)

we want to show that the type

addone (succ x) =N succ (succ x) (4.3)

is inhabited. Note that

addone (succ x)
≡ (λx.prim x 1 succ′) (succ x)
→ prim (succ x) 1 succ′)
→ succ′ x (prim x 1 succ′)
→→ succ(prim x 1 succ′)

By (II ′) we can conclude that the following type is inhabited

addone (succ x) =N succ (addone x)

In order, therefore, to conclude that equation 4.3 is inhabited, it will be
sufficient to conclude that the following type is inhabited

succ (addone x) =N succ (succ x)

and to use the transitivity of equality, which we derived in the previous
section. In order to do that, we apply the I elimination rule to allow us to
conclude

succ (addone x) =N succ (succ x)
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on the basis of the assumption 4.2 and a substitution of succ x for the
second occurrence of addone x in

succ (addone x) =N succ (addone x)

Let us lay this out as a derivation in which we elide some information,
like the element part of the r identity witnesses, and the precise object
derived by the transitivity (derived) rule, and in which we abbreviate the
function names addone and succ by their initial letters.

a (s x) ↔↔ s (a x)
...

r : (a (s x) =N s (a x))

z : (a x =N s x)
...

J(z, r) : (s (a x) =N s (s x))
· · · : (a (s x) =N s (s x))

(I trans)

We have shown that the two functions take the same values at every
point in their (common) domain. Can we conclude that they are equal,
that is can we conclude that

λx.(succ x) =N⇒N λx.(addone x) (4.4)

is inhabited? The answer is no, since the two terms are obviously not them-
selves convertible. We can, of course, assert the universal generalisation of
the equality statement for the applications,

(∀x : N)(succ x =N addone x)

and indeed that was precisely what the induction proof established. It is
interesting that we cannot within the system as it stands infer that 4.4
holds. We shall discuss what we can do about this further in section 5.8
below.

4.11.3 An example – natural number equality

Here we show that not all natural numbers are equal. First, we prove the
simpler result that zero is not equal to a successor. Let us define a function
which is True on 0 and False off it, by recursion, thus:

[n :N ]1 True :bool
· · ·

λn . λb . False : (N ⇒ bool⇒ bool)
(⇒ I)

prim n True f : bool
(NE)

λnN . (prim n True f) : (N ⇒ bool) (⇒ I)1
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where we write f for λn . λb . False.
Now, if we write

discrim≡df λnN . (prim n True f)

then we can see that

discrim 0 ≡ λnN . (prim n True f) 0
→ prim 0 True f

→ True

and

discrim (succ n) ≡ λnN . (prim n True f) (succ n)
→ prim (succ n) True f

→ f n (prim n True f)
≡ (λn . λb . False) n (prim n True f)
→ (λb . False) (prim n True f)
→ False

so that by (II ′) the types

(discrim 0 = True)

and

(discrim (succ n) = False)

will be inhabited. Now, if (0 = (succ n)) is also inhabited, we have by
substitution that

(discrim 0 = discrim (succ n))

will be inhabited. Using the transitivity and symmetry of equality, we can
show that (True = False) is inhabited, which leads to ⊥ by our axiom
(ax) to the effect that the booleans are distinct.

Using the predecessor function from section 4.10.3 we can also show
that the formula

((succ n) =N (succ m))⇒ (n =N m)

is valid. (Its converse is valid by the substitution rules.) We investigate the
application

pred (succ n) : ((succ n) 6=N 0)⇒ N
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By the above, we have for all n, the type ((succ n) 6=N 0) is inhabited, by
tsn, say. Then,

pred (succ n) tsn : N

How does this behave under reduction?

pred (succ n) tsn : N ≡ (λn . prim n f g) (succ n) tsn

→ (prim (succ n) f g) tsn

→ g n (prim n f g) tsn

≡ (λn . λp . λq . n) n (prim n f g) tsn

→ (λp . λq . n) (prim n f g) tsn

→ (λq . n) tsn

→ n

If we know that n and m have equal successors, then by the above calcu-
lation and the substitutivity of equality, we have the equality of m and n
themselves.

To recap, we have shown that the successor function is 1-1 and that zero
is not a successor. These are standard properties of the natural numbers
which we have proved using primitive recursion over the natural numbers,
together with the fact that the two booleans are distinct.

This short discussion of conversion completes our exposition of the core
system of type theory, together with some small examples of the system in
use. In the chapter which follows we will step back from the system and
survey some alternative formulations of rules; look at some of the properties
of the system; examine the various identity relations in the theory, and so
on.

Exercises

4.31. Show that

λx . ((λy . y)x) → λx . x

but argue that we cannot generate λx . ((λy . y)x) by substituting (λy . y)x
for z in λx . z.
4.32. Show that the substitution rules which follow are derivable from the
other rules of the system.

a :A

[x :A]
...

B is a type
B[a/x] is a type

a :A

[x :A]
...

b :B
b[a/x] :B[a/x]
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We say that a rule is derivable if whenever we can derive the hypotheses of
a rule then we can derive the conclusions of the corresponding instance of
the rule, with the appropriate hypotheses discharged.
4.33. Formulate a characterisation of equality on tree similar to that on N
formulated above.
4.34. Formulate and prove the results that the insert and delete functions
defined on page 109 preserve the ordering of their tree arguments.
4.35. Formulate and prove that result that the factorial of any natural

number is greater than zero.

This concludes our introduction to type theory. We shall call the system
introduced here TT0, and in the next chapter we explore some of the prop-
erties of the system, after clarifying some of the more technical points of the
presentation. In fact, the system TT0 is defined in full in section 5.3 below,
where we give a generalisation of the elimination rules for disjunction (∨)
and the existential quantifier (∃).



Chapter 5

Exploring Type Theory

The last chapter was taken up with the introduction of the system of type
theory TT0. It is a complicated system, with many of its aspects deserving
of further study — this we do here.

As type theory is a formal system, it is amenable to study as an object
in its own right. In section 5.4 we show that from some derivations, like
a :A we can deduce others, like A is a type. Following that, we show that
the derivable types of objects are unique, and that the substitution rules
can be derived.

An important aspect of type theory is its computational behaviour, and
we study this for two systems related to TT0. We introduced the basic
questions in our earlier introduction to the λ-calculus — here we ask them
of the system of type theory. First we give (in section 5.5) a strong nor-
malisation result for the system TT ∗

0 , which unfortunately fails to have the
Church-Rosser property. We then present TT c

0 which was first introduced
by Martin-Löf in [ML75b]. This differs from TT0 in the way in which ab-
straction is performed. After explaining the abstraction mechanism and
showing that TT c

0 is an extension of TT0, we prove a normalisation theo-
rem for it. From the proof we obtain a number of important corollaries,
including the Church-Rosser property for TT c

0 and the decidability of ‘↔↔ ’
and of judgements in general. It is interesting to note that the precise form
of λ-abstraction in TT c

0 is very close to the way in which it is performed in
modern ‘compiled’ implementations of functional programming languages,
[Pey87].

We begin the chapter by looking at some more technical aspects of the
system which merit more attention than they received in the introduction.
These include the precise role played by assumptions and ways in which
terms can be made more readable by naming and abbreviation. Naming

125
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is a fundamental part of any programming language; we look at how our
programs and proofs can be made more comprehensible by judicious abbre-
viations. The version of disjunction elimination given in the last chapter
was simplified somewhat; here we give the general version. We also give a
variant formulation of the existential elimination rule, as well as mentioning
a weaker version, which is more akin to the traditional rule of the first-order
predicate calculus.

Our introduction to the system involves the use of four different notions
of equality: definitional equality is as close as we get to literal identity: two
expressions being definitionally equal if they are identical up to change of
bound variables after all definitions have been expanded out. Convertibility
is external to the system, with the I-type giving an internal representation
of it as a proposition, so allowing it to be combined into complex proposi-
tions. Lastly, there are equality functions, which return values in the type
bool when given two elements of a particular type; these are used in com-
putations, giving the conditional expressions familiar to programmers. In
sections 5.7 and 5.8 we compare these different relations, and then exam-
ine how a truly extensional equality can be added to the system without
destroying its admirable formal properties.

The system TT0 can be augmented in a number of ways; we look at two
means of strengthening it in sections 5.9 and 5.10. The notion of a type of
types is inconsistent, roughly because it allows the impredicative definition
of classes in terms of themselves, à la Russell’s paradox, but we show how
a sequence of ‘universes’ of types can be added in a coherent way. Then
we give the general mechanism by which well-founded types are defined,
incidentally giving the rules for lists as well.

We conclude the chapter with a second look at the Curry Howard iso-
morphism, particularly at the treatment of assumptions and the process of
proof normalisation, both cases where the isomorphism seem less than one
hundred percent happy.

5.1 Assumptions

The derivations we construct using the rules of type theory depend in gen-
eral upon collections of assumptions. In this section we look at the precise
form that these collections take, together with consistency criteria that
they should obey, and re-examine the rules and tighten up their statement
in some cases.

A useful exercise for anyone interested in a formal system is to make an
implementation of it. Many of the issues discussed here became apparent
to the author while writing an implementation of type theory in the func-
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tional programming language Miranda. It is easy in a written presentation
simply to overlook aspects of a system without which an implementation is
impossible; mathematical notation is a powerful tool, not least because it
admits ambiguity, and also because an imaginative reader is used to filling
gaps in an exposition in the obvious way. (The utility and breadth of the
adjective ‘similarly’ cannot be over-estimated!)

An important reference here is [Tro87] which addresses a number of
lower-level but nonetheless important aspects of Martin-Löf’s systems of
type theory.

A first peculiarity of the system is that the assumptions do not appear
at the leaves of a derivation. In order to make the assumption x :A we have
to establish that A is itself a type, the assumption only appearing below
this derivation.

The assumptions of a derivation do not simply form a set: there is an
ordering of dependency between them, as the types in some assumptions
may depend upon variables introduced by others. To see an example of
this, we might reconsider the proof of the symmetry of equality. Suppose
we have derived

A is a type

then we may make the assumptions

a :A b :A

Then we can conclude that

a =A b

is a type, and so introduce a variable

x : (a =A b)

whose type contains the variables a and b introduced by other assumptions.
This is written as a derivation thus:

...
A is a type

...
A is a type

a :A
(AS)

...
A is a type

b :A
(AS)

I(A, a, b) is a type
(IF )

x :I(A, a, b)
(AS)

These prior assumptions appear above the assumption x : (a =A b) in the
derivation tree. The I-elimination rule allows us to conclude that

x : I(A, a, b) r(a) :I(A, a, a)
J(x, r(a)) :I(A, b, a)

(IE)
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We can then discharge the assumptions, a :A, b :A and x : (a =A b), but
not in any order.

We may only discharge an assumption a : A if the variable a
does not appear free in any other assumption.

The reason for this is clear. If, for example, we first discharge the assump-
tion a :A, we have an expression λa . J(x, r(a)) which contains the variable
x free. We expect subsequently to bind that variable, forming a product
over the type of x — but what is that type? It is I(A, a, b), but the a
in the type is bound within the expression λa . J(x, r(a)) (and in the type
of that expression (∀a : A) . I(A, b, a)). We have a use of the variable a
outside its scope, in the terminology of computer science, and such a use
is meaningless. To avoid that, we make the stipulation above. In this par-
ticular example, we must therefore discharge the assumption on x, before
discharging either of the assumptions on a and b.

We now present the derivation after discharge of the assumptions x and
b.

A is a type , a :A , [b :A]2
...

[x :I(A, a, b)]1

A is a type , a :A
...

r(a) :I(A, a, a)
J(x, r(a)) :I(A, b, a)

(IE)

(λx :I(A, a, b)) . J(x, r(a)) : I(A, a, b)⇒ I(A, b, a)
(⇒ I)1

(λb :A) . (λx :I(A, a, b)) . J(x, r(a)) : (∀b :A) . (I(A, a, b)⇒ I(A, b, a)) (∀I)2

There is an interesting aspect to this proof as we see it now. The
assumption a :A appears in two places in the derivation, and this is what
happens in the general case. If we are to have multiple assumptions about
the same variable, how should they be treated? We ask that when there are
multiple assumptions then they should be consistent: all assumptions about
the variable a should assume that it has the same type, (up to change of
bound variable names in types). While constructing a derivation we should
enforce this requirement at every occurrence of a rule with more than one
hypothesis, as each derivation of a hypothesis will contain assumptions, in
general.

Returning to the derivation, discharging the assumption a will discharge
every assumption in the tree, giving the closed derivation.
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A is a type , [a :A]3 , [b :A]2
...

[x :I(A, a, b)]1

A is a type , [a :A]3
...

r(a) :I(A, a, a)
J(x, r(a)) :I(A, b, a)

(IE)

(λx :I(A, a, b)) . J(x, r(a)) : I(A, a, b)⇒ I(A, b, a)
(⇒ I)1

(λb :A) . (λx :I(A, a, b)) . J(x, r(a)) : (∀b :A) . (I(A, a, b)⇒ I(A, b, a))
(∀I)2

(λa :A) . (λb :A) . (λx :I(A, a, b)) . J(x, r(a)) :
(∀a :A) . (∀b :A) . (I(A, a, b)⇒ I(A, b, a))

(∀I)3

Another point to observe is that when we discharge an assumption a :
A we discharge every occurrence of that assumption (above the node of
discharge). Failure so to do leaves an occurrence of a variable outside its
scope. Note that we have not necessarily discharged every assumption of
the formula A (in other words every variable of type A), only those named
a.

An alternative presentation of the theory gives an explicit listing of the
undischarged assumptions at every node.

Definition 5.1 A list of one or more assumptions

x1 :A1, . . . , xn :An

is known as a context, if it satisfies the following conditions

• xi may only appear free in assumptions xj :Aj for j > i.

• Aj+1 is a type should be a consequence of x1 :A1, . . . , xj :Aj for each
0 < j < n.

• The variables xj are distinct.

If we write Γ,Γ′, . . . for contexts, and Γ ` J for a judgement together
with its assumption list, then we can explain the circumstances in which a
derivation is consistent.

Definition 5.2 Two contexts Γ, Γ′ are consistent if and only if for every
variable x, if x appears in both contexts, it is assumed to have the same
type in each.

A derivation d is consistent if

• In an application of a rule taking, for example, the form

Γ ` J Γ′ ` J ′

Γ′′ ` J ′′

the contexts Γ and Γ′ must be consistent, and the list Γ′′ which results
from merging the contexts is itself a context.
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• We may only discharge an assumption xj :Aj from a context Γ if xj

does not occur free in any assumption xk :Ak (k > j) of Γ.

The rules above may best be understood by realizing that the linear
ordering of the assumptions in a valid context is simply an (arbitrary) ex-
tension of the partial ordering on the assumptions induced by their position
in a derivation tree constructed according to the restrictions we outlined
above, and which we summarise now.

• We may only discharge an assumption x : A if the variable x appears
free in the (types of) no other assumptions.

• In applying a rule with at least two hypotheses, the assumptions
should be consistent: a variable x must be assumed to have the same
type, up to change of bound variable names, in all the derivations of
the hypotheses.

We might ask whether we could relax the restriction on consistency of
assumptions to their types being convertible, rather than the same. In fact
by the rules of substitution this is no stronger; see the exercises below. Note
however that to perform the test for convertibility as part of the process of
derivation construction would require that convertibility was decidable.

Exercises

5.1. Show that if we have derivations of p :P and q :Q from the assumptions
x : A and x : A′ respectively, then we can construct derivations of P ∨ Q
from either x :A or x :A′.
5.2. From a logical point of view, do we ever require two or more assump-
tions x : A, y : A, . . . of the same formula A? From the programming side,
why do we need them?
5.3. Give a version of the derivation of the symmetry of equality above in

which the contexts are made explicit at each point.
5.4. What is the effect on the system of relaxing the consistency condition?

5.2 Naming and abbreviations

In order to make the expressions and derivations of the system more read-
able, we allow expressions to be named and allow certain forms of abbrevi-
ation in derivations, judgements and expressions.
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5.2.1 Naming

The pure system, just like the pure λ-calculus, is a calculus of expressions
without names. In using a system like this, we need some primitive no-
tion of naming expressions, both to make them more readable and more
abbreviated. We say, simply, that

name≡df expression

when we want to use the name name as a shorthand for the expression
expression, the two being treated as identical. We call ≡df the defini-
tional equality symbol. We do not permit recursive namings, or the use
of a name before its definition, thereby avoiding indirect mutual recursions;
we just require a shorthand.

To make sum types more readable we allow the renaming of the injection
functions inl and inr, so we might say

numOrBool ≡df num N + boo bool

with the intention that objects of this type look like numn and boo b where
n :N and b :bool. We can extend this notation to n-ary sums, if we represent
them in some standard form – a left associated form, say. We will also use
the n-tuple notation for iterated products when this is appropriate.

Again, disallowing recursive definitions, we shall sometimes write

f x≡df e

instead of a definition

f ≡df λxA . e

An elegant form of definition in Miranda uses pattern matching. For a
simple case analysis over the type numOrBool we use the operator cases,
with

c≡df λp . cases p g h : (A ∨B)⇒ C

if g :A⇒ C and h :B ⇒ C. Suppose that

g n≡df e

h b≡df f

then we can write the definition of c directly thus:

c (num n) ≡df e

c (boo b) ≡df f
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An example is provided by

toNum (num n) ≡df n

toNum (boo b) ≡df if b then 1 else 0

which is shorthand for the definition

toNum≡df λp . (cases p (λn . n) (λb . if b then 1 else 0 ))

We can allow constrained forms of recursion, too, as long as they conform
to the recursion operation over the type in question. Over the natural
numbers, we allow definitions like

fac 0 ≡df 1
fac (succ n) ≡df mult (succ n) (fac n)

In the first clause we permit no recursive call. In the second we can call
only fac n and n itself. This corresponds to the formal definition

fac≡df λn . (prim n 1 (λp, q . (mult (succ p) q)))

Of course, in all these abbreviations, we assume that the derivations of
the hypotheses of the appropriate rule, like (NE) here, have been de-
rived. In this case, we assume that we can already derive 1 : N and that
(mult (succ p) q) :N assuming that p, q : N .

We will look at a system based on naming of abstractions in section
5.5.3 below.

5.2.2 Abbreviations

There are various places in the system where we can abbreviate derivations
without problems. In any situation where the same judgement forms more
than one hypothesis of a rule we may supply a single derivation of that
judgement. Examples are

A is a type A is a type

A ∧A is a type
(∧F )

a :A a :A
(a, a) :A ∧A

(∧I)

and the common case

A is a type a :A a :A
I(A, a, a) is a type

(IF )
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Often the same derivation will appear as two or more sub-derivations of a
particular derivation. For instance, in any case where we use the number
2≡df (succ (succ 0)), its use will be prefaced by the derivation

0 : N
(NI1)

(succ 0) :N
(NI2)

(succ (succ 0)) :N
(NI2)

which establishes that it is a term of type N . We will omit these repeated
derivations, for brevity.

Any system for functional programming based upon type theory will
need to include the naming mechanisms above as an absolute minimum.
With naming come a number of other issues, such as equality between types.
We do not intend to look at these issues any further here. We intend to
discuss the relevance of the system as we proceed, and will mention further
naming issues as we proceed.

Exercises

5.5. Suggest naming conventions for functions defined over the algebraic
type tree introduced in the previous chapter.
5.6. Explain the naming conventions used in the definition

merge x [ ] ≡df x
merge [ ] y ≡df y

merge (a :: x) (b :: y) ≡df a :: (merge x (b :: y)) if a < b
≡df a :: (merge x y) if a = b
≡df b :: (merge (a :: x) y) if a > b

5.3 Revising the rules

For pedagogical reasons we have simplified or modified some of the rules of
type theory in the introduction of chapter 4; here we give the rules in their
full generality and look at alternative versions of them.

5.3.1 Variable binding operators and disjunction

In our original exposition we choose to incorporate a single binding opera-
tion, the λ for function formation by lambda abstraction. In Martin-Löf’s
system [ML85] there are a number of binding operators. As an example we
shall consider ∨-Elimination, and go back to the form we saw in chapter 1.
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There we had the rule

(A ∨B)

[A]
...
C

[B]
...
C

C
(∨E)

in which we produced a proof of C from two hypothetical proofs of C, the
first based on the assumption A and the second on the assumption B. These
assumptions are discharged (from their respective sub-proofs) in the proof
thus formed. In the version we gave above, we supplied instead proofs of the
formulas A⇒ C and B ⇒ C: these correspond to the hypothetical proofs
through the rules of (⇒ I) and (⇒ E). The alternative type-theoretic rule
has the form

p : (A ∨B)

[x :A]
...

u :C

[y :B]
...

v :C
vcases′x,y p u v : C

(∨E′)

The operator vcases′x,y binds the variable x in its second argument and y
in its third. How does this new operator behave computationally?

Computation Rules for vcases′

vcases′x,y (inl a) u v → u[a/x]

vcases′x,y (inr b) u v → v[b/y]

It seems clear that the rules (∨E), (∨E′) are in some sense equivalent,
and moreover give rise to the same computational behaviour. Can we make
this precise?

Any formula derived by (∨E) can be derived by using (∨E′) and vice
versa. For suppose we have f : (A ⇒ C) and g : (B ⇒ C), we can form
hypothetical proofs, based on the assumptions x :A and y :B respectively,
thus:

f x :C

g y :C

we then form a proof

vcases′x,y p (f x) (g y) : C
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Now consider the computational behaviour of this:

vcases′x,y (inl a) (f x) (g y) → (f x)[a/x] ≡ f a

vcases′x,y (inr b) (f x) (g y) → (g y)[b/y] ≡ g b

so that not only is derivability preserved, but also the computational be-
haviour, in the sense that for every closed term p of the sum type, the
expression vcases′x,y p (f x) (g y) behaves in exactly the same way as
cases p f g. It is an exercise for the reader to prove the converse of this
result.

In a similar vein, there is a form of the rule of existential elimination
which introduces a variable binding operator. We look at this in section
5.3.3 below.

Exercise

5.7. Show that the rule (∨E′) can be derived from the rule (∨E) in a way
which preserves computational behaviour as above.

5.3.2 Generalising ∨
One reason for presenting the rule for ∨ as we did in the previous section
is that in this form it naturally suggests a generalisation. The type C can
be a type family, dependent upon a variable z of type A∨B. Stated in this
form, we have

p : (A ∨B)

[x :A]
...

u :C[inl x/z]

[y :B]
...

v :C[inr y/z]
vcases′′x,y p u v : C[p/z]

(∨E′′)

In the second hypothesis we have an object x of type A, from which we
form the object inl x of type A ∨ B; this is substituted for the variable
z in the formula C as this case covers those elements from the left hand
summand. In the third hypothesis we have y : B, giving inr y : A ∨ B.
In the result, the object P of type A ∨ B is substituted for the variable z.
The rule of computation is exactly the same as the rule for vcases′. The
operator vcases′′x,y binds occurrences of the variables x and y.

We can, in fact, give a version of this rule in which the operator is
not binding, but it involves our using the quantifiers; this is the reason we
deferred its introduction originally. It is

p : (A ∨B) q : (∀x :A) . C[inl x/z] r : (∀y :B) . C[inr y/z]

cases† p q r : C[p/z]
(∨E†)
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The computation rule for cases† is the same as for cases — a generalisation
of type need not alter the dynamic behaviour of an operator.

How is this generalisation useful? The operator cases can be seen as
a way of combining functions f and g with domains A and B and com-
mon codomain C into a single function on the sum domain A ∨ B. The
generalised operator will do the same for dependent functions for which
the type of the result depends upon the value of the input. The families
which are the result type of the dependent functions must fit together in
the appropriate way: we ensure this by asking that each is a specialisation
to a family over A, i.e. C[inl x/z], or over B (C[inr y/z]) of a family C
over A ∨B.

From the logical point of view, we have a way of lifting proofs of universal
results over A and B separately into universal results over A∨B. We might,
for example, choose to represent the integers by the sum N ∨N , or using
a more suggestive notation

integers≡df poszro N + neg N

(We think of neg n as representing −(n + 1).) We would then be able to
prove results for the integers by means of twin inductions over the non-
negative and the negative integers. If we define the factorial of an integer
by

fac 0 ≡df 1
fac (succ n) ≡df mult (succ n) (fac n)

fac − 1 ≡df 1
fac (−(succ n)) ≡df mult (succ n) (fac (−n))

a proof that for all integers p, fac p > 0 would take the form suggested
above.

Exercises

5.8. Expand out the definition of factorial given above, and using the
expanded definition give a proof that fac p is positive for all integers p.
5.9. Give a definition of subtraction over the integers, and prove for all a

and b that

(a + b)− b = a

5.3.3 The Existential Quantifier

The existential elimination rule we stated in chapter 1 discharged an as-
sumption. In its type theoretic form, we have
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Elimination Rule for ∃

p : (∃x :A) . B

[x :A; y :B]
...

c :C
Casesx,y p c : C

(∃E′)

Computation Rule for ∃

Casesx,y (a, b) c → c[a/x, b/y]

How are these justified? An arbitrary object of type (∃x : A) . B will be a
pair (x, y) with x :A and y :B (which in general contains x free). If we can
construct an object c in C assuming the existence of the components x and
y, we can build an object of that type from an object p of type (∃x :A) . B,
replacing the assumptions x and y by the two components of p. The object
thus formed we call Casesx,y p c, and this operator binds the variables x
and y in c.

When Casesx,y is applied to a pair (a, b), we substitute the compo-
nents for the appropriate component variables, x and y, which explains the
computation rule.

As with the rule for ∨-elimination, we can ask the question of whether
the type C can in fact be variable, and indeed it can. We derive the rule

Elimination Rule for ∃

p : (∃x :A) . B

[x :A; y :B]
...

c :C[(x, y)/z]
Casesx,y p c : C[p/z]

(∃E)

In the hypothesis, the type of c depends upon the pair (x, y), the arbitrary
member of the existential type. In the conclusion we substitute the actual
value p for this arbitrary one. The computation rule is unchanged.

How are the various rules for existential elimination related? From the
rule (∃E′) we can derive the term Fst thus: Make c≡df x and C ≡df A, we
then have

Casesx,y p x : A

if p : (∃x :A) . B. Moreover,

Casesx,y (a, b) x → x[a/x, b/y] ≡ a
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as required. We therefore define

Fst ≡df λp . Casesx,y p x

The term Snd is more problematic, as the type of its result depends upon
the value of the first component of its argument. It can be shown that Snd
is not derivable from (∃E′), as a consequence of the characterisation of the
various existential elimination rules by Swaen, examined in section 8.1.3.

Obviously, if Fst is derivable from (∃E′) then it is derivable from the
stronger (∃E). We now show that Snd is also derivable from (∃E). To do
this we need to be able to cast the judgement

y :B

in the form c :C[(x, y)/z]. c can be y, but we need to cast B as a formula
dependent on the pair (x, y) and not simply on the variable x. The way
out is provided by Fst , and we write B in the form

B[(Fst (x, y))/x]

so that to meet the rule, we have C ≡df B[(Fst z)/x], giving

C[(x, y)/z] ≡ B[(Fst z)/x][(x, y)/z] ≡ B[(Fst (x, y))/x]

We then have,

Casesx,y p y : C[p/z] ≡ B[(Fst p)/z]

and

Casesx,y (a, b) y → y[a/x, b/y] ≡ b

which justifies the definition

Snd ≡df λp . Casesx,y p y

In the opposite direction, we now show that every instance of the rule
(∃E) can be derived from (∃E′

1) , introducing Fst and (∃E′
2) , introducing

Snd . Suppose that we have a derivation

[x :A; y :B]
...

c :C[(x, y)/z]

and p : (∃x :A) . B. By the rules (∃E′
1) and (∃E′

2) we have

Fst p :A Snd p :B[Fst p/x]
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and so by the rule of substitution (S6), applied twice, we have

c[Fst p/x][Snd p/y] : C[p/z]

If we substitute (a, b) for p, the judgement becomes

c[a/x, b/y] : C[p/z]

as we require.
We shall use whichever of the rules is most convenient in what follows.

Definition 5.3 We call TT0 the system of chapter 4 together with the
rules (∨E′′) or (∨E†) for disjunction elimination.

Exercise

5.10. Using the rule (∃E) amongst others, give a proof of the axiom of
choice:

(∀x :A) . (∃y :B) . C(x, y)⇒ (∃f : (A⇒ B)) . (∀x :A) . C(x, (f x))

Can you use (∃E′) instead of (∃E)?

5.4 Derivability

In this section we take a general look at derivability in variants of the
system TT0. These results will be proved by induction over derivations.
Before looking at particular results, it is worth noting a particular property
of the system of type theory we have adopted.

In the system TT0 any particular judgement, like

fst (a, b) :A

can be derived in two different ways. First we might use the rule which
introduces that particular piece of syntax, in this case (∧E1). Alternatively,
we might use one of the substitution rules, such as (S2),to derive the same
result:

a ↔↔ b fst (a, a) :A
fst (a, b) :A

(S2)

The main results we prove are that in an appropriately modified system
A is a type is derivable from a :A and that types are unique.
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Definition 5.4 We say that a rule

J1 . . . Jk

J
(R)

is derivable if whenever we have derivations d1, . . . , dk of the judgements
J1 . . . Jk then we can construct a derivation d of the judgement J . In the
case that application of the rule R discharges any assumptions, then the ap-
propriate assumptions should be discharged in the derivation d constructed.

5.4.1 A is a type is derivable from a :A

One property we might expect of the system is that the rule

a : A
A is a type

should be derivable; we should not be able to derive elements of non-types
or proofs of non-formulas. For this to be the case we have to modify the
rules slightly. If we think about how to prove this property by induction
over the derivation tree for a : A then we see how the rules need to be
changed. The proof will be constructive in that we define a derivation of
A is a type in each case.

The base case for the induction is the derivation

A is a type

x :A
(AS)

introducing the variable x, which can only be introduced if A is a type is
derivable.

For a derivation ending with (∧I), for instance, we proceed by induction,

a :A b :B
(a, b) : (A ∧B)

(∧I)

If we assume the result for the hypotheses, then we can derive A is a type
and B is a type, so using (∧F ) we derive (A ∧B) is a type.

There are cases for which the rules as they stand are inadequate; we
have to add to them additional hypotheses of the form ‘. . . is a type’. We
look at these in turn now.

The first candidate is the rule of ∨-introduction:

q : A

inl q : (A ∨B)
(∨I1)

r : B

inr r : (A ∨B)
(∨I2)
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In each of these rules we have a new type expression (B or A) appearing
below the line — we should only introduce such an expression if it is a type.
We therefore revise the rules to

q :A B is a type

inl q : (A ∨B)
(∨I ′1)

r :B A is a type

inr r : (A ∨B)
(∨I ′2)

We can see now that the judgement (A ∨ B) is a type can be constructed
from a derivation of . . . : (A ∨ B) if the last line of a derivation is a
∨-introduction.

In most cases we shall in fact omit the second premiss, as it will be clear
from the context that it is derivable.

The next rule we look at is existential introduction

a : A p : P [a/x]
(a, p) : (∃x :A) . P

(∃I)

In order to see that (∃x :A) . P is a type we need to know that the family
P is a type, assuming that x :A. We make this a third premiss of the rule.

a : A p : P [a/x]

[x :A]
...

P is a type

(a, p) : (∃x :A) . P
(∃I ′)

Again, we shall in practice suppress this third premiss.
Other rules which require additional premisses are the variant rules for

disjunction, (∨E′′) and existential elimination (∃E), in which we substitute
into a type family C. The revised rules are

p : (A ∨B)

[x :A]
...

u :C[inl x/z]

[y :B]
...

v :C[inr y/z]

[z : (A ∨B)]
...

C is a type

vcases′′x,y p u v : C[p/z]
(∨E′′)

p : (∃x :A) . B

[x :A; y :B]
...

c :C[(x, y)/z]

[z : (∃x :A) . B]
...

C is a type

Casesx,y p c : C[p/z]
(∃E)

where the additional hypotheses are that C is a type family of the appro-
priate kind. In practice we shall suppress these extra hypotheses.
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The final case we should consider is one in which the last rule applied
is a substitution. Consider first the case of (S2):

c ↔↔ a p(c) :B(c)
p(a) :B(a)

(S2)

By induction we have a derivation of B(c) is a type. Applying the instance
of (S1) which follows, the result is clear.

c ↔↔ a B(c) is a type

B(a) is a type
(S1)

An instance of (S4) is similarly replaced by an instance of (S3).

Theorem 5.5 Using the modified system of rules outlined above, given a
derivation of a : A we can construct a derivation of A is a type.

Proof: The proof proceeds by induction over the derivation of a : A and
follows the outline sketched above. 2

We managed to prove the property above by adding sufficient type hy-
potheses to the rules so that each element derivation contains embedded
derivations of the typehood of its various type expressions. In a practical
system based on type theory, we would expect to separate these concerns
as much as possible; once a type had been derived, we could construct
elements of that type without an explicit re-derivation of the type.

Exercise

5.11. Complete the proof of theorem 5.5 above.

5.4.2 Unique types

In a language like Pascal, or indeed Miranda, the types of expressions are
unique. Can we expect this to be the case for our system TT0? In fact as
the system is constructed at the moment, there are a number of reasons
why this fails. We show why this is so, and how to build a system in which
the property holds. The reasons the result fails for TT0 are

• The duplication of the function space and product types, since these
types can be seen as special cases of the universal and existential
types. In future we take A ⇒ B and A ∧ B as shorthand for the
quantifier forms.
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• The injection operators inl and inr do not have unique ranges. In-
deed,

inl 0

is a member of (N ∨A) for any type A. We remedy this by labelling
the injection operators with their range type, so that

inl(N∨A) 0 : (N ∨A)

We can now see the unlabelled operators as shorthand for these op-
erators.

Theorem 5.6 In the theory TT0, if from a consistent collection of assump-
tions we can derive the judgements a :A and a :B then A ↔↔ B.

Proof: The proof is performed by induction over the derivation of a :A.
Consider first the case of a variable x :A. Judgements of this sort will

be derived in one of two ways. First we may use the rule of assumptions,
in which case there is only one choice of type A by the consistency of the
assumption set. Alternatively, we can use the substitution rule (S4) or (S2).
In the former case, we have a derivation ending in

C ↔↔ A x :C
x :A

(S4)

Appealing to induction, the type of x is unique up to convertibility, and the
final step simply gives an equivalent typing to x. The case of (S2) is similar.
For each syntactic form we have the possibility of using a substitution rule:
it is handled in the same way each time.

At the induction step we perform a case analysis over the rule forming
the final deduction of the derivation. We take as an example the rules for
disjunction. If the expression has the form inl(A∨B) q then this has type
(A ∨ B) if and only if q : A, and B is a type. If the expression has two
types then the second type will be of the form (A′ ∨B), in contradiction to
the unique type of q, which we assume by induction. In a similar way, for
the elimination rule, the (cases p f g) expression can only have two types
if both f and g have two, a contradiction. 2

Exercises

5.12. Complete the proof of the previous result.
5.13. Show that the rules (S3) and (S4) are derivable in the system which
results from TT0 by deleting them. Can the rules (S1) and (S2) be derived
in a system entirely without substitution rules?
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5.5 Computation

Up to now we have devoted the major part of our exposition to the static
properties of the system, in looking at how the various judgements are
derived. Whilst doing this we have introduced computation rules which are
of fundamental importance from the point of view of programming, since
it is these rules which define the dynamic behaviour of the system; how the
programs are executed, in other words. This section looks at the rules from
a general perspective.

The reduction rules are also used to generate a relation of conversion,
which is an equivalence relation; convertible objects are seen as being the
same, and this allows the substitution of one for the other in any context.

The issues of interest for reduction will be those we discussed first in
sections 2.3, 2.4 and 2.11. Does evaluation terminate (along all paths)? —
is the system (strongly) normalising? Can any two evaluation sequences be
extended to yield a common expression — the Church-Rosser Property?

This will be the case for the system TT0; in this section we present
two variants for which there are the results we require in the literature.
The first, TT ∗

0 , is one in which reduction, ‘ → ’ is limited. This system
possesses normalisation properties, but has the drawback that it is not
Church-Rosser.

The second system, called TT c
0 , is based on a quite different way of

introducing functions, and types, though it is equivalent to TT0. Instead
of introducing binding operators like λ, or type forming operators like ∀
and so on, functions are introduced as constants, each constant having a
corresponding reduction rule. Types are introduced in a similar way. This
bears a striking resemblance not only to the top-level form of languages
like Miranda, but also in its details to the methods of λ-lifting [Joh85] and
supercombinators [Hug83] used in functional language implementations.

5.5.1 Reduction

When we evaluate an expression written in a functional programming lan-
guage, we expect the final result to be presented in some printable form.
We are familiar with Arabic notation for numbers, and lists, trees and so on
can be represented in syntactic form. How is a function from (for example)
N to N to be printed? Two options present themselves.

• A function is described extensionally if we say what is its value
on every argument — an infinite amount of information needs to be
printed, which is infeasible.
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• The alternative is to print some representation of a program for the
function. Different results will not necessarily denote different func-
tions, yet since (extensional) equality between functions can’t be im-
plemented, we cannot give a standard representation to each function.
The difficulty with implementing extensional equality is that in order
to conclude that two functions are equal, an infinite amount of data
has to be surveyed, and this operation is simply not computable.

In a sense, this is not a problem, because the results we will be inter-
ested in will be finite. (This approach does not ignore the ‘infinitary’ lists
of languages like Miranda — these are a sequence of finite results, pro-
duced one-by-one, rather than a single infinite result.) We say that a type
is ground if it involves no (embedded) function or universally quantified
types, and we identify the printable values to be those of ground type. The
evaluation of an object of functional type is declined politely, at least by
the Miranda system.

In the untyped λ-calculus, everything interesting has to be represented
by a function, and the unrestricted rule of β-reduction is invaluable. In
the untyped context we have to extract meaningful information precisely
from representations of functions. ([Abr90] gives a penetrating analysis
of the untyped λ-calculus from the point of view of making it consistent
with evaluation in untyped functional languages). For this reason, the rule
that if e → f then λx . e → λx . f , even with x free in e and f , is
of central importance. (We call a redex within an expression like λx . e a
redex within a lambda.)

Evaluation of printable values in the typed situation is quite different.
Functions are ultimately applied to their arguments, and so any reduction
within the body of a λ-abstraction can be deferred until the argument has
replaced the bound variable. In a simple case we can see this in action

(λx . (II)x) 2 → (λx . Ix) 2 → (λx . x) 2 → 2

can alternatively be reduced thus:

(λx . (II)x) 2 → (II)2 → I 2 → 2

Indeed, it is not hard to see that there will be no reductions within a lambda
on the leftmost-outermost reduction sequence (c.f. section 2.3). This is
because if the leftmost-outermost redex ever lies within a lambda then the
lambda will never be reduced, since altering the internal redex will change
nothing outside the lambda. (This is illustrated by the example above,
where the second sequence is the leftmost outermost.)

The argument we have given is to motivate the definition of reduction
for the system TT ∗

0 which we introduce next.
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Exercise

5.14. In the untyped λ-calculus, the natural number n is represented by
the function “apply n times”, that is

λf . λx . f (f . . . f (f︸ ︷︷ ︸
n

x) . . .)

and addition is represented by the function

add≡df λf . λg . λh . λx . f h(g h x)

Show that add 2 3 reduces to 5, but observe that the unrestricted β-
reduction rule must be used to achieve the result.

5.5.2 The system TT ∗
0

The system TT ∗
0 contains the same rules of formation, introduction, elim-

ination and computation. We only change the definition of the relation
‘→ ’, with the consequent effect on ‘→→’ and ‘↔↔ ’, as follows:

Definition 5.7 We say that one expression e reduces to another f in a
single step if the following conditions hold. First, e can be represented thus:
e ≡ g[e′/z], with the additional property that this z occurs within none of
the binding constructs of the language which appear in the expression. We
also require that e′ reduces to f ′ according to one of the computation rules,
and finally that f is the result of substituting this reduced form into g, that
is f ≡ g[f ′/z].

This weaker notion of reduction is related to the idea of weak head
normal form which we discussed earlier. We have reached a similar notion
by changing the definition of reduction itself, rather than the definition of
normal form, which we leave alone.

The important result about this system follows.

Theorem 5.8 (Troelstra) The system TT ∗
0 is strongly normalising.

Proof: The proof, given in [Tro87], is by means of a translation into
another system entirely, for which the strong normalisation theorem is a
simple generalisation of our proof in section 2.7.

The system in question is that of intuitionistic finite-type arithmetic,
which is known as N −HAω in the encyclopaedic [Tro73]. The system
contains the type structure of products and function spaces built over the
type N . The normalisation result for the system without products is in
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[Tro73], 2.2.30, and it is shown in [Tro86] how products may be eliminated
from the system.

The translations of the type A and the term a are written A∗ and a∗.
The crucial property of the translation is that although some of the power
of TT ∗

0 is lost in the translation, reduction is preserved, so that if a → b
in TT ∗

0 then a∗ → b∗ in N−HAω. A non-terminating sequence in the
original system will give rise to one in the target system, contradicting its
strong normalisation property.

The translation goes as follows: (note that ‘0’ is used for the type N in
[Tro73] — we shall use N),

N∗ ≡df N

which is the obvious translation. The identity types, which have one ele-
ment, are represented thus also:

(I(A, a, b))∗ ≡df N

with its single element being represented by 0. In a similar way we can also
represent the booleans, and indeed all the finite types.

In choosing to represent the I-types by a constant type N we have
removed any dependency of the types on values, so that we say

((∀x :A) . B)∗ ≡df A∗ ⇒ B∗ ((∃x :A) . B)∗ ≡df A∗ ×B∗

representing the quantified types by their non-variable special cases. The
elements of these types have images given by

(λx . e)∗ ≡df λx . (e∗)

(a, b)∗ ≡df (a∗, b∗)

The only slight trick is in coding the sum type, which is mapped into a
product

(A ∨B)∗ ≡df N ×A∗ ×B∗

We represent (inl a) by (0, a, 0B∗) and (inr b) by (1, 0A∗ , b). The values
0A∗ , 0B∗ are fixed ‘dummy’ values which are constant zero functions or
products of same, depending on the form of the types A, B etc. The
operation of primitive recursion over N is sufficient to implement the cases
operator over the disjoint sum.

To complete the proof we simply need to check that if a → b then
a∗ → b∗, which we leave as an exercise for the reader. 2

We should remark that the system N −HAω is simpler than TT0 as
it does not contain dependent types. As can be seen from the proof, the
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reduction properties of the system are preserved by a translation which
loses these dependencies, reducing the universal and existential types to
function space and product respectively.

There is a problem with the system TT ∗
0 . The Church Rosser property

fails for it, as can be seen from the following, functional term.

(λx . (λy . x)) (II) → (λx . (λy . x)) I

→ λy . I

On the other hand if we reduce the outer redex first,

(λx . (λy . x)) (II) → λy . (II)

The final terms of these sequences are normal forms, since no reduction
is permitted inside a λ, and distinct, so there is no term to complete the
diamond between the two.

This failure is for a term with a functional type, so we might ask whether
we can claim a limited result for ground types. It looks as though there
should be such a result, but quite how it would be established is an open
question. The failure at the functional type is, in fact, still distressing for
reasons which will become clearer as we proceed. Without the Church-
Rosser property we cannot establish the uniqueness of normal forms, which
has in turn the consequence that the relation ‘↔↔ ’ is decidable: we reduce
two terms to their normal forms, and then see if the two are identical. The
system which follows will have these desirable properties.

Exercises

5.15. Show that in the proof of theorem 5.8 the translation respects reduc-
tion, so that if a → b then a∗ → b∗.
5.16. Argue that objects in normal form in the system TT ∗

0 are in weak
head normal form in a system with unrestricted β-reduction.

5.5.3 Combinators and the system TT c
0

In the last section we modified the definition of ‘→ ’, disallowing reduction
under the λ; here we modify the system giving an entirely different account
of functional abstraction and type formation.

All the systems we have looked at so far have shared one aspect: each
has used λ-abstraction as a means of forming terms of functional type.
Given a term e generally involving the variable x amongst others, we can
form the term λx . e with the property that

(λx . e) a → e[a/x]
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Instances of this might be the term λx . (x + y), and the term λx . (II), in
which the redex (II) is still visible.

An alternative is to make a function or combinator definition for the
term, saying

f x → e

but there is a problem with doing simply this, exemplified by the addition
example we saw above. Our definition would state

f x → (x + y)

which contains an unbound variable on the right-hand side. To make a
proper definition of a function we need to include the variable y amongst
the arguments, and say

f y x → (x + y)

The term λx . (x + y) will now be replaced by the term (f y), as it is this
application which represents the abstraction over x. In general, a func-
tion constant formed in this way needs to have as arguments not only the
abstracted variable, but also all the other variables free in the expression.
These variables can be called the parameters of the definition. In order to
form the abstraction of interest, these parameters must then be passed to
the constant to form the required abstraction. In the case of the addition
function above, the abstraction over x is given by the term (f y) and not
the ‘bare’ constant f .

For our second example above, λx . (II), the definition is simpler, we
just have to write

c x → (II)

and form the term c. Note that in the constant there is no redex. This
method of constant definitions hides from view the redexes within the bod-
ies of functions, only making them visible when the function is applied to
sufficiently many arguments.

Definition 5.9 Combinator abstraction. Suppose that the derivation
of the judgement

e :B

depends upon the assumptions

x1 :A1 , . . . , xk :Ak , x :A
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then we can form a new function constant f which will take arguments of
the types A1, . . . , Ak (as ‘parameters’) and A, giving a result of type B. In
other words, we can introduce the term

fx1 . . . xk

of type (∀x :A) . B. The computation rule for the term f is given by

fx1 . . . xk x → e

We can give the type of the new constant f directly:

(∀x1 :A1) . . . . (∀xk :Ak) . (∀x :A) . B

which, when none of the dependencies are exhibited by B, reduces to

A1 ⇒ . . .⇒ Ak ⇒ A⇒ B

The introduction rule can be written in a familiar form, thus

[x :A]
...

e :B
f x1 . . . xk : (∀x :A) . B

(∀Ic)

where the undischarged assumptions of the derivation of the hypothesis are
x1 :A1, . . . , xk :Ak, and the new constant to be introduced is called f . The
computation rule is stated above and the formation and elimination rules
for the type (∀x : A) . B (and therefore for the implication A ⇒ B) are as
before.

Let us consider a simple example. Assuming we have derived that A
and B are types then on the basis of the assumptions

x :A , y :B

we can derive

x :A

Suppose we wish to form the (informal) expression λx . λy . x, we first have
to abstract over y. In doing this we produce a binary function constant, f ,
which will take the free variable x as an argument as well as the variable y
which is the variable bound by the definition

f x y → x
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and we form the term

f x : (B ⇒ A)

which is based on the assumption of x : A. Now we can abstract over x,
giving the constant g, with the property

g x → f x

and the type

g : A⇒ (B ⇒ A)

(In fact in this case f and g have the same properties, but in general the
second and subsequent abstractions are non-trivial). We can consider the
example of the term, which gives a counter-example to the Church Rosser
property for the system TT ∗

0 ,

(λx . (λy . x)) (II)

This is now represented by the term (g (II)), which reduces thus:

g (II) → f (II) → f I

The whole term f (II) does not itself form a redex since the function con-
stant f has two formal arguments in its reduction rule, and in this situation
it is presented with only one — the Church Rosser theorem is not violated
in this particular case. It is in fact never violated, as we shall see in the
next section.

It appears from what we have said so far that no reduction can take
place inside an abstraction. In the example of λx . (II) we saw that it was
rendered by the constant c with the reduction rule

c x → (II)

so that no reduction of the functional term itself, given by c, is possible.
The crucial observation to be made here is that the same λ-expression may
be represented in different ways by constant abstraction. The clue to this
is to see the expression II as an instance of a parameter, in which case we
see the whole expression as an instance of the expression

λx . y

with y of the appropriate type. Abstraction here leads to the constant

c′ y x → y
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with the particular expression represented by

c′ (II)

In this representation of λx . (II) the redex (II) is visible, and so may be
reduced, yielding c′ I, which represents λx . I.

Definition 5.10 A proper subexpression f of a lambda expression e is a
free subexpression of e with respect to x if the variable x does not appear
free in f . Such an expression is a maximal free expression (or mfe) with
respect to x if it is free with respect to x and moreover is maximal such: it
is not a proper sub-expression of an mfe with respect to x.

Definition 5.11 Supercombinator abstraction To form the supercom-
binator abstraction of e over x we first identify the mfes f1, . . . , fl of e with
respect to x. We now introduce a new constant g with the reduction rule

g k1 . . . kl x → e[k1/f1, . . . , kl/fl]

The abstraction of e over x is given by

g f1 . . . fl

The formal parameters k1 . . . kl replace the maximal free expressions, to
which the function constant is then applied.

Now we look at a particular example, the supercombinator abstraction

λx . λy . ((II)x)

First we form the supercombinator abstraction

λy . ((II)x)

There is a single mfe in the body, ((II)x), so we form the constant c whose
reduction rule is

c k1 y → k1

with the expression

c ((II)x)

forming the supercombinator abstraction over y. Now we abstract over
x. There is a single mfe in the expression above, (II), and we form the
constant d with reduction rule

d k1 x → c (k1 x)
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the final abstraction being

d (II)

It is important to observe that the redex (II) is visible in this supercombi-
nator abstraction. This is the case in general.

Definition 5.12 The system TT c
0 is defined from TT0 as follows. All the

type forming rules are modified so that types are introduced as constants.
The parameters may be chosen to make certain redexes visible and others
invisible. The rules of function and universal quantifier introduction are
modified as above, as is the rule (∨E′′) which uses the binding operator
vcases.,..

Lemma 5.13 If we use the supercombinator abstraction algorithm to give
functional abstraction in TT c

0 , then all the redexes which could be reduced
in the system TT0, that is all redexes which are free, can be reduced in TT c

0

There is therefore an embedding of the system TT0 within TT c
0 which

preserves the reduction and computation properties of the former. We shall
investigate these properties for TT c

0 in the following section, and claim the
obvious corollaries for TT0 there too.

Note that for readability we shall retain the old notation of type forming
operations, but we should always recall that it is a shorthand for a notation
which is more expressive in allowing a particular expression to be described
in different ways, making redexes visible or invisible.

Exercises

5.17. Give the combinator and supercombinator abstractions for the term

h≡df λa . λb . λc . (abc)

5.18. Follow the evaluation behaviour of the expression h (II) (II) 3 using
the two versions of the code compiled in the previous exercise.
5.19. Give a proof of lemma 5.13 above.

5.6 TT c
0 : Normalisation and its corollaries

In this section we shall prove that every term of the type theory TT c
0 has a

normal form, a result which can be strengthened to a strong normalisation
result. The proof is a Tait-style proof, as first seen in section 2.7, and
it is based on Martin-Löf’s proof of normalisation for his 1975 system, in
[ML75b]. Its exposition is simpler in omitting the proof information which
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Martin-Löf’s proof carries — this was done originally to make the proof
locally formalizable in the [type] theory itself ([ML75a], section 2.1.4) —
the approach here is not so formal. The result is proved in such a way
that it has a number of important corollaries for the system, including
the facts that normal forms are unique, and the Church-Rosser property
for reduction holds. Martin-Löf observes that the Church-Rosser property
does not have a direct combinatorial proof to his knowledge, this route
providing the only means of proof.

As we have seen a number of times up to now, the fact that in type
theory the types and the objects are defined by a simultaneous induction
means that we have to prove things in a different manner than in the typed
λ-calculus. In section 2.7 we were able first to define stability by induction
over the types, and then to show all elements are stable. Here we work by
induction over the derivations of closed judgements

a : A A is a type

(a closed judgement is one which depends upon no assumptions, and so in
particular one for which a and A are closed). The induction defines

• A′, a closed normal form of A.

• a′, a closed normal form of a so that a→→ a′. a′ is also a member of
the set ‖A‖.

• ‖A‖, the set of stable terms of type A, which are members of the
type A′. Our proof will show that each closed term is reducible to a
stable term, and these terms are clearly seen to be closed and normal.

Because assumptions in open derivations can be discharged, we need also
to look at open judgements and derivations. For the open judgement a :A,
made in the context

x1 :A1, . . . , xn :An

we also define functions a′ and A′, depending upon (meta-)variables

x′1, . . . , x
′
n

which range (respectively) over closed normal terms of type

A′
1, . . . , A

′
n(x′1, . . . x

′
n−1)

It is important to note that these functions are not defined by terms of
the system, in general: they are the operations which assign closed normal
forms depending upon the closed normal forms which are their parameters.
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To choose a concrete example, if a :N depends upon x :N , then a′ will be a
function from numerals to numerals, since numerals are the closed normal
forms of natural number type.

We require two conditions of the functions a′ and A′

• First we require that for all closed normal forms

a′1 :A′
1, . . . , a

′
n :A′

n

we have the property

a[a′1/x′1 . . . , a′n/x′n]→→ a′[a′1/x′1 . . . , a′n/x′n]

(There is a similar definition for A′.)

• We also require that the definitions commute with substitution. Given
derivations of

a1 :A1 , . . . , an :An[a1/x1, . . . , an−1/xn−1]

we require that

(a(a1, . . . , an))′ ≡ a′(a′1, . . . , a
′
n)

with a similar definition for A′. (Recall that we use ≡ to mean ‘iden-
tical up to change of bound variable’). In the proof we say that a′ is
parametric if it has this pair of properties.

Theorem 5.14 (Normalisation for TT c
0 ) Every closed term b of type

theory has a normal form b′, and moreover if b ↔↔ c then b′ ≡ c′.

Proof: As outlined above we use induction over the length of derivations
of judgements. We must go through the constructs of the theory in turn.
We must also verify at each step that the normal forms assigned to the two
sides of a computability rule like

fst (a, b) → a

are equal — this is used in proving that the normal forms given to convert-
ible terms are identical. We shall not cover the cases of function spaces or
conjunctions as they are simply special cases of universally and existentially
quantified types.
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Before we look at the cases in turn, it is worth examining the exact
mechanism for type formation in TT c

0 . Suppose we want to form a type
like

(∀x :N) . I(N, f x, 0 + 0)

then there are a number of ways of so doing. In the first we simply form
a new type constant on this basis, but we may also form a type operator
which is parametrised over y, yielding

(∀x :N) . I(N, f x, y)

In our particular case we apply this to the (free) expression 0 + 0, allowing
this to be reduced. If an expression is so parametrised, then in the nor-
mal form parameters will themselves be reduced to normal form. In the
following we assume that types are not parametrised, but this is simply for
notational clarity.

Case x a variable
We define x′ to be the (informal) variable x′. Obviously this is parametric.

Case ∀
The formation rule introduces a new constant, for which we use the short-
hand ((∀x :A) . B). As we said above, we shall assume that the type is not
parametrised, and so we define

((∀x :A) . B)′ ≡df (∀x :A) . B

We make similar definitions for the other type forming operations, apart
from the I-types. The set of stable terms of this type, ‖((∀x :A) . B)‖, con-
tains all those closed normal terms c′ of type (∀x :A) . B with the property
that for all closed normal forms (cnfs) a′ in A′, (c′ a′) reduces to a closed
normal form in B′[a′/x].
∀ introduction gives a λ-abstraction, λx . e. If we use supercombinator

abstraction, we have a new constant f

f k1 . . . kl x → e[k1/f1, . . . , kl/fl]

where f1 . . . fl are the maximal free expressions of e with respect to x. The
abstraction itself is defined to be

f f1 . . . fl

Now, the normal form of f is

f ′ ≡df f
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and the normal form for the expression (f f1 . . . fl) is given by the clause
for ∀ elimination below.

If we restrict ourselves to the simple case of no parameters ki, then f ′

is stable since for any cnf a′,

f ′ a′ → e[a′/x]→→ e′[a′/x] ≡ (e[a/x])′

the equivalence holding by the parametricity property for e, which we as-
sume by induction. For the general case we argue in a similar way, also
invoking the case for ∀ elimination below.
∀ elimination gives an application. We define (f a)′ to be the closed

normal form to which (f ′ a′) reduces, which exists by induction and the
definition of convertibility for the universal type. The computation rule for
∀ states that

f a → e[a/x]

now observe that

(f a)′ ≡ e′[a′/x] ≡ (e[a/x])′

The first equivalence holds by the definition of convertibility for the λ-
abstraction and the second by parametricity for e′.

It is not hard to see that the definitions for ∀-introduction and elimina-
tion are parametric.

Case ∃
As for the universal type, we define

((∃x :A) . B)′ ≡df (∃x :A) . B

The stable terms of this type are pairs of stable terms, (a′, b′), with a :A′

and b′ :B′[a′/x]. The introduction rules introduce a pair, we say that

(a, b)′ ≡df (a′, b′)

The elimination rules (∃E′
1) and (∃E′

2) introduce the projection operators.
If we have terms

Fst p Snd p

then p′, the cnf of p, will be a pair (q′, r′). We therefore set

(Fst p)′ ≡df q′ (Snd p)′ ≡df r′

A pair of parametric terms will be parametric, as will be the components of
a parametric pair, so the two constructs preserve parametricity. This will
apply similarly in all other cases of non-variable-binding constructs.
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Finally we should check that the normal forms of the two sides of the
computation rules are identical. The rules state that

Fst (q, r) → q Snd (q, r) → r

By the definitions above

(Fst (q, r))′ ≡ (Fst (q′, r′)) ≡ q′

as we require. A similar proof shows the result for Snd .

Case ∨
We define

(A ∨B)′ ≡df (A′ ∨B′)

and take the set of stable elements, ‖(A ∨B)‖ to be (‖A‖ ∨ ‖B‖).
In introducing an element of a disjunction we inject the object into

either the left-hand or right-hand side. We define

(inl a)′ ≡df inl a′ (inr b)′ ≡df inr b′

in eliminating an element by means of (∨E′) we use the vcases′ construct,
vcases′x,y puv. p′ will take the form of (inl q′) or (inr r′). In the first case,
let

(cases p u v)′ ≡df u′[q′/x]

and in the second

(cases p u v)′ ≡df v′[r′/x]

The forms defined are stable by the parametricity property, which is also
preserved by the definition. It is also easy to check that the definitions
respect the computation rules for vcases.

Case ⊥
The cnf of ⊥, ⊥′ is ⊥ itself, and the set of stable terms is the empty
set. There are no introduction rules for terms of type ⊥, but there is the
elimination rule. We write

(abortA p)′ ≡df abortA′ p′

This clearly satisfies parametricity. As there is no introduction rule, there
is no computation rule, and therefore no condition to check. In fact this
case is a special case of the finite types, which follow.
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Case Nn

The cnf of Nn is Nn, and the stable terms are

1n, . . . , nn

so that it is easy to see that for the introduction rules we have

1n
′ ≡df 1n, . . . , nn

′ ≡df nn

For the elimination rule we have the n-way case statement

casesn e c1 . . . cn

The cnf of e will be mn for some 1 ≤ m ≤ n. We define

(casesn mn c1 . . . cn)′ ≡df cm
′

Again, parametricity is plain. The computation rule selects the appropriate
case according to the value of the object of type Nn — this is respected by
the definition.

Note that this also covers the special cases of >, bool, and indeed ⊥.

Case N
N ′ is defined to be N , and the collection of stable terms is defined by
(meta-theoretical) induction thus:

• 0 is a stable term.

• (succ n) is a stable term if n is.

It should be clear how we define the cnfs for the introduction rules:

0′ ≡df 0 (succ n)′ ≡df (succ n′)

In the case of elimination, we have terms of the form

prim m c f

The cnf m′ will be either 0 or (succ n) for some n. By an induction over
the cnf we say that

(prim 0 c f)′ ≡df c′

(prim (succ n) c f)′ ≡df y

where y is the cnf of the term given by the application

f ′ n (prim n c f)′
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which exists by the definition of the cnfs f ′ of functional type together with
the fact that n and (prim n c f)′ are themselves cnfs. Parametricity and
respecting the computation rule follow.

We treat the type tree in an analogous way.

Case I
We say that

I(A, a, b)′ ≡df I(A′, a′, b′)

and that the set of stable terms consists of r(a′). The introduction rule
introduces r, and we say

(r(a))′ ≡df r(a′)

In an elimination we form J(c, d) : C(a, b, c). The only normal form c can
have is r(a′), and we say

(J(r(a′), d))′ ≡df d′

Since in the computation rule, we reduce J(r(a), d) to d, we see that this rule
is respected by the definition of the cnf. Again, parametricity is preserved.

This exhausts all the cases, and so we have shown all closed normal terms
have a closed normal form. We have also verified that for each reduction
rule b → c, the cnfs are equal: b′ ≡ c′ An induction over the relation ‘↔↔ ’
is enough to show that if b ↔↔ c then b′ ≡ c′.
This completes the proof of the normalisation theorem. 2

The normalisation result is important in itself, showing that all expres-
sions have a value, and in particular that all expressions of ground type
have a printable value, but also the proof itself can yield other results.

Corollary 5.15 There is a model of the system TT c
0 .

Proof: Using the proof of the theorem, types may be modelled by the
sets ‖A‖, and closed terms a by their (closed) normal forms a′, which are
members of the sets ‖A‖. 2

Corollary 5.16 If a and b are closed normal terms which are interconvert-
ible then they are identical.

Proof: Martin-Löf attributes this result to Peter Hancock. a and b reduce
to a′ and b′ respectively, but as a and b are normal, a ≡ a′ and b ≡ b′. Also,
we know from the proof that if a ↔↔ b then a′ ≡ b′, which gives the result
by the transitivity of ‘≡’. 2
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Corollary 5.17 Normal forms are unique

Proof: If a has two normal forms b and c, they are interconvertible, and
so by corollary 5.16 they are identical. 2

Theorem 5.18 (Church Rosser) If a and b are closed terms, then a↔↔ b
if and only if a and b have a common reduct.

Proof: The ‘if’ part is obvious. If a ↔↔ b then the normal forms a′ and
b′ will be interconvertible, and so identical. This normal form is a common
reduct. 2

Theorem 5.19 The normal forms in TT c
0 take the following forms:

Type Normal Form
A ∧B , (∃x :A) . B (a′, b′)

A⇒ B , (∀x :A) . B f ′

A ∨B (inl a′) , (inr b′)
I(A, a, b) r(a′)

Nn mn

N 0 , (succ n′)
tree Null , Bnode n′ u′ v′

where a′, b′, . . . are themselves closed normal forms.

Proof: The normal forms a′ given in the normalisation theorem have the
forms above. By corollary 5.17 any normal form will be identical with one
of the forms produced in 5.14. 2

Theorem 5.20 The convertibility relation is decidable — there is a me-
chanical procedure which decides for arbitrary a, b whether a ↔↔ b.

Proof: To decide, reduce a and b to their normal forms, as in 5.14. a and
b are convertible if and only if a′ and b′ are identical. 2

This is a desirable result. We ordained earlier that we would treat
interconvertible expressions as denoting the same object, and that we would
be able to substitute convertible elements for each other. With this result
we are able to decide when two derivations are identical, in that we can
check when the terms and types appearing in them can be taken to denote
the same object.

Martin-Löf also argues that we can decide whether a given judgement
a :A can be derived or not.
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Theorem 5.21 Derivability is decidable for TT c
0 .

Proof: Given A and a, we first reduce the type symbol A to normal form,
and then we can decide whether it is indeed a normal form of a type. If it
is we then reduce the expression a in a similar way, and ask whether a′ is
a normal form of the type A′. 2

The way that the system is presented, derivability is plainly semi-
decidable: a judgement is derivable if and only if there is a derivation
of it. It is a surprise that the relation is in fact decidable, but it should not
be so. Recall that we derive judgements of the form

a is a proof of the proposition A

or

a is an object of type A

and in many cases these relations are decidable. It is for these properties
that we chose to discuss Martin-Löf’s earlier intensional system, [ML75b],
rather than the more recent extensional [ML85]. In the following section
we look in more detail at the various equalities of the system, and explain
our approach to extensionality in more detail.

Exercises

5.20. Complete the proof sketch for the normalisation theorem above.
5.21. What are the terms a′ and b′ defined in the normalisation proof for

the terms

a ≡df λy . x

b ≡df λx . λy . x

5.6.1 Polymorphism and Monomorphism

In this short section we comment on another aspect of the system TT c
0 :

in the terminology of [Sal89b] it is monomorphic. Each occurrence of a
function such as λx . x will be a notational shorthand for a function constant
of type A⇒ A for a particular type A, with these functions being different
for different types A. In formalising our theory TT0 we should therefore
label all subexpressions of expressions with their type, so that no typical
ambiguity can arise. We shall suppress this information systematically as
we continue, but note that it should always be thought of as being present.

An obvious question, raised for example in [Tro87], is whether we can
re-generate the type information if it is suppressed. In other words whether
we can think of the polymorphic system, in which functions such as λx . x
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can be given different types at different occurrences, as simply a shorthand
for the monomorphic. Salvesen gives a negative answer to this question,
showing by a number of counterexamples the differences between the poly-
morphic and monomorphic theories. For instance, in [Sal89b] it is shown
that the derivations

0:N
λyN⇒N . 0 : (N ⇒ N)⇒ N

(⇒ I)
[x :N ]

λxN . x : N ⇒ N
(⇒ I)

(λyN⇒N . 0) (λxN . x) : N
(⇒ E)

0 :N
λyB⇒B . 0 : (B ⇒ B)⇒ N

(⇒ I)
[x :B]

λxB . x : B ⇒ B
(⇒ I)

(λyB⇒B . 0) (λxB . x) : N
(⇒ E)

both give rise to derivations of identical conclusions

(λy . 0) (λx . x) : N

and it is simply impossible to derive a single monomorphic type for the
variables x and y in this derivation. Building on top of this simple exam-
ple, there is a derivation in the polymorphic theory which, it is argued,
cannot arise from a monomorphic derivation by suppressing type informa-
tion. More complicated examples show how a Milner-style ([Mil78]) system
of principal types is not possible.

Finally, we should note that the polymorphism mentioned here is im-
plicit polymorphism; we can give definitions which are explicitly polymor-
phic, even in the monomorphic system, by introducing (type) variables
which range over the universes Un.

5.7 Equalities and Identities

In the discussion thus far can be found four different notions of equality
or identity. We survey their differing roles in this section, and after a
discussion of the purpose of these various notions, propose the definition of
an extensional equality relation.

5.7.1 Definitional equality

Our first relation is in the meta-language, that is the language in which we
discuss the various systems. We say that two terms e and f are identical

e ≡ f
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if they are identical up to change of bound variable after all the defined
terms, introduced by means of the definitional equality ‘ ≡df ’, have been
expanded out. We simply treat identical expressions as identical — there
are no contexts in which we wish to distinguish between two identical ex-
pressions.

As an aside, it is worth noting that although it is obvious what this
relation is, we have to do some work in a computer implementation to
ensure that we can decide exactly when two expressions are identical.

5.7.2 Convertibility

Two expressions are convertible if the computation steps embodied in the
computation rules for the system are sufficient to bring them together.
Formally we build the relation ‘ ↔↔ ’ by taking the reflexive, symmetric
transitive and substitutive closure of the relation ‘→ ’. In other words, we
ask that, for all expressions a, b, c, . . . and variables x,

Computation If a → b then a ↔↔ b.

Reflexivity a ↔↔ a.

Symmetry If a ↔↔ b then b ↔↔ a.

Transitivity If a ↔↔ b and b ↔↔ c then a ↔↔ c.

Substitutivity If a ↔↔ b and c ↔↔ d then a[c/x] ↔↔ b[d/x].

We saw in the last section that two terms were convertible if and only if they
have the same normal form, this means that the relation of convertibility
is decidable.

The definition of convertibility is external to the system — a ↔↔ b is
intended to embody the fact that the two expressions a and b denote the
same object. In the light of the characterisation above, we can identify this
object as the normal form of the expression, if we wish.

In section 4.11 we introduced the rules of substitution which allow in-
terconvertible expressions to be substituted for each other in derivations of
judgements. This emphasizes the fact that judgements are intended to be
about the objects denoted by the expressions, rather than the expressions
themselves. We shall come back to this important distinction below.

Because ‘a ↔↔ b’ is not a proposition of the system, we are unable to
build more complex assertions on the basis of it. To do this we turn to our
third relation, the identity predicate.
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5.7.3 Identity; the I type

As a primitive proposition (or type) forming operator we have the I oper-
ation, forming a type thus:

A is a type a :A b :A
I(A, a, b) is a type

(IF )

The type is also written a =A b or even a = b when no confusion can result.
I(A, a, b) is provable, by the object r(a), when a ↔↔ b, so we can see the
type as an internalisation of convertibility. On top of the I type we can
build more complex assertions, such as

(∀x, y :A) . ((x =A y)⇒ ((f x) =B (g y)))

where f and g are functions of type A⇒ B. Proof that I is the internali-
sation of ‘↔↔ ’ is given by the result

Theorem 5.22 For closed a and b, the judgement I(A, a, b) is derivable if
and only if a ↔↔ b.

Proof: Clearly the ‘if’ part is valid. Suppose that p :I(A, a, b) is derivable;
taking normal forms à la theorem 5.14 we have

p′ :I(A′, a′, b′)

but for this to be derivable, it must be the case that a′ ≡ b′, which means
that a ↔↔ b 2

The expression x =A y denotes a proposition or type of the system. In
order to test for identity in a computation we require a function or operation
which returns not a type but rather a value True or False of boolean type.

5.7.4 Equality functions

An equality function is a boolean valued function which can be used in a
computation to test for the equality of two objects.

Definition 5.23 An equality function (or equality operation) over
the type A is a term equalA of type equalA : A⇒ A⇒ bool such that the
following propositions are valid

(∀a, b :A) . (a =A b ⇒ equalA a b =bool True)

(∀a, b :A) . (a 6=A b ⇒ equalA a b =bool False)
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Note that one consequence of the definition is that for closed a,b if a ↔↔ b
then

equalA a b ↔↔ True

but on the other hand the non-derivability of a ↔↔ b does not imply that

equalA a b ↔↔ False

Over which types do we have an equality operation? We start our discussion
with two definitions.

Definition 5.24 A predicate P (x1, . . . , xk) is formally decidable if and
only if the following proposition is derivable

(∀x1 :A1) . . . . (∀xk :Ak) . (P (x1, . . . , xk) ∨ ¬P (x1, . . . , xk)) (5.1)

Definition 5.25 A predicate P (x1, . . . , xk) is representable if and only
if for some term r the following propositions are derivable

(∀x1 :A1) . . . . (∀xk :Ak) .
(r x1 . . . xk =bool True⇒ P (x1, . . . , xk)) (5.2)

(∀x1 :A1) . . . . (∀xk :Ak) .
(r x1 . . . xk =bool False⇒ ¬P (x1, . . . , xk)) (5.3)

Theorem 5.26 A predicate is representable if and only if it is formally
decidable.

Proof: To prove that a representable predicate is decidable, note first that
using the axiom of bool elimination we can derive

(∀b :bool) . (b =bool True ∨ b =bool False)

(a proof of this appears in section 4.10.1). By means of the propositions
5.2, 5.3, we can derive the formula 5.1, as required.

To prove the converse, we need to take the derivation given by 5.1,

d : (∀x1 :A1) . (∀xk :Ak) . (P (x1, . . . , xk) ∨ ¬P (x1, . . . , xk))

The term d is a function, which we compose with the function defined over
a disjunction which returns True over the first disjunct and False over the
second. This function is given by the term

λx . (cases x (λx . True) (λx . False))

The resulting function will form a representation of the predicate. 2
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Corollary 5.27 A type A carries an equality function if and only if the
equality over that type is formally decidable.

Proof: The equality function is a representation of equality over the type.
The theorem therefore applies the result immediately. 2

Theorem 5.28 A ground type A carries an equality function.

Proof: By the previous corollary it is sufficient to show that equality
over the type is formally decidable. We can prove by induction over the
construction of ground types that equality is decidable for them. Indeed,
we have given direct definitions of equality functions in the exercises in the
previous chapter. 2

Will equality over any other types be decidable? It seems highly unlikely
that this is so. Two closed terms of type N ⇒ N can be proved equal if
and only if they have the same normal form, but there is no way, internally
to type theory to compare normal forms. An extensional equality, to which
we turn in the following section, has other drawbacks. From an extensional
decidability predicate over a functional type we are able to prove a result
like

((∀x :N) . f x =N 0) ∨ ¬((∀x :N) . f x =N 0)

which is not in general acceptable to the constructivist, breaking as it does
the constraint that properties be finitary.

5.7.5 Characterising equality

The elimination rules for the various type constructors allow us to derive
characterisations of equality for types in terms of their component parts.
In section 4.10.1 we saw that

(∀b :bool) . (b =bool True ∨ b =bool False)

and we argued that other similar results could also be proved. In particular,
we gave as an exercise the proof of

(∀x :N) . (x =N 0 ∨ (∃y :N) . (x =N succ y))

We would also mention the other characterisations

(∀x :A ∧B) . (∃y :A) . (∃z :B) . (x = (y, z))

and

(∀x :A ∨B) . ((∃y :A) . (x = (inl y)) ∨ (∃z :B) . (x = (inr z)))
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and for the finite types

(∀x :Nn) . (x = 1n ∨ . . . ∨ x = nn)

with the special case that

(∀x :>) . x = Triv

These results are all proved in similar ways, using the axiom of elimination
for the type in question.

Exercises

5.22. Complete the proof of theorem 5.26 by exhibiting the term r explicitly.
5.23. Give a definition of the equality function over the tree type.
5.24. Prove the characterisations of equality for conjunction (product) and
disjunction (sum) types given above.

5.8 Different Equalities

As we saw in the last section, there are a number of differing notions of
equality for a system like type theory. Here we take a longer view and
ask both what is the exact purpose of an equality relation, and propose
modified definitions based on the results of these ruminations.

5.8.1 A functional programming perspective

When we first learn arithmetic at school, we write down calculations like

(2 + 3) + (4 + 5) = 5 + (4 + 5)
= 5 + 9
= 14

which can be thought of as proofs that particular equations are true. In a
similar way, when we reason about the behaviour of functional programs,
we might write chains like

map id (a:x) = id a : map id x
= a : map id x
= a : x

where map is the function which applies its first argument, a function, to
every element of its second, a list, and id is the identity function.
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For the functional programmer (or the primary school child) the interest
of such a proof is that two expressions which are not prima facie equivalent
in fact have the same meaning.

These proofs have in common the fact that they would be considered
trivial in the context of type theory; they simply involve showing that two
expressions are convertible, and this is formalised outside the theory in the
convertibility relation.

In order to extend the theory to embrace this kind of equality reasoning,
we have radically to modify the theory. The proof objects of the equality
(I) types will no longer have the trivial form r(a), but will need to reflect
the chains of equalities as above. Also the proposition

(2 + 3) + (4 + 5) = 14

must be distinguished from the proposition

14 = 14

since the latter is trivial, whilst the former reflects three non-trivial com-
putation steps; proof objects of the two types will be completely different.

The departure here is to consider proofs to be about linguistic expres-
sions (such as (2 + 2)) rather than about mathematical objects (like the
number 4). It would be interesting to see a complete development of a
theory analogous to type theory along the lines proposed here.

5.8.2 Extensional Equality

As we said above, type theory addresses itself to objects and their relations,
so that we identify expressions which are convertible, allowing their inter-
substitution in any context. This is because we take convertible expressions
to have the same meaning, and this is surely correct. What is more, as a
corollary of the normalisation theorem we saw that the relation of convert-
ibility was decidable, so that separately from the system itself questions of
equivalence could be decided.

There remains the question whether convertibility captures fully what
it is for two expressions to mean the same thing. For objects of ground type
there is no question that this is so, but for functions the question is more
complex. We saw in section 4.11.2 that two different ways of adding one to
an arbitrary natural number gave the same value on every argument, and
an extensional equality would deem them to be equal. Can we augment
the system to make equality extensional? We shall review a number of
proposals now.
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A first attempt might be made to augment the convertibility rules, with
a rule like η conversion, which we saw first in section 2.3:

λx . (f x) → f

if the variable x is not free in the expression f . Given the definition of
convertibility in chapter 2 which allows conversion under the λ, we can say
that if

f x ↔↔ g x (5.4)

then by two η conversions we have

f ↔↔ λx . (f x) ↔↔ λx . (g x) ↔↔ g

so it appears that we have an extensional convertibility.
This is not the case, however, as the equivalence (5.4) is a weak one,

based as it is on convertibility between two expressions involving an arbi-
trary value represented by the variable x. In our proof of the equivalence
of the two functions adding one, we inferred

(∀x :N) . f x = g x

by induction, a proof-theoretic technique based on a case analysis over the
variable x, rather than simply a rewriting à la (5.4). It appears then that
we cannot capture a fully extensional equality as a conversion relation.
Martin-Löf proposes a rule in his 1979 system, [ML85], which contains a
fully extensional conversion, by means of the rule

c :I(A, a, b)
a ↔↔ b

(IEext)

This addition has unfortunate consequences for the general properties of
the system: convertibility is undecidable, the system fails to be strongly
normalising and so on, and it is for these reasons that we have chosen
to adopt Martin-Löf’s earlier system as the basis of ours here. It is no
surprise that these are the consequences of the rule (IEext), since it makes
the relation of conversion have a proof-theoretic link which it fails to have
in the earlier system. Before we leave the topic of convertibility, it is worth
referring back to our commments of section 2.11 on the superfluity of the
(so-called) conversion rules like η-reduction. In particular the remark that
these rules are not needed to reduce closed terms of ground type to normal
form still applies in the context of TT0.

Is there an alternative to Martin-Löf’s method of including an exten-
sional equality in the system?
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Turner has proposed in the unpublished [Tur89] that an extensional I
type can be defined. He argues that the type

I(N ⇒ N, f, g)

can be inhabited by terms other than r — a proof of the equality of all the
values of the function, in other words an object p of type

(∀n :N) . (f n = g n)

can be injected into the type also, giving

ext p : I(N ⇒ N, f, g)

If we add new canonical elements to a type we require new rules of elim-
ination and computation if the classes of canonical objects of other types
are not to be enlarged with spurious members. Some rules to accomplish
this are to be found in [Tur89], and it appears that a system in which no
spurious canonical forms are introduced could be built on the basis of the
system there. The complete presentation might involve a theory of struc-
tured equality objects, so that proofs of equality of pairs would be pairs
of equality proofs, equalities between functions would be functions proving
the equality of all results, etc.

A variant of this approach suggests itself, and that is to introduce an
element of the equality thus

p : (∀x :A) . (f x =B g x)
r : I(A⇒ B, f, g)

(II ′)

but this means that the proof-theoretic information contained in the object
p is lost. This happens in the standard introduction rule, yet in that case
the information lost is convertibility information, which can be recovered by
the decision procedure for conversion. If we are to adhere to the principle
of complete presentation, then we should reject this course; if not, this
presents a way to proceed.

5.8.3 Defining Extensional Equality in TT0

The option we explore here is to define explicitly the relation of extensional
equality within the theory TT0 whose equality is intensional. We retain
the decidability of ‘↔↔ ’, as well as adhering to the principle of complete
presentation.
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Definition 5.29 By induction over the construction of the type A we can
define the operator 'A embodying extensional equality over A. For-
mally, we have the derived rule

A is a type a :A b :A
(a 'A b) is a type

(EEF )

For base types N , Nn, bool, I(T, n, m) and so on we define

a 'A b ≡df I(A, a, b)

Omitting the type subscripts from now on, for function types we say

f ' g ≡df (∀x, y :A) . ((x ' y)⇒ (f x ' g y))

For product types,

u ' v ≡df (fst u ' fst v) ∧ (snd u ' snd v)

and similarly for disjunctions.

For f and g of the universally quantified type

(∀x :A) . B

the proposition

(∀x, y :A) . ((x ' y)⇒ (f x ' g y))

is only well formed if the type family B is itself extensional, that is if x ' x′

then B ↔↔ B[x′/x].
The relation ‘'’ is a partial equivalence relation, in that

Lemma 5.30 The relation ‘'A’ has the following properties

Symmetry If f ' g is derivable, then so is g ' f .

Transitivity If f ' g and g ' h are derivable, then so is f ' h.

Semi-Reflexivity If f ' g is derivable, then so is f ' f .

Proof: The proof is by induction over construction of the type A. The
interesting case is that of the function type B ⇒ C. We look at the various
properties in turn. First suppose that we have f ' g, that is

(∀x, y :B) . ((x ' y)⇒ (f x ' g y))

by the symmetry of ‘'’ for the type C we have

(∀x, y :B) . ((x ' y)⇒ (g y ' f x))
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as required. Now suppose that we have f ' g and g ' h, and suppose that
x 'B y. By the first proposition, we have

f x ' g y

Since x ' y, we have by symmetry and semi-reflexivity for B that y ' y,
so by g ' h we can derive

g y ' h y

and finally by transitivity for ' over C we have

f x ' h y

which establishes transitivity. Semi-reflexivity is a consequence of symme-
try and transitivity. 2

Definition 5.31 If a is an open term with free variables x1, . . . , xk then
its closure is the term λx1, . . . , xk . a.

Definition 5.32 We call a closed term a of type A extensional if a 'A a.
If a is open, we call it extensional if its closure is.

Not all terms are extensional. Take the function

h≡df λx . (x, r(x)) : (A⇒ (∃x :A) . I(A, x, x))

Suppose that we take the type A to be N ⇒ N , and choose two functions
f and g of this type so that f ' g yet f 6↔↔ g. The two addition functions
of section 4.11.2 will do for f and g. Now,

h f →→ (f, r(f))

h g →→ (g, r(g))

These two values are not extensionally equal, as the objects r(f) and r(g)
are of different types, since the family I(A, x, x) is not extensional.

We could leave the development here, with a definition of what it is for
two terms to be extensionally equal. Unfortunately, what we have devel-
oped thus far is not very useful — we have no way of using the defined
relation directly, and instead we must expand out its definition to use it.
The equality relation I(A, a, b) is characterised by its elimination rule, stat-
ing that a and b may be substituted for each other in any context. ‘'’ is a
weaker relation than identity, and so we cannot expect to substitute exten-
sionally equal terms for each other in all contexts. Instead, we prove that
substitution can be performed safely in a large class of contexts.
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Definition 5.33 We call a proposition P extensional if it satisfies the
following. Any sub-term of P of the form I(A, a, b) must satisfy

• A is a ground type, and

• the terms a and b are extensional

Theorem 5.34 If P is extensional, f ' g and we can derive p : P [f/x]
then we can find p′ so that p′ :P [g/x] is derivable.

Proof: We prove this result by induction over the derivation p. 2

We would also conjecture that any closed term of an extensional type is
itself extensional. This would include in particular all terms of types which
do not involve the identity types I(A, a, b), which would include all the
types of a traditional functional programming language such as Miranda.
We can prove the more limited theorem which follows.

Theorem 5.35 The class of extensional terms is closed under the opera-
tions of pairing, projection, injection (into sum types), case analysis, prim-
itive recursion over natural numbers and trees, abstraction, application,
function composition and so on.

Proof: The proof is simply a matter of checking the definitions in each
case. 2

To summarise this section, we have shown that within an intensional
system of type theory (with pleasant metamathematical properties) we can
build an identity relation which is extensional. Moreover we can prove that
we can substitute extensionally equal terms for each other in a wide variety
of contexts. This approach seems to combine the advantages of both the
extensional and intensional theories, without anything being sacrificed.

Exercise

5.25. Complete the proofs of theorems 5.34 and 5.35 above.

5.9 Universes

The system TT0 makes a rigid distinction between types, such as N , A∧B
and I(A, a, b), and the objects which inhabit them, 0, (a, b), r(a) and so
on. There are situations in which this distinction can usefully be blurred.

• We may wish to make an object depend upon a type parameter —
this is often called type polymorphism.
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• We might want to assert the existence of a type with certain properties
— this is the content of an abstract type definition.

• Some functions are most naturally defined over the collection of all
objects of all types.

For these and other reasons, we can see the merit of introducing a type T
of all types, and this was indeed what Martin-Löf did in an early version
[ML71] of his type theory. It was later shown by Girard [Gir72] that this
addition made the logic of type theory inconsistent, in the sense that every
proposition became provable. Girard’s proof is based on the set-theoretic
Burali-Forti paradox, which proves the inconsistency of the set of all well-
founded sets, which is a member of itself, and therefore not well-founded.

A common thread to paradoxes such as this and Russell’s is the impred-
icativity of the objects defined: in describing what the members of T are,
we have to mention T itself. This is one point at which the logical and pro-
gramming interpretations of type theory diverge; the logical inconsistency
of the system means in programming terms that every type has a member.
This inhabitation is something we are used to in languages such as Miranda,
since every type contains an undefined element, identified by the semantics
with the bottom element of a domain. Of course, also, the self-reference in
the definition of T is simply that of general recursion, and inconsistency
becomes partiality. For detailed analysis of the computational behaviour of
the paradox, see [MR86] and Howe’s analysis in [How88, Chapter 4] of the
paradox in the related system Nuprl.

If it is our aim to maintain a coherent logical interpretation of the
system, T must be avoided. Instead of introducing a single universe, we
introduce a hierarchy of universes, Un for n = 0, 1, 2, . . .. The types given
by the formation rules of TT0 are in U0; hence the subscript of TT0. If we
then add U0 as a type, using the same formation rules we form types in U1,
and so on, through the hierarchy.

Formally, we obtain the system TT by modifying the formation rules as
follows. Occurrences of the judgements A is a type are replaced by

A :Un

and the rule

A1 is a type · · · Ak is a type

T (A1, . . . , Ak) is a type
(TF )

is replaced by

A1 :Un1 · · · Ak :Unk

T (A1, . . . , Ak) : Umax(n1,...,nk)
(TF )
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In other rules which have premisses of the form A is a type, those premisses
are replaced by A :Un. We also add the following formation rule

Formation Rule for U

Un : Un+1
(UF )

The system of universes is not cumulative; each type is a member of
exactly one universe, Uk say, rather than being a member of all the universes
Uk, Uk+1, . . ..

We end this introduction by remarking that the results of section 5.6
carry over to TT with no modification, so that

Theorem 5.36 TT is strongly normalising, has the Church-Rosser prop-
erty, and both convertibility and the derivability of judgements of the form
a :A are decidable.

Proof: Exactly as section 5.6. 2

5.9.1 Type families

Because the universes are types just like any other, we can form new objects
of these types. For example, we have

x :bool ⊥ :U0 > :U0

if x then ⊥ else > : U0
(bool E)

The term B ≡df ( if tr then ⊥ else > ) is a type family over the variable
x :bool, with the property that

B(True) → ⊥
B(False) → >

This gives a more direct definition of type family than that described in
section 4.10.3 above.

Now we prove a theorem using the universe U0 to give a result we cannot
prove in TT0.

Theorem 5.37 In TT we can derive ¬(True =bool False).

Proof: Suppose that we have p : True =bool False. Applying the function

λx . ( if x then ⊥ else > )

to the two sides, and reducing, we find

p′ : ⊥ =U0 >



5.9. UNIVERSES 177

If we then perform the substitution of ⊥ for > in

Triv : >

we have the result

Triv : ⊥

Discharging the original assumption, we have an element of

¬(True =bool False)

which we assumed as an axiom in TT0. 2

Smith gives a formal proof that the result cannot be derived in (an
extension of) TT0 in his paper [Smi87]

5.9.2 Quantifying over universes

Many functions can be derived for arbitrary types; among the examples
are all the functions of section 4.5. We can rewrite the derivation of the
identity function thus

U0 : U1
(UF )

[A : U0]2
(AS)

[x :A]1
(AS)

λxA . x : (A⇒ A)
(⇒ I)1

λAU0 . λxA . x : (∀A :U0) . (A⇒ A)
(∀I)2

The informal assumption that A is a type had been derived is replaced here
by the formal assumption A : U0, which is subsequently discharged. The
function defined will give the identity function over any type A in U0 when
applied to that type. For example,

(λAU0 . λxA . x) N → λxN . x : (N ⇒ N)

This gives a form of polymorphism; the identity function is thus defined for
all ‘small’ types (as we call the members of U0) uniformly.

If we are given an abstract type, this usually means that we are given
a type which we can access only through certain operations over that type,
rather than all the operations available over the type.

Consider a type like

(∃A :U0) . P (A)

What do objects of this type look like? They are pairs (A, p) of objects,

A :U0 and p :P (A)
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A is a (small) type, and p is a proof that it has the property P (A). Suppose
we have defined P (A) to be

(A⇒ A) ∧ (A⇒ A)

then an object of the existential type will be a type A together with

p : (A⇒ A) ∧ (A⇒ A)

that is a pair of functions from A to itself. An object of this type is equiv-
alent to an implementation of an abstract type, with signature (written in
Miranda notation)

abstype A
with f1 :: A -> A

f2 :: A -> A

where f1 and f2 are the first and second projections of p, of course.
We shall have more to say about quantified types in the following chap-

ter, where we look at a series of examples.

5.9.3 Closure axioms

The usual way that we characterise the members of a type is by a pair of
rules: the introduction rule explains what objects are permitted to be ele-
ments of the type, and the elimination rule (together with the computation
rule) characterises these elements as the only elements of the type. We
could call the latter rules the closure axioms for the type. It is the closure
axioms for a type A which allow us to prove properties for all elements of
A, and to define functions by recursion over A.

The rules we have given for universes correspond to introduction rules; if
we wish to define functions by recursion over the universe we need a closure
axiom to that effect. In Martin-Löf’s treatment of the system, these axioms
have been omitted deliberately; for philosophical reasons he has chosen to
make the universes open-ended, so that other type forming operations can
be added to the system without violating the closure axioms.

The closure axioms permit us to define polymorphic functions which fail
to be parametric ([Str67]). We could, for instance, define a function which
was the identity function on all types but N , and which was the successor
function λn . (succ n) on N . This would have the type

(∀A :U0) . (A⇒ A)

just as did the polymorphic identity function, which had a parametric def-
inition — we did not perform any analysis on the type variable A in the
definition of the identity function, it was simply a parameter.
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5.9.4 Extensions

Why do we stop with a chain of universes U0, U1, . . ., when there are natural
functions which cannot be defined in the system? The obvious one which
springs to mind is

(λn :N) . Un

which clearly inhabits none of the Un. To give this a type we need to
add the first transfinite universe Uω, which is itself a member of Uω+1,
and so we can iterate through the constructive ordinals. Whether this
extension is interesting, either proof theoretically or from the point of view
of programming, is open to question, but the interested reader may wish
to consult [And65] for a similar transfinite theory.

Another possible direction is to distinguish between the types which are
sets, such as N and tree, and the propositions, and to try to extend the
type theory with a type of propositions. This has itself been shown to be
inconsistent in [Jac89].

If one is prepared to limit the type forming operations, then systems
with a type of types can be built consistently. The work of Girard on system
F [Gir80] and of Huet and Coquand [CH85] testifies to this. More details
of these systems are given in section 9.1.5 below.

5.10 Well-founded types

When we first introduced algebraic types in the previous chapter, section
4.9, we described what we meant by an algebraic type, and then introduced
the rules for a particular type, tree, of binary trees. It is not difficult to
see how we might form the rules for a type of lists along similar lines; we
do that in a moment.

There is a general framework into which we can fit the types defined in
this way. By an analysis of the tree type we find the rules for a general
well-founded type, and this we do in the section which follows.

5.10.1 Lists

A list is either empty, [ ], or can be thought of as having a first element,
or head, a and a remainder, or tail, x. The list with head a and tail x is
written

(a :: x)
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The double colon ‘::’ is often pronounced ‘cons’. Definitions by recursion
take the form

sum [ ] ≡df 0
sum (a :: x) ≡df a + (sum x)

where in this case we look at a function defined over a numerical list. (Note
that we have used the reverse convention to Miranda, in which a single colon
denotes the ‘cons’ operator, and the double colon is used for ‘has the type’
— the convention is that of the SML language, in fact.) Elements of lists
can have any type, as long as we keep the lists homogeneous — all the
elements of any particular list should be of the same type, otherwise many
definitions, such as those of the standard functions map, filter and foldr
simply cannot be stated. Lists form one of the standard data types in
functional programming; definitions of these standard functions and many
other examples can be found in the textbooks [BW88] and [Rea89].

With this introduction, we should now be able to understand the rules,
in which we write [A] for the type of lists with elements of type A.

Formation Rule for list

A is a type

[A] is a type
(list F )

Introduction Rules for list

[ ] : [A]
(list I1)

a :A l : [A]
(a :: l) : [A]

(list I2)

Elimination Rule for list

l : [A]
s :C[ [ ] /x]
f : (∀a :A) . (∀l : [A]) . (C[l/x]⇒ C[(a :: l)/x])

lrec l s f : C[l/x]
(list E)

Computation Rules for list

lrec [ ] s f → s

lrec (a :: l) s f → f a l (lrec l s f)

‘::’ is taken to be right associative, and the shorthand [a1, . . . an] will be
used for the list (a1 :: . . . :: an :: [ ]). We call functions defined using the
elimination rule primitive recursive.
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Figure 5.1: Natural numbers and lists.

Exercises

5.26. Using lrec define the function map which takes as arguments a func-
tion f and a list [a1, . . . an], and returns the list [f a1, . . . f an].
5.27. Define the function segs of type [A]⇒ [[A]] with the property that

segs [n1, . . . , nm]≡df [ [ ] , [n1] , [n1, n2] , . . . , [n1, . . . , nm]]

5.28. Using segs or otherwise, define the function sums of type [N ]⇒ [N ]
with the property that

sums [n1, . . . , nm]≡df [0 , n1 , n1 + n2 , . . . , n1 + · · ·+ nm]

What is a suitable value for the empty list [ ]?
5.29. Formulate what it means for one list to be a sublist of another, and

define the function

sublists : [A]⇒ [[A]]

which returns the list of all sublists of a list. How would you remove
duplicate entries from the list if necessary?
5.30. How is the equality operation on the list type [A] defined from the

equality operation on A?

5.10.2 The general case - the W type.

In general, we can think of the elements of any algebraic type as trees. In
figure 5.1 we see trees representing the natural numbers 0 and 2, that is
succ (succ 0), and the list [1, 0], shown in two slightly different forms. In
the first, we show the numerical components as pointed to by a node; in
the second we show them as components of the cons node itself. Figure 5.2
shows an example from our type tree of binary numeric trees.

The general form of these types is that each node is built from a certain
collection of predecessors of the same type. Considering our type tree, a
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Figure 5.2: A binary tree of type tree.

Null node, illustrated by a black disc, has no predecessors, whereas a node
of sort Bnode 0, Bnode 1, . . ., shown in white, has two predecessors. (The
terminology immediate predecessor is sometimes used for our ‘predecessor’.)

For a general algebraic type we will have a type A of sorts of node. In
the case of trees this type is best thought of as a sum type,

A≡df (> ∨N)

where> is the one element type, for the Null node, and the other summand,
N , is for the Bnode nodes, which carry numbers. To make the subsequent
account more readable, we rename the injection functions nu and bnode,
and use null for the application(nu Triv). This means that we can think
of the elements of A as null together with (bnoden) for natural numbers n.

Different kinds of nodes have different numbers of predecessors. For a
particular kind of node a :A we specify what form the predecessors of the
node take by supplying a type B(a), which we can think of as the type of
names of predecessor places.

For a particular node of that sort we specify the collection of predeces-
sors of the node by a function from B(a) to the type in question.

Considering the particular case of the type tree, since the Null node
has no predecessors, we say

B(null)≡df ⊥

and for the binary nodes (Bnoden), we have two predecessors, so we define

B(bnode n)≡df N2

We could make N2 more readable by replacing 12, 22 by Left and Right, as
we would expect for the names of the two predecessor places of the Bnode.
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To define the family B(x) in this way requires the use of the universe U0;
without using a universe we can say

B(x)≡df ((isnull x = True) ∧ ⊥) ∨ ((isnull x = False) ∧N2)

where the function isnull of type A⇒ bool is defined thus:

isnull x≡df (cases x λy . True λz . False)

The type we build is determined by the class of sorts of node, A, and
the family determining the nature of the set of predecessors of each sort of
node, B(x). The type thus constructed is called (W x : A) . B(x), the W
being used as a reminder that the type is well-founded.

Formation Rule for W

A is a type

[x : A]
...

B(x) is a type

(W x :A) . B(x) is a type
(WF )

As far as our type tree is concerned, it is clear that we have satisfied
the hypotheses of the rule with our definitions of A and B(x).

A general node of type (W x :A) . B(x) can be built from a node sort,
a :A, and a collection of predecessors

f : B(a)⇒ (W x :A) . B(x)

The node given by f and a is called

node a f : (W x :A) . B(x)

This is formalised in the introduction rule

Introduction Rule for W

a : A f : (B(a)⇒ (W x :A) . B(x))
node a f : (W x :A) . B(x)

(WI)

Going back to our example tree type, how do we form nodes? Choose
first the element null of A. The set of predecessor names is B(null), which
is the empty type, ⊥. For any type T there is a function from the type ⊥
to T , given by the abort construct,

efun≡df λx . abortT x

taking T to be (W x : A) . B(x) itself, we produce one element of the W
-type:

node null efun
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This is the representative of the node Null, which has no predecessors, and
the argument above constitutes an informal derivation of the rule (treeI1).
How can we derive the other tree introduction rule from (WI)? The hy-
potheses of (treeI2) are that n :N , u : tree and v : tree. The term

fu,v ≡df λx . (cases2 x u v)

is of type (N2 ⇒ tree), and N2 ≡ B(bnode n), which means that this is
a predecessor function for a (bnode n) node. Formally, (WI) allows the
formation of

node (bnode n) fu,v

which represents the node (Bnode n u v). Using the notation Null for the
term (node null efun), the node

node (bnode 3) fNull,g

where g ≡ (node (bnode 0) fNull,Null), represents the tree

Bnode 3 Null (Bnode 0 Null Null)

as illustrated in figure 5.2.
We eliminate a node by the operator which performs recursion or in-

duction, which we shall call Rec. The idea of an induction is to prove

C(node a f)

on the basis of proofs of

C(p)

for all the predecessors p of the node. Remember that the predecessors
are given by the values of the function f over the type B(a), so that this
collection of proofs will have the form

pr : (∀y : B(a)).C(f y)

The object which performs the proof transformation, i.e. the induction step
of the proof, for a particular node (node a f) is therefore an object tra,f of
type

tra,f : (∀y : B(a)).(C(f y)⇒ C(node a f))

Finally, this should be parametrised over f and a, giving our general proof
transformer or induction step as an object of type

(∀a : A)(∀f : (B(a)⇒ (W x :A) . B(x)))
((∀y : B(a))C(f y)⇒ C(node a f))
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which we shall abbreviate Ind(A,B,C). Now we can state our rule

Elimination Rule for W

w : (W x :A) . B(x) R :Ind(A,B,C)
(Rec w R) : C(w)

(WE)

Note that on the basis of this, if we discharge the first assumption, we have

λw.(Rec w R) : (∀w : ((W x :A) . B(x))) . C(w)

showing that the rule (WE) defines a function over the well-founded type
(W x : A) . B(x) by induction. What is the computation rule for these
objects? The value at a node (nodeaf) is computed from the values at the
predecessors, and those predecessors themselves, using the R operator.

Computation Rule for W

Rec (node a f) R → R a f (λx .Rec (f x) R)

Observe that as x ranges over B(a), (f x) ranges over the predecessors of
node a f , so that

λx . Rec (f x) R

ranges over the values of the recursive function on the predecessors of the
node node a f . Also the parameter f specifies the predecessors themselves.

Consider the type tree again. How do the elimination and computation
rules for the W type generalise those for tree? In the case of tree, recall
that

A ≡df (> ∨N)
B(null) ≡df ⊥

B(bnode n) ≡df N2

How can we define an operator R

R : (∀a : A)(∀f : (B(a)⇒ (W x :A) . B(x)))
((∀y : B(a))C(f y)⇒ C(node a f))

for these types? We need to define R(a) for each a in A. Starting with
null, we have to define an object of type

(∀f : (⊥ ⇒ (W x :A) . B(x)))((∀y : ⊥)C(f y)⇒ C(node a f))

What are the functions f of type (⊥ ⇒ (W x :A) . B(x))? If we adopt an
extensional approach there is but one, the function efun, since the domain
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of the function is the empty type. In that case we have to define an object
of type

((∀y : ⊥)C(f y)⇒ C(Null))

(where we replace (node null efun) with Null). What is the domain type
here? Again it is easy to argue that there is a single function in the de-
pendent type (∀y : ⊥)C(f y), so that the function type above collapses
to

C(Null)

In other words, our starting value for the induction is a single value c of
type C(Null), just as it is in the rule (treeE). A similar argument, with
fewer simplifications, allows us to see that the case of the nodes

(Bnode n u v)

is also covered by R applied to the elements (bnode n) — we leave this as
an exercise for the reader.

Finally, we look at the computation rule in the case of the Null node.
We assume that R is determined for tree as outlined above, and note that
the general rule is

Rec (node a f) R → R a f (λx .Rec (f x) R)

In the case of (node null efun), it becomes

Rec Null R → R null efun (λx . Rec (efun x) R)

but recalling the definition above, the right hand side is simply the value
c :C(null). A similar argument applies in the Bnode case.

It is worth observing that we needed to move to an extensional equality
between functions to prove the uniqueness of the function from an empty
domain. If it is wished to remain in an intensional system, the alterna-
tive seems to be to introduce the rules explicitly, type-by-type. Another
alternative is to introduce a type of finite functions, which can be treated
extensionally in an intensional system; this would only work for a limited
class of W types, in which A is finite and B(a) is finite for each a :A.

Making the argument above more formal, we can say that we have
established that certain types are extensionally isomorphic, where this is
defined thus.

Definition 5.38 Two types A and B are extensionally isomorphic if
there are two functions

f :A⇒ B g :B ⇒ A
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so that the following proposition is derivable.

(∀x :A) . (g(f x) 'A x) ∧ (∀y :B) . (f(g y) 'B y)

The two functions f, g form an isomorphism pair, up to extensional equality.

We can simplify some of the notation above when we are looking at the
recursive definitions of functions of non-dependent type — in these cases C
will not be parametrised. Note that in proofs, though, it is crucial that C is
parametrised, as otherwise we are proving the same proposition repeatedly,
which is safe but not very useful.

As we remarked earlier, these recursions and inductions are made much
more readable by the introduction of names. This is clearly a feature which
has to be added to the W -types as ‘syntactic sugar’ if they are to be used
in a real programming environment.

Definition 5.39 We call the system of TT with the full rules for W TT+,
retaining the name TT for the system containing just tree or equivalently
all W types for which all the predecessor types B(a) are finite.

Theorem 5.40 TT+ is strongly normalising, has the Church-Rosser prop-
erty, and both convertibility and the derivability of judgements of the form
a :A are decidable.

Proof: Exactly as section 5.6. 2

5.10.3 Algebraic types in Miranda

Our method here has been adopted for two reasons. It provides a simple way
of writing down objects like trees without our having to introduce names
for constructors, which is what we do in (e.g.) Miranda. We also see that
it provides a non-trivial generalisation of finite ‘algebraic’ types. There was
no stipulation that the sets of predecessor places, B(a), need be finite, and
so we can have infinitely branching trees as objects of our language. This
allows us to define, for example, the countable ordinal numbers. In fact,
we can do a similar thing in Miranda, thus:

ordinal ::= Zero |
Succ ordinal |
Limit (nat -> ordinal)

In fact, in Miranda we can define more general types still.

• We can define a number of types by definitions which are mutually
recursive. These, if they are well-founded, can be modelled in TT by
a definition of a sum type, from which we project the types of interest.
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• The Miranda mechanism allows definitions in which the type under
construction can appear in the domain position of a function space,
such as

model ::= Atom nat |
Function (model -> model)

Such a type can be seen as a model of the untyped λ-calculus — it
is not a well-founded type, however, and it cannot be fitted into the
W -type framework. If we wish to include only well-founded types in
the Miranda algebraic type mechanism, we would have to disallow the
type under definition from appearing in the domain type of a function
space which is the argument to a constructor. (In fact we could
be more liberal than this, only disallowing the type being defined
from negative occurrences: the polarity of an occurrence is reversed,
recursively, for an occurrence in the domain position of a function
space constructor.)

Reasoning about general non-well-founded types and objects is per-
formed by so-called fixed-point induction [Sto77].

In Miranda we are also able to define mutually recursive types. They
can be given a type-theoretic treatment similar to that of trees and lists
above. For more details see [BCMS89, Section 6], or the paper [PS87].

Exercises

5.31. Argue that in the case of a ≡ (bnode n), for which B(a) ≡ N2, the
type

(∀f : (N2 ⇒ tree))((∀y : N2)C(f y)⇒ C(node a f))

is extensionally isomorphic to the type

(∀u : tree) . (∀v : tree) . (C[u/x]⇒ C[v/x]⇒ C[(Bnode n u v)/x])

It might be useful to think of the f as one of the fu,v defined above. You
should then argue that the types

(∀y : N2)C(fu,v y)⇒ C(node a f)

and

(C[u/x]⇒ C[v/x]⇒ C[(Bnode n u v)/x])

are extensionally isomorphic.
5.32. Show that the computation rule for R specialises to that for trec for
the nodes (Bnode n u v).
5.33. Show that the natural numbers can be represented as a W type.
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5.11 Expressibility

This section gives a characterisation of the functions which can be written
in the system TT0.

Definition 5.41 A term e of TT0 (or TT , TT+) represents the function
f over the natural numbers if and only if for all natural numbers n1, . . . , nk,

e n1 . . . nk →→ f n1 . . . nk

where n is the representation of the natural number n, given by

succ (succ . . . (succ︸ ︷︷ ︸
n

0))

How can we characterise the functions f which are representable? First we
know by the normalisation theorem that they are recursive, since for each
term e, to find the value of

e n1 . . . nk

we simply have to reduce the expression to normal form, and the application
of the rules is certainly a mechanical process. It is equally clear that we
cannot represent all recursive functions in this way, since if we could a
diagonalisation argument would lead to a contradiction. (For an exposition
of the elementary details of computability theory see, for example, [Cut81,
Rog67].)

We thus have that the class of functions is properly contained between
the classes of primitive recursive functions and total recursive functions. A
clue to the precise characterisation lies in the normalisation result, and the
formalisation of its proof term by term.

Theorem 5.42 For each term e of TT0, the proof of normalisation of e
can be formalised in the theory of first-order intuitionistic arithmetic, HA,
or its classical counterpart PA.

Proof: The proof uses a coding (or Gödel numbering) of the system TT0

within the theory of arithmetic. It involves checking that the steps of the
proof outlined in section 5.6 can be encoded thus. 2

Note that the result does not claim that the complete normalisation
proof can be coded as a whole — the coding is uniform, but the individual
results cannot be combined into a single proof, as the logical complexity
of the individual proofs grows unboundedly with the complexity of the
expression e.

Just as we explained what it was for a function f to be representable in
one of our type theories, we can define how a function is representable in
PA.
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Definition 5.43 The term g of PA represents a k-ary function f if and
only if for all n1, . . . , nk,

PA ` g n1 . . . nk = f n1 . . . nk

where n is the representation of the natural number n in PA.

Definition 5.44 A representable k-ary function f is provably total in
PA (HA) if and only if we can prove in PA (HA) that its representative
is total, i.e.

PA ` (∀ x1, . . . , xk)(∃ y)(g x1 . . . xk = y)

Theorem 5.42 can be seen now in a slightly different light, showing that
every function representable in TT0 is provably total in PA. We can also
prove a converse to this, which shows that all functions provable total in
PA can be represented in TT0. The origins of this result lie with Gödel’s
Dialectica interpretation of PA in a theory of functions which itself can
be viewed as a subtheory of TT0 [G5̈8]. More details of this and many
other topics relating to the metamathematics of intuitionism can be found
in [Tro73].

Theorem 5.45 A function f over the natural numbers is representable in
TT0 if and only if it is provably total in PA (or HA).

The author is unaware of precise characterisations of the functions repre-
sentable in the stronger theories TT and TT+, although [Bee85] gives some
partial results, including one for a system with a single universe. Whatever
the case, the class of functions representable in the type theories is very
large, and indeed it can be argued that this more than encompasses all the
functions we might ever wish to program. In terms of sheer computation
time all the functions we program are primitive recursive, in the sense that
by suitable transformation any more complex calculations can be bounded
by primitive recursive bounds. This is not the most natural way to pro-
ceed; in the next chapter we look at the ways in which functions are most
naturally implemented in the language.

Exercise

5.34. One function which cannot be written in TT is an interpreter for the
expressions of TT itself. Discuss how a bounded interpreter for the language
can be written.
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5.12 The Curry Howard Isomorphism?

The identification of propositions and types, proofs and objects has been
fundamental to our investigation so far. In this section we look at two
aspects of the system which seem not to fit with this identification.

5.12.1 Assumptions

Suppose we have a proof p of the proposition B depending upon the as-
sumption A. The rule of⇒introduction allows us to derive A⇒ B without
the assumption of A. There may be a number of occurrences of A in p;
without loss of generality all these are discharged by the implication in-
troduction. This intuitive account is not an accurate account of the rule
(⇒ I); only the assumptions of A named x are discharged in the application

[x :A]
...

e :B
λx . e : A⇒ B

(⇒ I)

and if e also contains y :A, the proof of A⇒ B still depends upon A. The
alternative rule, which we call (⇒ I)alt would discharge all assumptions of
A. It might be argued that the rule (⇒ I) allows the user of the system more
freedom in proof construction. This is the case, but nonetheless it allows
no more theorems to be proved, for we can simply replace all occurrences
of (⇒ I) by (⇒ I)alt, some of the applications of the latter resulting in
vacuous discharges of the hypothesis of the implication.

On the other hand, named variables are crucial, as can be seen by the
derivation

[x :N ]2 [y :N ]1

(x + y) : N

λy . (x + y) : N ⇒ N
(⇒ I)1

λx . λy . (x + y) : N ⇒ N ⇒ N
(⇒ I)2

For the object λx . λy . (x+y) to have the proper computational behaviour,
it is crucial that the two assumptions x : N and y : N are distinct, and
that x : N is not identified with y : N . As far as the inhabitation of the
proposition N ⇒ N ⇒ N is concerned, it is irrelevant, naturally.

The mismatch here can be traced to the divergence of interests between
the users of a logical system, who are primarily interested in proving theo-
rems, that is in showing that particular types are inhabited, and the users
of a programming language who are interested in the behaviour of many



192 CHAPTER 5. EXPLORING TYPE THEORY

different objects of a given type. On the other hand, the proof theorist
who studies the general behaviour of logical systems is interested in such
behaviour. We look at this next.

5.12.2 Normal Forms of Proofs

When we discussed computation and reduction in section 5.5 the emphasis
was from the programming point of view: we argued that the expressions
we were interested in studying were closed expressions of ground type: these
are the printable values of a functional language. If we think of the expres-
sions as denoting proofs of formulas, then neither assumption is tenable.
We are interested in proofs of expressions like

(A⇒ B)⇒ (A⇒ C)

which are not of ground type, and which may depend upon assumptions
(in this case, on A⇒ (B ⇒ C) say).

Proof theorists, such as Prawitz in his pioneering study of Natural De-
duction, [Pra65], are interested in showing that

[The] rules allow the deduction to proceed in a certain direct
fashion, affording an interesting normal form for deductions.

[Pra65] shows the normal form theorem for proofs in a number of different
systems of deduction, including first- and second-order classical and intu-
itionistic logic. The crucial reduction to ensure ‘directness of proof’ is that
embodied in our computation rules: the elimination of a formula just intro-
duced can be avoided. For example, the rule of β-reduction is interpreted
as saying that the natural deduction proof

...
A

[A]
...
B

A⇒ B
(⇒ I)

B
(⇒ E)

can be transformed to

...
A
...
B

in which the proof of A replaces the assumption(s) of A in the proof of B.
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The computation rules are not the only simplifications possible. For the
reasons above, the arguments of 2.11 do not apply, and so we have another
mismatch. The extra rules come in two different forms. Instead of replacing
‘introduction then elimination’ we can also replace ‘elimination then intro-
duction’. These are examples of the equivalence rules we discussed earlier.
For example, we might encounter the following steps in a proof.

[A] A⇒ B

B
(⇒ E)

A⇒ B
(⇒ I)

A ∧B

A
(∧E1)

A ∧B

B
(∧E2)

A ∧B
(∧I)

both of which are completely irrelevant to the result of the proof. The
corresponding reduction rules in type theory are

λx . (f x) → f if x not free in f

(fst p, snd p) → p

and for each type we can devise a similar rule. The reading we have given to
the rules above shows that as far as proofs are concerned, they do perform
a simplification.

The other class of commutation rules are included in the system stud-
ied by Prawitz for more technical reasons, which are discussed by him and
also in [GLT89, Section 10]. The simplest is the equivalence between

P1

∃x.B
P2

F

F
(E∃) P3

D
(R)

P1

∃x.B

P2

F
P3

D
(R)

D
(E∃)

in which we can see that the proof of D from F and the proof P3 can be
performed before or after the existential elimination. Any orientation of
this equivalence into a reduction rule will be arbitrary. Prawitz chooses to
reduce the left-hand to the right-hand side.

These considerations seem to be motivated by proof-theoretic consider-
ations, but a final twist is added by their link with the discussion of the
computational efficiency (or otherwise) of certain rules, and in particular
the considerations which lead us to the strong elimination rules of section
7.7.
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Chapter 6

Applying Type Theory

This chapter investigates the different ways in which the system of type
theory can be used.

• We are already familiar with type theory as a constructive logic, and
have seen a number of examples of proofs being built in, for example,
sections 4.5 and 4.6.1.

• We have also seen that TT can be seen as a functional programming
language, with a number of novel features, such as:

– Every expression has a defined value; every program terminates.

– The system of types is more expressive than those in common
use, allowing as it does dependent product and function spaces.

– The functional language is integrated with a logic in which to
reason about the programs.

• Another view of program development is provided by the insight that
in TT we can think of programs as being extracted from construc-
tive proofs. This combines the two interpretations in an elegant and
powerful way.

• Not only can we use the logical system to reason about the prop-
erties of programs, we can also use to system to support program
transformation.

• Finally, we show how we can develop imperative programs within a
type-theoretic framework.

195
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We begin our discussion by looking at TT as a functional language. We
assume that the reader is familiar with the elements of functional program-
ming as covered in [BW88] and [Rea89], so that in choosing examples we
look for distinctive features of programming in TT , rather than running
through the traditional repertoire of functional programming techniques.
In section 6.1 we show how primitive recursion is used to define functions
and types (or propositions). Because the language is terminating, a number
of familiar functions, like the function taking the head of a list, need to be
defined in novel ways. Using the more expressive type system we are able to
give the head function its ‘proper’ type, as a function acting over the type of
non-empty lists. TT contains only primitive recursion over each primitive
type; we show how more complex forms of recursion, like course-of-values
recursion, can be programmed in TT .

In section 6.2 we investigate a larger example, that of the quicksort
function over lists. Here we develop the program first and then prove that
it meets its specification, showing that we have a system in which program-
ming and verification are integrated. We follow this with a more detailed
survey of the uses of dependent types, especially in the presence of uni-
verses. These give dependent function and sum types, which can be seen
to support polymorphic functions, abstract data types, type classes (à la
Haskell, [HW90]) and modules. In section 6.4 we apply these ideas in de-
veloping a type of vectors.

We look at how programs can be extracted from a number of simple
derivations in section 6.5, before discussing a general strategy for program
derivation in section 6.6. We also use this opportunity to give a novel view
of specifications in type theory, and examine the ideas in the context of the
well-known problem of the Dutch (or Polish) National Flag.

Our view of programming has been exclusively functional up to this
point. In section 6.8 we argue that imperative programs can be seen as
functional programs of a particularly restricted sort, the tail-recursive func-
tions. We can thus view TT as extending an imperative programming lan-
guage and we give a general result about the transformation of primitive
recursive programs into tail-recursive form, after looking at various concrete
examples.

We conclude the chapter with a survey of other examples discussed in
the literature of type theory.

6.1 Recursion

One of the properties of the systems of type theory TT0, TT and TT+ is
strong normalisation: every computation sequence terminates. This means
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that the system does not permit full general recursion to be used, as in an
unrestricted form this can lead to non-termination. A simple example is
given by

f 0 ≡df 0
f (n + 1) ≡df f (n + 2) + 1

and other, less obvious, examples can be constructed.
As a counterbalance to the weaker recursion operation, we have a more

powerful type system than is common in programming languages. We are
able thus to express more precisely the true types of functions, using for
instance the existential quantifier to build a subset type, over which the
function is total.

In some cases, the definition of the function itself depends upon an
inductive proof that it terminates; the effect of this is to give functions
whose definitions manipulate information witnessing certain facts, as well as
the computational data. This intermingling of verification and computation
is characteristic of type theory.

We concentrate on examples over the natural numbers and lists in this
section, with some introduction of quantified types as we go along. We look
in more depth at these types in the next section.

Before examining particular examples of definitions, it is worth men-
tioning that two general methods present themselves.

• Theorem 5.45 shows that anything provably total in PA can be pro-
grammed in TT0, and indeed the proof will provide a term. This
does beg the question of how the function is proved total; we would
argue that the system TT0 provides exactly the right environment in
which to give such proofs, as it allows a constructive derivation of the
function which assures its totality.

• Proof theorists have characterised classes of provably total functions
by means of the well-orderings which can be used in defining these
functions by recursion [Sch77]. We could use this characterisation to
give functions in TT0, but again would argue for the natural nature
of the system itself. There have been a number of proposals for in-
corporating principles of well-founded or general recursion; we look
at these in section 7.9.

6.1.1 Numerical functions

We look at some examples embodying common patterns of recursion, and
show how they are coded in TT0. First, consider the näıve addition algo-
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rithm,

add a 0 ≡df a

add a (n + 1) ≡df add (a + 1) n

This appears to be primitive recursive, except for the fact that the argument
a is increased on the recursive call. To make a properly primitive recursive
definition, we observe that we can define the values add a n simultaneously
for all a, by induction on n. In other words, we define the functions

λa . (add a n)

by induction over n. That this is possible is due to the fact that in the
definition of adda (n+1) we appeal to a value of add with second argument
n. Formally, if we let C ≡df (N ⇒ N), then at the base case we define

c≡df λa . a : C

To give the recursion step, we say

f n h a≡df h (a + 1)

where n, a :N and h :C. This gives

f : (N ⇒ C ⇒ C)

and so by a simplified form of (NE) in which C is constant,

n : N c : C f : (N ⇒ C ⇒ C)
prim n c f : C

(NE)

with the reduction properties

prim 0 c f a → c a

≡ (λa . a) a

→ a

prim (n + 1) c f a → f n (prim n c f) a

→ (prim n c f) (a + 1)

We therefore have the definition

add≡df λa . λn . (prim n c f a)

There is an analogy between the generalisation we had to make here, from
defining one function to defining a class of functions simultaneously, and
the generalisations of induction hypotheses we often have to make when
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we prove a result by induction. If + is the usual addition operator and we
wish to prove that

add a n = (a + n)

by induction, then the hypothesis we shall have to take is that

(∀a :N) . (add a n = (a + n))

rather than the ‘bare’ equation with a as a parameter.
Primitive recursion defines a value at (n + 1) from the value at the

immediate predecessor n — sometimes it is natural to use a value at a
number m smaller than n. A case in point is the power function

power k 0 ≡df 1

power k n ≡df (power k (n div 2))2 ∗ k(n mod 2)

where the value at positive n is derived from that at (n div 2). (Note that
we are not using the power function in the second multiplicand: this is
either 1 or k depending upon whether n is even or odd. Observe also that
in contrast to the first argument of add that here k is simply a parameter
of the definition — its value is unchanged on the recursive call.)

This definition provides an example of a general phenomenon, called
course-of-values recursion. To give a sketch of the method, we replace a
definition of the form

f 0 ≡df a

f (n + 1) ≡df . . . f 0 . . . f 1 . . . f n . . .

by a definition of the function

g n≡df [f 0 , . . . , f n]

which has as its value at n the list of values of f on numbers up to n. The
definition of g (n + 1) is made by defining f (n + 1) from the list g n and
appending the value to the list. We obtain the value f n by taking the last
value in the list g n. We shall show how to realise this form of definition in
type theory after looking at lists.

Exercises

6.1. Show how to define the ‘natural subtraction’ operation over the natural
numbers

natsub m n≡df max 0 (m− n)

where (m− n) is intended to denote integer subtraction.
6.2. In section 5.3 we gave a definition of the type of integers: how would

you define the arithmetic operations of addition, subtraction and multipli-
cation over the integers defined in that way?
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6.1.2 Defining propositions and types by recursion

Using the universes U0, U1, . . . we can make definitions of parametric types
or propositions by recursion. Consider the predicate ‘non-zero’ over the
natural numbers. One way to define it is to use the equality relation over
N and say

nonzero n≡df ¬(n =N 0)

If n is zero then an element of this type will be a function

(0 =N 0)⇒ ⊥

which when applied to the equality witness will yield ⊥, so this type is
inhabited if and only if every type is. On the other hand it can be shown
that for every other element of N , the type will be inhabited, a consequence
of the axiom which asserts that the two boolean values are distinct:

ax : ¬(True =bool False)

which was introduced in chapter 4.
Rather than defining the predicate in terms of other predicates, we can

simply give a direct definition of it, as a function with result in U0. We say
that

nz 0 ≡df ⊥
nz (n + 1) ≡df >

The proof objects in this case are either non-existent, in the case of 0 or
Triv, the trivial proof, in the case of (n + 1). Recalling the type of lists
introduced earlier, we can give a similar definition of the predicate for non-
empty lists:

nonempty : [A]⇒ U0

nonempty [ ] ≡df ⊥
nonempty (a :: x) ≡df >

Given this predicate we can define the type of non-empty lists thus:

nelist A≡df (∃l : [A]) . (nonempty l)

elements of which will be pairs

(l, p)

with p : (nonempty l). In the case that l is empty, this p will be a proof of
⊥ and in any other case it will be Triv.
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In the cases above we have simply used the case analysis aspect of
primitive recursion in making the definitions. Now we look at an example
which uses the full power of recursion in defining the ‘less than’ relation
over the natural numbers.

Informally, nothing is smaller than zero, zero is smaller than n + 1,
and m + 1 is smaller than n + 1 if and only if m is smaller than n. Two
possibilities suggest themselves for the representation of the relation. We
can define the boolean function

lt1 : N ⇒ N ⇒ bool

lt1 m 0 ≡df False

lt1 0 (n + 1) ≡df True

lt1 (m + 1) (n + 1) ≡df lt1 m n

The proposition that m is smaller than n is given by the equality

I(bool, lt1 m n , True)

The alternative is direct.

lt2 : N ⇒ N ⇒ U0

lt2 m 0 ≡df ⊥
lt2 0 (n + 1) ≡df >

lt2 (m + 1) (n + 1) ≡df lt2 m n

so that for m and n in N

lt2 m n

is itself a proposition. (Note that in both these cases, we have to make the
definitions simultaneously on all the values of the first argument.) In what
follows we shall use the second of these definitions, so that lt ≡df lt2 and
we shall write lt m n thus: m < n.

Exercises

6.3. Show that, given the axiom asserting that the boolean values are
distinct, the proposition

(∀x :N) . ((x =N 0) ∨ ¬(x =N 0))

is inhabited.
6.4. Show that for all natural numbers n and m the propositions lt1 m n

and lt2 m n are equivalent.
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6.5. How would you formulate the relation ‘less than or equal to’ by analogy
with the formulations above?
6.6. Give a recursive definition of the iterated cartesian product operator,
which maps a type A and a natural number n to the product

A ∧ (A ∧ . . . (A ∧A) . . .)︸ ︷︷ ︸
n

where the product of zero copies of A is defined to be >. How would you
define the projection operations on these types?

6.1.3 Recursion over lists – 1

Lists were introduced in section 5.10 as an example of a well-founded type,
which carries a recursion/induction operator, lrec. In this section some of
the more common list-manipulating functions are discussed. A number of
these come from the standard environment of Miranda which is a library of
function definitions made available to the Miranda user. As we mentioned
above a non-empty list, (a :: x), has a head, a, and a tail, x. Can we
define functions returning these values? There is a problem here — what
are we to do with the empty list, [ ], which has neither head nor tail? The
solutions we present here can be applied to many examples of ostensibly
partial functions.

• We can supply an extra parameter to the function, which is to be
returned in the case that the list argument is the empty list. For
example

head1 : A⇒ [A]⇒ A

head1 h [ ] ≡df h

head1 h (a :: x) ≡df a

In some situations, there is a ‘natural’ choice for this element, as the
case of the tail function:

tail1 : [A]⇒ [A]
tail1 [ ] ≡df [ ]

tail1 (a :: x) ≡df x

• We can make the result type of the function a sum type. Recalling
our naming conventions from section 5.2.1, we can write

error A≡df ok A + err >
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where we abbreviate (err Triv) by error. Now we can define

head2 : [A]⇒ error A

head2 [ ] ≡df error

head2 (a :: x) ≡df ok a

and similarly,

tail2 : [A]⇒ error [A]
tail2 [ ] ≡df error

tail2 (a :: x) ≡df ok x

• Instead of enlarging the range of the function, we can restrict the
domain, which is perhaps the most natural thing to do. We want to
apply the functions to non-empty lists, so we define

nelist A≡df (∃l : [A]) . (nonempty l)

as we did in section 6.1.2. The head function can be given the type

head3 : nelist A ⇒ A

so we aim to derive the head of the list l on the basis of the pair (l, r).
Working by cases, if l is (a :: x) then the head is a, and we are done.
If, on the other hand, l is [ ], we have

nonempty l ≡df ⊥

so that r :⊥. We then have

abortA r : A

which gives us the element of A which was required. A similar deriva-
tion gives us

tail3 : nelist A ⇒ [A]

• We can define functions head4 and tail4 of type

(∀l : [A]) . (ne l⇒ A) and (∀l : [A]) . (ne l⇒ [A])

with the appropriate properties since these types are extensionally
isomorphic with the types of head3 and tail3 respectively, a property
we proved in section 4.6.1.
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Whichever choice of definition we make there will be a proof-theoretic obli-
gation to show that the argument is non-empty, as if it is not then

• if we are using head1 we may get the default value as a result;

• if we are using head2 we may get the value error as the result rather
than an ‘ok’ value; and finally,

• if we are using head3 we need a proof that the list is non-empty in
order to apply the function itself.

In what follows we shall use the third definition, so that hd≡df head3 and
tl ≡df tail3. We leave the definition of the function which returns the last
element of a non-empty list,

last :nelist A ⇒ A

as an exercise
Two standard functions which we can define without difficulty are the

function returning the length of a list, usually written #, and the function
which joins two lists together, ++. Equationally they are given by

# [ ] ≡df 0
# (a :: x) ≡df #x + 1

[ ] ++ y ≡df y

(a :: x) ++ y ≡df a :: (x ++ y)

the reader should have no problem putting them in lrec form.
With the example of course-of-values recursion in mind, we need to

define a function which will extract one of the values from a list. Informally,

[a0, . . . , an−1] ! m≡df am

What do we do when m is out of the range 0, . . . , n− 1? One option is to
return a default value, or the last value in the case of a non-empty list, but
we can define the function so that its type is sufficiently restricted not to
allow indexing which is ‘out of range’. Given a list l the permissible indices
are those less than the length # l. The next subsection explores various
options for this.

Exercises

6.7. Give a definition of the function last mentioned in the section above.
6.8. Give an explicit definition of the function

head4 : (∀l : [A]) . (ne l⇒ A)
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discussed above.
6.9. A type of non-empty lists can be defined in a similar way to [A]. For-
mulate the rules of formation, introduction, elimination and computation
for this type, and define the head, last and tail functions for this type.
6.10. Formulate a version of the indexing function ‘!’ for the type of non-

empty lists which will return the last element in the list as a default if the
index is ‘out of range’.

6.1.4 Recursion over lists – 2

In this section we look at the list indexing function and return to the issue
of course-of-values recursion over the natural numbers.

Recall the definition of < in section 6.1.2. We define the function index
to have the type

(∀l : [A]) . (∀n :N) . ((n < #l)⇒ A)

Given a list l, a natural number n, and a proof that n is smaller than the
length of l we return the nth element of l. How is index defined?

index [ ] n p ≡df abortA p

index (a :: x) 0 p ≡df a

index (a :: x) (n + 1) p ≡df index x n p

The second and third clauses are clear. What is happening in the first? p
is a proof that (n < #[ ]) that is (n < 0), which is ⊥ — we can define an
element of A from p using abortA.

It is interesting to see that the definition of index can be made either
by induction over N with a subsidiary induction over [A], or vice versa —
the two arguments are independent of each other.

Now we can return to the example of course-of-values recursion, as we
have defined all the auxiliary functions that are needed. Taking a special
case of the power function, we have

pow 0 ≡df 1

pow n ≡df (pow (n div 2))2 ∗ 2(n mod 2)

which can be rewritten thus, where h is a primitive recursive function,

pow 0 ≡df 1
pow (n + 1) ≡df h (pow (n+1 div 2)) n

Transforming this into a list definition, we have

g 0 ≡df [1]
g (n + 1) ≡df (g n) ++[h ((g n) ! (n+1 div 2)) n]
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The subexpression g ! (n+1 div 2) is informal; index takes a third argument
which is a proof object, legitimising the application. The application will
be legitimate if we can show that

(n+1 div 2) < #(g n)

This will follow from proofs of

(0 < m)⇒ (m div 2 < m)

which is standard, and

#(g n) = (n + 1) (6.1)

which we have to establish by induction, simultaneously with the definition
itself. Transforming again, we define a function which returns a pair

( g n , pn )

where pn proves the assertion (6.1). To extract the result (f n) from the
value (g n) we apply the head function. Remember that to do this we need
a proof that the list is non-empty. We can use (6.1) again here to show
this, as it states that all the values (g n) have positive length, and so none
of them can be empty.

We can see from the derivation of the function above that the system is
quite different from a traditional functional programming system, in that
the definition of a function cannot be separated from a proof that it termi-
nates. In fact, this is not quite accurate — if we had adopted the approach
which gives default or error values to head and index we could perform
the derivation without the inferences we needed above, but once derived
we would have to prove that the values returned by the function are ‘ok’
and not error or default values.

Exercises

6.11. Using induction over m : N prove that (m div 2) < m for all m > 0.
6.12. Formalise the derivation of the functions g and pow above.
6.13. Give a proof that for all lists l and m,

#l + #m = #(l ++m)

6.14. Consider the example of ‘Russian multiplication’ given by the defini-
tion

mul a 0 ≡df 0
mul a b ≡df (mul (2 ∗ a) (b div 2)) + a ∗ (b mod 2)
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How would you argue that this is definable in type theory?
6.15. Show how the following functions, defined informally, can be given

definitions in type theory

merge : [N ]⇒ [N ]⇒ [N ]
merge [ ] y ≡df y

merge (a :: x) [ ] ≡df (a :: x)
merge (a :: x) (b :: y) ≡df a :: (merge x (b :: y)) if less a b

≡df b :: (merge (a :: x) y) if not

foldl : (A⇒ B ⇒ A)⇒ A⇒ [B]⇒ A

foldl f a [ ] ≡df a

foldl f a (b :: y) ≡df foldl f (f a b) y

6.2 A Case Study – Quicksort

This section surveys the general area of sorting numerical lists and gives a
complete development and verification of the quicksort function over these
lists. In the course of the development we will have occasion to define other
useful functions and discuss proofs of general theorems.

6.2.1 Defining the function

The function quicksort over numerical lists can be defined in a functional
language language like Miranda thus:

qsort : [N ]⇒ [N ]
qsort [ ] ≡df [ ]

qsort (a :: x) ≡df qsort (filter (lesseq a) x)
++ [a] ++
qsort (filter (greater a) x)

where the function filter, which selects the elements of a list which have
the property p : (A⇒ bool), has the type-theoretic definition

filter : (A⇒ bool)⇒ [A]⇒ [A]
filter p [ ] ≡df [ ]

filter p (a :: x) ≡df a :: (filter p x) if (p a)
filter p (a :: x) ≡df filter p x if not

which is by an induction over the list argument.
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The function lesseq, of type (N ⇒ N ⇒ bool), is defined thus

lesseq 0 x ≡df True

lesseq (n + 1) 0 ≡df False

lesseq (n + 1) (m + 1) ≡df lesseq n m

which is formalised as a primitive recursive definition of the functions

λm . (lesseq n m)

over the variable n : N . The function greater is defined in the analogous
way.

We shall also use a proposition (m ≤ n) asserting ‘less than or equal
to’. It is defined by the analogous recursion thus:

0 ≤ x ≡df >
(n + 1) ≤ 0 ≡df ⊥

(n + 1) ≤ (m + 1) ≡df n ≤ m

How can we give a type theoretic version of the definition of qsort? The
crucial observation is that the length of the lists on which the recursive call
is made is smaller than the length of (a :: x), so the recursion is justified
by course-of-values recursion over N .

The modified definition of quicksort is by means of a function with three
arguments. This first is a number n, the second a list l to be sorted and
the third a proof that (#l ≤ n). The functions

λl . λp . qsort′ n l p

are defined by recursion over n:

qsort′ : (∀n :N) . (∀l : [N ]) . ((#l ≤ n)⇒ [N ])
qsort′ n [ ] p ≡df [ ]

qsort′ 0 (a :: x) p ≡df abort[N ]p
′

qsort′ (n + 1) (a :: x) p ≡df qsort′ n (filter (lesseq a) x) p1

++ [a] ++
qsort′ n (filter (greater a) x) p2

What are the proof objects p′, p1, p2?
By assumption p : (#(a :: x) ≤ 0) and we can also prove (0 < #(a :: x)).

These two proof objects are combined to give an element p′ of 0 < 0, which
is the type ⊥.



6.2. A CASE STUDY – QUICKSORT 209

Suppose that p : (#(a :: x) ≤ (n + 1)). Since

#(a :: x) ↔↔ #x + 1

we have

(#(a :: x) ≤ (n + 1)) ↔↔ #x ≤ n

so by the substitution rules,

p : (#x ≤ n)

Now we note a general result.

Lemma 6.1 For all lists x and properties p,

#(filter p x) ≤ #x

Proof: Straightforward induction over the list x. 2

Now, by the transitivity of the relation ≤, whose proof we also leave to
the reader, we can define proofs of

#(filter (lesseq a) x) ≤ n #(filter (greater a) x) ≤ n

These are the objects p1 and p2. We leave it as an exercise to define these
values formally, to be the results of functions hi, where the type of h1 is,
for instance,

(∀a :N) . (∀n :N) .
(∀x : [N ]) . (∀p : (#(a :: x) ≤ (n + 1))) .

(#(filter (lesseq a) x) ≤ n)

We must define these values pi in order for the recursive application of
qsort′ to be properly typed.

The function qsort itself is defined by

qsort l ≡df qsort′ (#l) l T riv

since Triv constitutes the canonical proof that (#l ≤ #l).

6.2.2 Verifying the function

We have implemented the quicksort algorithm before having specified its
purpose: we expect it to sort a list, so that it should

• return a result which is sorted, and,

• return a result which is a permutation of its argument
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A list is sorted if and only if for each pair of elements chosen from the
list, the element which lies to the left is smaller than or equal to the other.
Formally,

(∀m :N) . (∀n :N) .
(∀p : (m < n)) . (∀q : (n < #l)) .

(index l m p′ ≤ index l n q)

where p′ is the proof of (m < #l) derived from p and q by transitivity of the
ordering relation. List indexing was defined above, the reader might recall
that in order for an application of the function to be legitimate, there needs
to be evidence that the index is less than the length of the list argument.

The proof can be developed for this characterisation, but we choose
instead to define sorting in an inductive way, over the structure of the list.

sorted : [N ]⇒ U0

sorted [ ] ≡df >
sorted [a] ≡df >

sorted (a :: b :: x) ≡df (a ≤ b) ∧ (sorted (b :: x))

We say that one list is a permutation of another if the number of occurrences
of any possible element is the same in both the lists.

perm l l′ ≡df (∀a :N) . (occs a l =N occs a l′)

The function counting the occurrences is given by

occs a [ ] ≡df 0
occs a (b :: x) ≡df 1 + occs a x if eqN a b
occs a (b :: x) ≡df occs a x if not

In stating a number of auxiliary results we will need one further definition:

mem :: A⇒ [A]⇒ U0

mem a [ ] ≡df ⊥
mem a (b :: x) ≡df (a = b) ∨ (mem a x)

The lemma which follows enumerates a number of basic properties of
the oredering relation, the functions occs, mem and the relation perm.

Lemma 6.2 The following types are inhabited.

1. (∀x, y :N) . (lesseq x y = True⇒ x ≤ y)

2. (∀x, y :N) . (lesseq x y = True ∨ greater x y = True)
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3. (∀x, y :N) .¬(lesseq x y = True ∧ greater x y = True)

4. (∀p :N ⇒ bool) . (∀l : [N ]) . (∀x :N) . (memx (filter p l)⇒ px = True)

5. (∀l : [N ]) . (∀a, x :N) . (mem x (filter (lesseq a) l)⇒ x ≤ a)

6. (∀x :N) . (∀l : [N ]) . (mem x l⇔ occs x l > 0)

7. (∀l, l′ : [N ]) . (perm l l′ ⇒ (∀x :N) . (mem x l⇔ mem x l′))

8. (∀a :N) . (∀l,m : [N ]) . (occs a (l ++m) = occs a l + occs a m)

9. (∀l,m, x : [N ]) . (∀a :N) . (perm(l++m)x⇒ perm(l++[a]++m)(a :: x))

10. (∀l, l′,m, m′ : [N ]) . perm l l′ ∧ perm m m′ ⇒ perm (l ++m) (l′ ++m′)

11. (∀l : [N ]) . (∀a :N) . perm l (filter (lesseq a) l ++filter (greater a)l)

12. perm is an equivalence relation.

Proof: Results 1–3 are proved by induction over N ; 4,6 by induction over
the list l. 5 is a corollary of 1 and 4. 7 is a corollary of 6; 8–10 are again
proved by induction over the list l. 11 is a consequence of 2, 3 and 8. 12 is
a simple consequence of the definition of permutation. 2

The crucial lemma concerning sorting is

Lemma 6.3 The following proposition is inhabited.

(∀l,m : [N ]) . (sorted l ∧ sorted m ∧ (∀b :N) . (mem b l⇒ b ≤ a) ∧
(∀b :N) . (mem b m⇒ a ≤ b)⇒ sorted (l ++[a] ++m))

Proof: The result is established by an induction over the list l, with an
auxiliary case analysis over the list m in the case that l is [ ]. 2

We can now assert the theorem on the correctness of quicksort.

Theorem 6.4 The following proposition is provable.

(∀m :N) . (∀l : [N ]) . (∀p : (#l ≤ m)) .
sorted ( qsort′ m l p ) ∧ perm l ( qsort′ m l p )

Proof: The proof is by induction over the variable m, just as the function
was defined by recursion over this variable. In each part of the proof we use
a case analysis over lists: such a form of proof is a special case of induction
in which the induction hypothesis is not used.

Case m ≡ 0
There are two sub-cases according to whether the list is empty or not. In
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the former, the result is [ ] and this is both sorted and a permutation of
itself, giving the result. Suppose we have a non-empty list; just as when we
were defining the function, from the proof p we can extract a proof of ⊥
and thence a proof of anything, including the correctness conditions. This
completes the proof in the base case.

Case m ≡ (n + 1)
Again there are two sub-cases. In the case of an empty list we proceed
exactly as above, so suppose that we have a non-empty list l ≡ (a :: x).
Now

qsort′ (n + 1) (a :: x) p ≡ l1 ++[a] ++l2

where

l1 ≡df qsort′ n (filter (lesseq a) x) p1

l2 ≡df qsort′ n (filter (greater a) x) p2

By induction we know that

sorted l1 ∧ sorted l2 (6.2)

perm (filter (lesseq a) x) l1 ∧ perm (filter (greater a) x) l2 (6.3)

We aim to use lemma 6.3 to show that l1++[a]++l2 is sorted. The sortedness
hypotheses are given by (6.2), so we need to show that every element of l1
is less than or equal to a, and to show that every element of l2 is greater
than or equal to a. By (6.3) and lemma 6.2 (parts 5 and 7) we can deduce

(∀x :N) . (mem x l1 ⇒ x ≤ a)

and a similar proof establishes

(∀x :N) . (mem x l2 ⇒ a ≤ x)

Now, by lemma 6.3 we can deduce that the result is sorted.
To prove that

perm (a :: x) ( l1 ++[a] ++l2 )

we use a series of lemmas. By lemma 6.2(11) the list x is a permutation
of the two halves of the partition, which have permutations l1 and l2 by
(6.3). Using lemma 6.2, parts 9, 10 and 12, we have the desired result. This
completes the induction step and the proof itself. 2

Corollary 6.5 For all lists l,

sorted (qsort l) ∧ perm l (qsort l)
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Proof: Simply take the appropriate case of the theorem. 2

A number of remarks are in order.

• In most cases of program verification, the induction used in verifying
the result is of the same form as that used in the definition of the
function; the proof we have given is no exception. qsort is defined
to be a special case of qsort′, and we verified a generalisation of the
result using the same induction as we used to derive qsort′.

• The function qsort′ appears to be less efficient than the Miranda
algorithm, as the former contains the proof-theoretic information,
transmitted through the recursive calls. This is the case if we use
applicative order evaluation, which forces the evaluation of function
arguments prior to evaluation of the body. On the other hand, if
we use lazy evaluation, it can be seen that the terms p1, p2 in the
recursive calls will never be evaluated. We come back to this point in
chapter 7.

• The presentation of sorting we have given here presents the algorithm
first and the verification second. It is possible to reverse this, deriving
the result that

(∀l : [N ]) . (∃l′ : [N ]) . ( sorted l′ ∧ perm l l′ ) (6.4)

and extracting the quicksort function from the proof. This seems
highly artificial in this case where the function is well-known, but the
reader may wish to reconstruct the result in this way.

The definition of quicksort is an example of a general phenomenon, in which
a general recursive definition of a function g over a type A

g x≡df . . . g (h x) . . .

is justified by appeal to induction over another type B, where there is a
function

f : A⇒ B

so that

f (h x)

is a predecessor of (f x) in . The recursion g is justified by the inverse
image of recursion over B using the function f . In the case of quicksort,
we use the inverse image of induction over N under the length function. In
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related areas this function is often called a norm. This method justifies
many important definitions, some of which are included in the exercises
which follow.

Exercises

6.16. There are many other sorting algorithms over lists, amongst which are
insertion sort and tree sort. Show first how these expressed in type theory
and then show how they meet the specification of a sorting algorithm.
Alternatively prove the result (6.4) in such a way as to make the function
extracted from the proof the algorithm you wish to express.
6.17. How would you show that the greatest common divisor function

defined by

gcd n m ≡df n if n = m
gcd n m ≡df gcd m n if n < m
gcd n m ≡df gcd (n−m) m if n > m > 0
gcd n 0 ≡df 0 if not

can be defined in type theory?
6.18. Show how the algorithm for the permutations of a list, which uses

the Miranda list comprehension notation, can be coded in type theory.

perms [ ] ≡df [ [ ] ]
perms x ≡df [ (a :: p) | a← x ; p← perms (x−− a) ]

6.3 Dependent types and quantifiers

One of the features of TT which distinguishes it from traditional program-
ming languages is its ability to express dependent types. These are types,
or more correctly type expressions, which depend upon the value of one
or more variables which they contain. The operations ∀, ∃ and W form
types from these families of types, namely the dependent product type,
the dependent sum or subset type and a well-founded type. This section
concentrates on the two quantifiers, ∀ and ∃, after a discussion of how
dependent types, or type families, can be defined.

6.3.1 Dependent Types

By a dependent type we mean any type (expression) which contains one or
more free variables. Under the logical interpretation such types are simply
predicates, of course. Dependency is introduced in two ways.
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The rule of I formation introduces values into the types. Recall the rule

A is a type a :A b :A
I(A, a, b) is a type

(IF )

which forms the atomic equality proposition which is also written a =A b.
Clearly the expressions a and b can contain free variables, and thus are
variables introduced into the types; depending on the complexity of a and
b we build more or less complex propositions. Other dependent types are
then formed using the propositional connectives and quantifiers, but these
introduce no additional dependency. We have already seen examples of
this, in sections 4.10 and 6.1.2; another atomic example is the type

(#l =N n)

where l and n are variables of type [A] and N , and from this we can form
the dependent type

(∃l : [A]) . (#l =N n)

which contains the variable n free. For a fixed value of n, this is the type
of lists of that length, or more strictly, pairs

(l, r)

where r is a witness to (or proof of) the proposition (#l =N n).
One general class of propositions we can define in this way are those

which are representable by a boolean-valued function, such as the ‘less
than’ relation by

lt1 : (N ⇒ N ⇒ bool)

This is turned into a proposition by forming

I(bool , lt1 m n , True)

with n,m free. Propositions representable by boolean-valued functions are
decidable, and so this class of propositions is not closed under quantification
over infinite domains. Once we have turned such a representation into a
proposition as above its universal and existential closure as a proposition
can be formed. This method of forming propositions is indirect: we define
a boolean-valued function, by recursion say, and then make a proposition
by equating its application to True or False.

Using the universes U0, . . . we can define dependent propositions di-
rectly. The ‘small’ types are members of the type U0, and so we can use
the expression forming operators, such as cases and recursion, to form type
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expressions. This approach is not restricted to the members of U0; we can
make the same constructions at each level Un, and from an informal point
of view these constructions are often uniform in n. We have already seen a
number of examples of these definitions in section 6.1.2.

It has been proposed that a facility be added to TT0 which allows the
definition of types (or propositions) inductively without using the universe
U0 – we return to this topic in section 7.10 below.

6.3.2 The Existential Quantifier

The type (∃x : A) . B consists of pairs (a, b) with a : A and b : B[a/x]. If
B[a/x] is thought of as a type, then the construct looks like a sum of the
types B(x) as x ranges over A. On the other hand if B is a predicate,
then the construct can be seen as a subset of A, consisting of those a in
A with the property B[a/x]. Consistent with the principle of complete
presentation, the objects a are paired with the proofs b of the property
B[a/x]. We saw an application of the subset type in the definition of the
type of non-empty lists earlier.

An interesting class of subsets of [A] is given by the family

[A]n ≡df (∃l : [A]) . (#l = n)

of lists of length n, where n :N . Taking the sum over N , we have

(∃n :N) . (∃l : [A]) . (#l = n)

which is isomorphic to [A], by the functions

f : [A]⇒ (∃n :N) . (∃l : [A]) . (#l = n)
f l ≡df (#l, (l, r(#l)))

where r(#l) is the canonical member of (#l = #l), and

g : (∃n :N) . (∃l : [A]) . (#l = n)⇒ [A]
g (n, (l, s)) ≡df l

This division of the type seems arbitrary, and indeed we could have divided
the type according to any function

h : [A]⇒ . . .

but in this case it is interesting that many standard functions on lists can be
made to commute with this stratification, since they preserve the lengths
of the lists to which they are applied. One example is the map function,
mentioned on page 181, and we have a family of functions

mapn : (A⇒ B)⇒ [A]n ⇒ [B]n
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so that

mapn f (l, r)≡df (map f l , r)

which is legitimate since #(map f l) = #l is provable for all l, by induction.
These mapn functions behave like map, except that they carry along the
proof-theoretic information about the length of the list, which can be used
by functions that use the result.

We usually read a judgement a :A as either asserting that the object a
has type A, or that a is a proof of A. There is a particular case in which
both interpretations are used. This is the assertion that

(a, p) : (∃x :A) . P

which we can read as saying that object a, of type A, meets the specification
P (x), witnessed by the proof p :P [a/x] — we shall come back to this topic
later.

6.3.3 The Universal Quantifier

The universal quantifier ∀defines a dependent function space, so that if
f : (∀x :A) . B then

f a : B[a/x]

We have already seen this used to good effect in the quicksort function
above, amongst others. We shall see it used again in the coming example
of vectors, in which the operations over vectors are parametrised over the
size of the vector.

Both quantifiers have interesting properties when quantification is over
a universe; before we look at that we examine a slightly larger-scale appli-
cation, the implementation of a logic.

6.3.4 Implementing a logic

We take as an example the propositional logic of ‘and’ and ‘implies’. Using
our earlier notation, we have a well-founded type which describes the syntax
of the formulas, thus:

fmla ≡df V bl var + T + F +
And fmla fmla + Imp fmla fmla

where T and F represent the propositions ‘true’ and ‘false’, and var is a
type representing the propositional variables, perhaps by character strings.
A definition by primitive recursion over fmla will give outright definitions
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for variables and the two constant propositions, and at Andf1 f2, Impf1 f2

will make recursive calls to the values at f1 and f2.
There are two approaches to defining the proofs of the logic. The first

is to make an embedding into the logic of TT itself, by means of a function
from formulas to types.

proof : fmla⇒ U0

proof (V bl v) ≡df {Assum v}
proof T ≡df >
proof F ≡df ⊥

proof (And f1 f2) ≡df (proof f1) ∧ (proof f2)
proof (Imp f1 f2) ≡df (proof f1)⇒ (proof f2)

{Assum v} is intended to denote the type with the single element Assum v.
Proofs are to be constructed in this system using the mechanisms of TT

itself; unfortunately, the method is flawed. Consider the proof (Assum v)
of the propositional variable (V ar v). In order to construct a proof of the
tautology

Imp (V ar v) (V ar v)

we need to be able to build a function from the one element type to itself:
this is trivial, but so is finding a function of type

Imp (V ar v) (V ar v′)

for any variable v′ in the system! This is not a sound representation. The
difficulty is that the proofs of assumptions are not really variables of the
system TT , which they would have to be for the embedding to be sound.
Nonetheless, the embedding is sound if we leave out the variables, giving a
system with constants and connectives.

In order to achieve a sound implementation in general, we look at the
traditional ‘LCF’ approach to the problem [Pau87]. Under this approach we
build an abstract type of proofs, with each deduction rule represented by a
function over the type. The TT mechanism for abstract types is discussed
in the section to come, here we look at the implementation of the proof
type. We define

proof ≡df Tr + ConjI proof proof +
ConjE1 proof + ConjE2 proof +
ImpI proof fmla + ImpE proof proof

The type can be interpreted case-by-case
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Tr is the trivial proof of T .

ConjI p1 p2 is a proof of (And f1 f2) if the pi are proofs of fi.

ConjE1 p is a proof of f1 if p is a proof of the pair (f1, f2). If p does
not have this form, the object does not represent a proof. A similar
analysis applies to ConjE2.

ImpI p g is a proof of the formula (Imp g f), if p is a proof of f .

ImpE p1 p2 is a proof of f if p1 proves g and p2 proves (Imp g f). If not,
the object does not represent a proof.

The cases of ConjE and ImpE are difficult. Some applications of the
constructors do not produce proofs. In the LCF approach, this gives rise
to an error, or an exception if the SML language is used. We can use
the dependent type mechanism to make proof construction secure without
raising errors or exceptions.

First we define a function

proves : proof ⇒ (fmla + dummy)

which returns the object proved by an element of the type proof , giving
the dummy value when one of the exceptional cases above arises. Then we
define the subtypes

prf f ≡df (∃p :proof) . (proves p = f)

Using these we can give types to the functions which eliminate conjunctions

conjE1 : (∀f :fmla) . (∀g :fmla) . (prf(And f g)⇒ prf f)

and implications.

impE : (∀f :fmla) . (∀g :fmla) . (prfg ⇒ prf(Imp g f)⇒ prf f)

The essential effect of the functions conjE and impE is to apply the cor-
responding constructor. We know that their application is only permitted
when it will take legitimate proofs into a legitimate proof, and thus the
possibility of raising errors is excluded.

We can define functions tr, conjI and impI corresponding to the action
of the constructors Tr, ConjI and ImpI, and then build on top of the type
proof an abstract type of secure proofs, secproof , whose signature consists
of these functions only. The type secproof will only contain legitimate
proofs.
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Exercises

6.19. Give definitions of the functions proves, conjE1 and impE introduced
above.
6.20. Give types for and then define the functions tr, conjI and impI.
6.21. Prove that the type secproof contains only legitimate proofs, and

that all such proofs are contained therein.

6.3.5 Quantification and Universes – ∀
Quantification over the universes U0, . . . , Un, . . . allows us to assert the ex-
istence of types with certain properties, and to make definitions which are
parametrised by a type parameter. To take the latter example first, we saw
in section 5.9.2, that a form of polymorphism was given by definitions such
as

λAU0 . λxA . x : (∀A :U0) . (A⇒ A)

in which the first parameter ranges over the universe U0. Such definitions
are not restricted to the first universe, and we can derive uniformly in n
the judgements

(λA :Un) . (λx :A) . x : (∀A :Un) . (A⇒ A)

since the role played by the A is purely that of a parameter.
We have already seen how the quicksort function qsort can be defined

over lists of numbers. In fact, it can be defined over any type A which
carries a function

lesseq : A⇒ A⇒ bool

so the definition may be construed thus:

qsort : (∀A :U0) . ((A⇒ A⇒ bool)⇒ ([A]⇒ [A]))

This parametrisation is possible in a language like Miranda, but with the
more expressive type system of TT we can go further and demand that the
function supplied is an ordering. This we define thus:

Ordering(A) ≡df (∃ lesseq : (A⇒ A⇒ bool)) . (∀a :A) .

( lesseq a a = True ∧
(∀a, b :A) . lesseq a b = lesseq b a ∧
(∀a, b, c :A) . lesseq a b = lesseq b c = True⇒

lesseq a c = True )
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The subtype of sorted elements of [A] is given by

Slist(A)≡df (∃l : [A]) . (sorted l)

where the predicate sorted was defined above, and we can then show that
there is a verified version of quicksort

vsort : (∀A :U0) . (Ordering(A)⇒ ([A]⇒ Slist(A)))

The examples we have seen so far resemble the parametric polymorphic
functions permitted by the Hindley-Milner type system [Mil78] which is
used in the languages Miranda and SML. Milner polymorphic types contain
free type variables which resemble the A :U0 of the examples above; there
is no operation under which these variables are bound – a free type variable
is equivalent to a variable bound at the top level. A polymorphic typing
under the Hindley-Milner system can be seen as a shorthand for a class of
monomorphic typings: those which arise as substitution instances of the
polymorphic type.

In the system TT we can express different types. One of the simplest
examples is the type

(∀A :U0) . (A⇒ A)⇒ (∀A :U0) . (A⇒ A)

this type cannot be seen as a shorthand for a collection of monotypes: it is
the type of functions from a polymorphic type to itself. A function of this
type is given by

λf . ( if f bool (eqN (f N 0) (f N 1)) then f else id )

In the condition f bool (eqN (f N 0) (f N 1)) the function f is used on both
the booleans and on the natural numbers. The function must therefore be
of the polymorphic type (∀A :U0) . (A ⇒ A). The result returned is either
the function f itself or the identity function

id≡df λAU0 . λxA . x

Quantifiers over a universe can be used to define weak versions of various
familiar type constructors. For example, the type

Prod A B ≡df (∀C :U0) . ((A⇒ B ⇒ C)⇒ C)

resembles the product of the types A and B (which we assume inhabit the
universe U0). Given elements a :A and b :B we can define

Fa,b : Prod A B

Fa,b ≡df (λC :U0) . (λf :A⇒ B ⇒ C) . (f a b)
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and we can also define two ‘projections’ thus:

p : Prod A B ⇒ A

p F ≡df F A (λxA . λyB . x)

q : Prod A B ⇒ B

q F ≡df F B (λxA . λyB . y)

Observe that

p Fa,b ≡df Fa,b A (λxA . λyB . x)
≡df (λC :U0) . (λf :A⇒ B ⇒ C) . (f a b) A (λxA . λyB . x)
→ (λf :A⇒ B ⇒ A) . (f a b) (λxA . λyB . x)
→ (λxA . λyB . x) a b

→ λyB . a b

→ a

In a similar way, q Fa,b →→ b. This shows that the function Fa,b can be
thought of as representing the pair formed from a and b. Prod A B is a
weak representative of the pair as it is not possible to prove from the rules
of TT that every member of the type is such a pair: we fail to have a general
enough elimination or closure condition.

Other representations of types such as the disjunction (or sum type)
and algebraic types can be found in Chapter 11 of [GLT89].

Exercises

6.22. Give a derivation of the verified quicksort function above.
6.23. Show that the type

(∀C :U0) . ((A⇒ C)⇒ (B ⇒ C)⇒ C)

can be thought of as a weak sum type, and that the type

(∀C :U0) . (C ⇒ (C ⇒ C)⇒ C)

can be seen as a representation of the type of natural numbers.
6.24. Compare the weak representations of types given in the section and

exercise above with the elimination rules for the types represented – can
you see a general pattern emerging?
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6.3.6 Quantification and Universes – ∃
Existential quantification over a universe offers a rich collection of examples.
In section 5.9.2 it was explained that objects of type (∃A :U0) . P were pairs
(A, p) with A a (small) type and p a member of the type P , which depends
upon A. In the simplest case, of P ≡ A, we have a sum of the types in U0.

An important case is when P (A) is a conjunction of types

P1 ∧ . . . ∧ Pn

Objects of the existential type consist of a type A, together with elements
pi :Pi. We can think of P1∧. . .∧Pn as a signature and the tuple (p1, . . . , pn)
as an implementation of the signature. A traditional example in such cases
is

A ∧ (N ⇒ A⇒ A) ∧ (A⇒ A) ∧ (A⇒ N)

which gives elements which can usefully be named thus:

empty : A

push : (N ⇒ A⇒ A)
pop : (A⇒ A)
top : (A⇒ N)

The type (∃A : U0) . P can therefore be thought of as an abstract type, or
more precisely the collection of implementations of an abstract type, in this
case the type of stacks.

We observed earlier, in section 5.3.3, that the rule (∃E′) was weaker
than the rule (∃E) or the equivalent pair (∃E′

1) and (∃E′
2). We discuss

their formal differences in section 8.1.3, but we ought to look here at how
their difference affects the abstract data type or module construct.

The weak rule has been characterised by MacQueen in [Mac86] as giving
only a hypothetical witness to the existential statement. It is this inter-
pretation which underlies the Miranda abstype, [Tur85], and constructs
in a number of other languages. This interpretation has the disadvantage
that the encapsulation cannot be re-opened once formed, making it diffi-
cult to extend the functionality of the abstype once formed, a basic tenet of
object-oriented design. Specific examples can be found in MacQueen’s pa-
per and in the survey [CW85]. MacQueen therefore argues in [Mac86] and
[Mac90], which discusses the module mechanism in Standard ML, that the
appropriate notion is the strong one, which makes the witnesses transpar-
ent, allowing both the underlying type and the implementation functions
to be extracted, and thus permitting such extensions of types. Naturally,
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there are advantages to each approach, and perhaps both could usefully be
included in a programming language, each serving its own purpose.

We can interpret existential quantification over a universe in a different
way. The Haskell programming language uses Wadler and Blott’s idea of
type classes, first introduced in [WB89]. The motivation behind type
classes is to give a cleaner treatment of the quasi-polymorphism of the
equality operation in languages such as Miranda and SML. In the former, an
equality is defined over every type, despite the fact that it is the undefined
function on all but ground types. In SML a special kind of type variable
is introduced to range over only those types bearing an equality. Type
classes are defined to be collections of types each member of which must
have functions over it implementing the signature which defines the type.
For instance, every type t in the Eq class must carry a function eq of type

eq : t -> t -> bool

In type theory, a type class will be given by

(∃t :U0) . S

where S is the signature defining the class, in the case of Eq this being
t ⇒ t ⇒ bool. An example using Eq is the function which removes every
occurrence of an element from a list

remove [ ] b ≡df [ ]
remove (a :: x) b ≡df remove x b if eq a b
remove (a :: x) b ≡df a :: (remove x b) if not

which has the special Haskell type

remove : (Eq t) => [t] -> t -> [t]

which is intended to mean that remove is only defined over elements of the
class Eq. If we write

Eqt≡df (∃A :U0) . (A⇒ A⇒ bool)

then we can model the function remove in TT thus:

remove : (∀(A, eq) :Eqt) . ([A]⇒ A⇒ [A])

where we use the pattern (A, eq) to range over elements of the existential
type purely for readability. The restricted polymorphism is expressed ex-
plicitly, since the type variable A ranges only over those A which possess a
function of type (A⇒ A⇒ bool).
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Instead of the predicate part P of the type (∃A :U0) . P being simply a
type, it can contain proof information as well. For instance we might want
to stipulate that any implementation of the stack signature satisfies

(∀n :N) . (∀a :A) . (pop (push n a) = a)

(∀n :N) . (∀a :A) . (top (push n a) = n)

We do this by forming a subtype of

A ∧ (N ⇒ A⇒ A) ∧ (A⇒ A) ∧ (A⇒ N)

thus:

(∃ (empty, push, pop, top) :A ∧ (N ⇒ A⇒ A) ∧ (A⇒ A) ∧ (A⇒ N)) .
((∀n :N) . (∀a :A) . (pop (push n a) = a)∧

(∀n :N) . (∀a :A) . (top (push n a) = n))

In exactly the same way we can form logical type classes for which we
specify not only the existence of objects of a certain type, but also demand
that they have certain properties. In the case of Eq, we might ask for
the relation to be an equivalence relation, rather than an arbitrary binary
boolean valued function. The extra information supplied in one of these
type classes would allow us to infer properties of the functions defined over
the class.

It is interesting to observe that abstract data types and type classes are
modelled by exactly the same construction in type theory. In Haskell the
difference between the two lies in their use. In a Miranda abstype decla-
ration, we see a signature defined and bound immediately to a particular
implementation. Any code which uses the abstype must be capable of us-
ing any implementation of the signature, and so can be thought of as a
function over the appropriate type class. The novel feature of type classes
is that these functions over classes can be declared explicitly and can be
applied to more than one implementation of the specification within a given
scope.

Type classes can be thought of as adding one aspect of object-oriented
programming to a functional language. A member of a type class might be
thought of as an object. From this perspective, it is interesting to see that
there is support for (multiple) inheritance. A subclass of the class

C1 ≡df (∃t :U0) . S1

is defined by extending the signature part by adding more operations (or
in the case of a logical type class more operations or properties) to give the
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signature S2 and the corresponding class C2. Because S2 extends S1 there
will be a projection function

π2,1 :S2 ⇒ S1

which can be extended to

forget2,1 : C2 ⇒ C1

forget2,1 ≡df λp . (Fst p, π (Snd p))

Any function F : C1 ⇒ R defined over the class C1 can be applied to
members of C2 by composing with the function forget2,1

F ◦ forget2,1 : C2 ⇒ R

Multiple inheritance is supported by different extensions to signatures: the
forget functions will be defined uniquely by the signatures involved.

6.4 A Case Study – Vectors

Vectors are fixed-length sequences of values from a given type. One way
to model them is using the subtypes [A]n of the list type [A]; this section
explores a different treatment, representing vectors as functions over finite
types. First we define the finite types, then the vectors and finally we show
how functions can be defined uniformly over the different sizes of vector.

6.4.1 Finite Types Revisited

TT contains the finite types Nn, which are an obvious candidate for the
domains of the vectors — why are they unsuitable? The difficulty is that
they are not defined in a uniform way; in other words the mapping

n 7→ Nn

cannot be defined in type theory. We now show how the finite types can
be defined as subtypes of N in a uniform way. Recall the definition of the
‘less than’ relation in section 6.1.2

m < 0 ≡df False

0 < (n + 1) ≡df True

(m + 1) < (n + 1) ≡df m < n

We first establish that the relation is a total ordering on the natural
numbers.
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Theorem 6.6 The relation ‘<’ is a total ordering over the natural num-
bers, as each of the following propositions is inhabited.

1. Reflexivity. x 6< x

2. Symmetry. ¬(x < y ∧ y < x)

3. Transitivity. (x < y)⇒ (y < z)⇒ (x < z)

4. Totality. (x < y) ∨ (x = y) ∨ (x > y)

5. Successor. x < (x + 1)

Proof: Each of the parts is proved by induction. We look at the first and
the penultimate. For reflexivity, we work by induction over x. The base
case 0 6< 0 is given by the clause m < 0 ≡df False of the definition. Now
suppose that (n + 1) < (n + 1). By the third clause of the definition we
have n < n, which gives ⊥ by induction, so (n + 1) 6< (n + 1).

To prove totality, we work by induction on x with a subsidiary induction
over y. Take x to be 0 — if y is zero then x = y, otherwise by the second
clause of the definition x < y. The induction step is analogous. 2

Definition 6.7 The finite types Cn are defined thus

Cn ≡df (∃m :N) . (m < n)

This definition is uniform in the variable n.

We can view the transitivity of ‘<’ as asserting the existence of canonical
embeddings

fp,q : Cp ⇒ Cq

when p ≤ q. If p = q the function is simply the identity, whilst if p < q,
for any (m, r) :Cp, m < p and p < q gives m < q and thus (m, s) : Cq for
some proof s of the inequality.

We can also establish a characterisation like that of the types Nn.

Theorem 6.8 For each Cn we can show that the following proposition is
provable.

(∀x :Cn) . ( x = 0 ∨ x = 1 ∨ . . . ∨ x = n− 1 )

where by n we mean the pair

( succ (succ . . . (succ︸ ︷︷ ︸
n

0) . . .) , T riv )



228 CHAPTER 6. APPLYING TYPE THEORY

Proof: The proof is by a meta-theoretic induction over n. We cannot
formalise in a uniform way the sequence of formulas asserted, and so we
cannot formalise the argument. 2

Do the Cn have exactly the properties of the Nn? Given the last propo-
sitions, the rules for introducing elements of the two types are equivalent.
The casesn construct can be represented by a function with domain Cn,
where we can take account of the different types of the various values by
mapping into a sum type. Specifically, to model

(λm :Nn) . (casesn m a1 . . . an)

with ai :Ai we define the function

(λx :Cn) . ( if (eqn x 0) then (in1 a1) else
if (eqn x 1) then (in2 a2) . . . else (inn an) )

of type

Cn ⇒ (A1 ∨ . . . ∨An)

where we use ink for the injection of the component type Ak into the n-ary
sum (A1 ∨ . . . ∨An), and eqn for the equality function over Cn

The construct (casesn m a1 . . . an) is characterised by the values m and
a1, . . . , an. For a function modelling this to be thus characterised, we need
to adopt an extensional approach, as outlined in section 5.8.

Exercise

6.25. Show that given definitions of addition and multiplication the follow-
ing propositions are inhabited

(a < b) ∧ (c < d)⇒ (a + c < b + d)
(a < b) ∧ (0 < c)⇒ (a ∗ c < b ∗ c)

6.4.2 Vectors

Using the finite types of the previous section we are in a position to define
the vector types.

Definition 6.9 The type of vectors of length n over type A, V ec A n is
defined thus

V ec A n≡df (Cn ⇒ A)
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The definition of V ec A n is uniform in A and n, and so definitions of
vector operations can be made parametric in either A, n or both. We now
give a number of definitions of vector operations.

A constant vector is formed by

const : (∀A :U0) . (∀n :N) . (A⇒ V ec A n)
const A n a ≡df λx . a

A vector v is updated in position m with b by

update A n : V ec A n⇒ Cn ⇒ A⇒ V ec A n

update A n v m b ≡df λx . ( if (eqn m x) then b else (v x) )

A permutation of the indices Cn is represented by a function p : (Cn ⇒
Cn), and the elements of the vector v are permuted by composing the
permutation p with v.

Given a binary operator on the type A, θ, we reduce the vector

< a1, . . . , an >

using θ to form

(. . . (a1 θ a2) θ . . . θ an)

The type of reduce is given by

(∀A :U0) . (∀n :Pos) . ((A⇒ A⇒ A)⇒ V ec A n⇒ A)

where Pos is the set of positive natural numbers (∃n : N) . (0 < n). The
definition is by induction over the positive natural numbers. For vectors of
length one, we return the single value, and for the vector v

< a1, . . . , an, an+1 >

we reduce v′ ≡df < a1, . . . , an > giving r, say, which is then used to form
r θ an+1. To make the definition above precise we need to explain how an
element of a vector is accessed. If m : Cn and w : V ec A n then the mth
element is given by the application (w m). How is the vector v′ :Cn formed
from v :Cn+1? We simply define the composition

v ◦ fn,n+1 : (Cn ⇒ A) ≡ V ec A n

where fn,n+1 is the canonical embedding given by theorem 6.6.

Exercises

6.26. Give a type and definition for the function giving the inner product
of a numerical vector.
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6.27. How would you define a general sorting function for vectors?
6.28. Explain how the model above can be extended to treat rectangular

arrays of any dimension.
6.29. Using the types defined in the previous question, define the array

product and inversion operations. In the latter case you can use a subtype
to restrict the domain to those arrays which possess inverses.

6.5 Proof Extraction; Top-Down Proof

Up to now in these examples, we have treated the system as a functional
programming language, reasoning about objects, their types and their com-
putational behaviour. It is possible to give a different presentation of the
rules in which some of the information about the proof objects is suppressed.
The information can be used to extract a proof object from the derivation
given. This approach underlies the Nuprl system [C+86a]. The first two
examples are discussed in [C+86a, Sections 4.3 and 4.4] — the reader can
compare the two treatments.

6.5.1 Propositional Logic

If we look at the rules for propositional logic, taking (∨E′) as the rule of
disjunction elimination, they have an interesting characteristic: there is no
link between the right-hand and left-hand sides of the judgements

proof : proposition

which they involve. Taking the rule (∨E′) as an example, we can strip the
proof information from the rule, leaving

(A ∨B)

[A]
...
C

[B]
...
C

C
(∨E′)

Of course, we still know that given the appropriate proofs of the hypotheses
we can form the proof object vcases′x,y p u v which proves the conclusion,
C.

Without the proof information, the rule admits of a second reading:

In order to derive C (from hypotheses Γ) it is sufficient to derive
(A ∨ B) (from Γ) and to derive C in the two cases that A and
B are assumed (together with Γ).
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which we call the backwards or top-down interpretation. Other rules
admit a similar reading. (⇒ I) can be construed as saying

In order to derive (A⇒ B) it is sufficient to derive B from the
(additional) assumption A.

We now use these ideas to give a ‘proof-free’ derivation of the formula

(P ∨ ¬P )⇒ (¬P ⇒ ¬Q)⇒ (Q⇒ P )

Using (⇒ I) top-down three times, it is sufficient to derive the formula P
from the assumptions

(P ∨ ¬P ) , (¬P ⇒ ¬Q) , Q

The backwards reading of (∨E′) above suggests how to use a disjunctive
assumption. To derive P from (P ∨ ¬P ), (¬P ⇒ ¬Q), Q it is enough to
derive P from the two sets of assumptions

P , (¬P ⇒ ¬Q) , Q and ¬P , (¬P ⇒ ¬Q) , Q

The derivation from the first set is trivial, as P is a member. In the second
case, we apply modus ponens to the first two formulas, giving ¬Q, and
from this and Q, modus ponens gives ⊥, which by ex falso quodlibet gives
us any formula, and in particular P . It is interesting to note that, as
is often the case, a top-down construction reaches a point beyond which
it yields to a bottom-up approach. Making the description above into a
formal derivation, we have

P ∨ ¬P [P ]1

Q
[¬P ]1 ¬P ⇒ ¬Q

¬Q
(⇒ E)

⊥
(⇒ E)

P
(⊥I)

P
(∨E′)1

From this we can discharge the assumptions thus

[P ∨ ¬P ]4 [P ]1

[Q]2, [¬P ]1, [¬P ⇒ ¬Q]3
...
P

P
(∨E′)1

Q⇒ P
(⇒ I)2

(¬P ⇒ ¬Q)⇒ (Q⇒ P )
(⇒ I)3

(P ∨ ¬P )⇒ (¬P ⇒ ¬Q)⇒ (Q⇒ P )
(⇒ I)4
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We can now extract the proof information, naming the assumptions and
forming terms as described by the full proof rules.

x : (P ∨ ¬P ) [u :P ]1

z :Q
[v :¬P ]1 y : (¬P ⇒ ¬Q)

(y v) :¬Q
(⇒ E)

((y v) z) :⊥
(⇒ E)

abortP ((y v) z) :P
(⊥I)

cases′u,v x u (abortP ((y v) z)) : P
(∨E′)1

If we write e for cases′u,v x u (abortP ((y v) z)), we obtain finally

[x : (P ∨ ¬P )]4 [u :P ]1

[z :Q]2, [v :¬P ]1, [y : (¬P ⇒ ¬Q)]3
...
P

e : P
(∨E′)1

λz . e : (Q⇒ P )
(⇒ I)2

λy . λz . e : (¬P ⇒ ¬Q)⇒ (Q⇒ P )
(⇒ I)3

λx . λy . λz . e : (P ∨ ¬P )⇒ (¬P ⇒ ¬Q)⇒ (Q⇒ P )
(⇒ I)4

which gives the proof object

λx . λy . λz . ( cases′u,v x u (abortP ((y v) z)) )

as a witness of the proof of the formula.

6.5.2 Predicate Logic

The proof extraction technique can be extended to some of the rules of
predicate logic. For the universal quantifier we obtain

[x : A]
...
P

(∀x :A) . P
(∀I) and

a : A (∀x :A) . P

P [a/x]
(∀E)

whilst for the existential quantifier we have

a : A P [a/x]
(∃x :A) . P

(∃I) and
(∃x :A) . B

[x :A;B]
...
C

C
(∃E′)

Some proof information seems to remain here, in the judgement a : A of
(∃I) for instance. Since the logic is typed, this minimum of type information
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must be retained to ensure the well-formedness of propositions. An example
of a ‘proof-less’ derivation of (∀x :A) . (∃y :B) . P from (∃y :B) . (∀x :A) . P
follows.

(∃y :B) . (∀x :A) . P

[y :B]2
[x :A]1 [(∀x :A) . P ]2

P
(∀E)

(∃y :B) . P
(∃I)

(∀x :A) . (∃y :B) . P
(∀I)1

(∀x :A) . (∃y :B) . P
(∃E′)2

The derivation can now have the proof object extracted from it, if we name
p and q the proofs of (∃y :B) . (∀x :A) . P and (∀x :A) . P which are assumed
to exist. The q will be discharged, as we shall see.

p : (∃y :B) . (∀x :A) . P

[y :B]2
[x :A]1 [q : (∀x :A) . P ]2

(q x) :P
(∀E)

(y, q x) : (∃y :B) . P
(∃I)

λx . (y, q x) : (∀x :A) . (∃y :B) . P
(∀I)1

Casesy,q p (λx . (y, q x)) : (∀x :A) . (∃y :B) . P
(∃E′)2

The only free variable in the proof object is p which represents the undis-
charged assumption (∃y :B) . (∀x :A) . P .

We have only considered the weak existential elimination rule in this
way as the stronger rule, in either the forms (∃E′

2) or (∃E) introduces a
proposition as a conclusion which depends upon the proof object of the
proposition above the line. To use these rules, which we need to do to
prove the axiom of choice,

(∀x :A) . (∃y :B) . P ⇒ (∃f :A⇒ B) . (∀x :A) . P [(f x)/y]

for instance, we need to reason about the proof terms explicitly. Similar
remarks apply to the choice of disjunction elimination rule.

6.5.3 Natural Numbers

We can extend this proof-less derivation to results involving data types like
the natural numbers. Obviously the introduction rules still need to mention
the elements of N , and so are unchanged, but we can restate the (NE) rule
thus:

n :N C[0/x] (∀n :N) . (C[n/x]⇒ C[succ n/x])
C[n/x]

(NE)
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An example we might prove thus is (∀n :N) . (0 < fac n) where the propo-
sition (m < n) was first defined in section 6.1.2, and fac has the definition

fac 0 ≡df 1
fac (n + 1) ≡df (n + 1) ∗ (fac n)

We first have to derive (0 < 1) which is a special case of (0 < n+1), which
is itself trivially derivable. In the second case we have to derive

(∀n :N) . ((0 < fac n)⇒ (0 < fac (n + 1)))

for which, using the rules (∀I) and (⇒ I) top-down, it is sufficient to derive
(0 < fac (n + 1)) on the assumption that n : N and (0 < fac n). Since
fac (n + 1) is the product

(n + 1) ∗ (fac n)

and as it is a standard result (and exercise!) that a product of positive
numbers is positive, the result is derived.

Exercises

6.30. Give ‘proof-less’ derivations of the formulas (B ∨C)⇒ ¬(¬B ∧¬C),
A⇒ ¬¬A and (¬A ∨ ¬B)⇒ ¬(A ∧B), and from your derivations extract
the corresponding proof objects.
6.31. Find a ‘proof-less’ derivation of the formula

(∀x :X) . (A⇒ B)⇒ ((∃x :X) . A⇒ (∃x :X) . B)

and extract a proof object from the derivation.
6.32. Formalise the ‘proof-less’ derivation of the fact that all values of

fac are positive, assuming the lemma on multiplication, and give the proof
object that it generates.
6.33. Making a suitable definition of the multiplication operation ‘∗’ over

N , give a ‘proof-less’ derivation of the lemma that a product of positive
numbers is positive.

6.6 Program Development – Polish National
Flag

This section addresses the problem of the Polish National Flag, which is an
inessential simplification of the problem of the Dutch National Flag. This
was first addressed in [Dij76]. In the context of type theory it was first
investigated in [PS85] and later in section 22.2 of [NPS90]. The problem,
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baldly stated, is this: given a sequence of items which are either red or
white, return a permuted sequence in which all the red items precede the
white.

Our approach differs from that in [NPS90] in two ways. First, we ex-
press the specification in a different way, so as to separate the computational
from the proof-theoretic; secondly, we eschew the use of the subset type.
We shall discuss this type in some detail in chapter 7. We also use an ‘equa-
tional’ notation which is closer to that in use in the majority of functional
programming languages.

Our development depends upon some of the functions and predicates
which were introduced earlier; in particular we shall use ++, the list con-
catenation operator, the predicate perm l m, which expresses the fact that
the list l is a permutation of the list m, together with the auxiliary occs a l,
which counts the number of occurrences of a in the list l. We assume that
the colours are represented by the boolean type, bool (which we shall ab-
breviate C, for colour), with the value True representing the colour red.
We therefore say isReda≡df a = True and similarly for isWhite. Also, we
define

allRed : [bool]⇒ U0

allRed [ ] ≡df >
allRed (a :: x) ≡df isRed a ∧ allRed x

with the corresponding definition for allWhite. One way to express the
specification of the problem is then to say

(∀l : [C]) . (∃(l′, l′′) : [C] ∧ [C]) .
(allRed l′ ∧ allWhite l′′ ∧ perm l (l′ ++l′′)) (6.5)

What we seek is, in fact, a function which returns the pair of lists (l′, l′′)
corresponding to each l, so we modify the specification to read

(∃f : [C]⇒ [C] ∧ [C]) . (∀l : [C]) .
allRed (fst (f l)) ∧ allWhite (snd (f l))∧
perm l ((fst (f l)) ++(snd (f l)))

(6.6)

What will a proof of this formula consist of? It will be a pair (f, p) with

f : [C]⇒ [C] ∧ [C]

and p a proof that for all lists l

allRed (fst (f l)) ∧ allWhite (snd (f l))∧
perm l ((fst (f l)) ++(snd (f l))) (6.7)
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This pair consists precisely of the function required together with a proof
that is has the property required of it. This is the general form that a
specification in type theory should take – we return to this topic in chapter
7. Note that the transformation of the first specification into the second
is by no means ad hoc – we have applied the axiom of choice to the first
to obtain the second; indeed given this axiom the two specifications are
logically equivalent. The axiom of choice is the statement

(∀x :A) . (∃y :B) . P (x, y)⇒ (∃f :A⇒ B) . (∀x :A) . P (x, f x)

It is not hard to show that this type is inhabited; it is left as an exercise
for the reader, who will be able to find a proof in [ML85].

There are two distinct ways of proving a statement like 6.6.

• We can prove the statement by giving a term f and proving the
formula 6.7. This method corresponds to traditional program devel-
opment in a functional programming language: we first define the
function we think has the desired property and separately we prove
that it does have the property, an exercise in program verification.
This was the method we used in developing quicksort in section 6.2.

• Alternatively, we can develop the proof from the top down, reducing
the existential statement 6.6 to 6.5. We then try to prove this formula
directly and from the proof we extract a function by applying the
axiom of choice. This program extraction technique is the one which
we follow here: note that both methods can lead to the same definition
of the required function.

Using the first method we would define the function

split : [C]⇒ [C] ∧ [C]
split [ ] ≡df ([ ], [ ])

split (a :: m) ≡df (a :: l′, l′′) if a
≡df (l′, a :: l′′) if not

where
(l′, l′′) ≡ split m

and then attempt to verify, by induction, that split has the property (6.7).
Alternatively we try to prove the result (6.5) directly; this we do now.

Theorem 6.10 For all lists l : [C],

(∃(l′, l′′) : [C] ∧ [C]) .
(allRed l′ ∧ allWhite l′′ ∧ perm l (l′ ++l′′)) (6.8)
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Proof: We prove the result by induction over the list l. We shall call the
statement (6.8) P (l).

Case: l ≡ [ ]
It is immediate that the types allRed [ ] and allWhite [ ] are inhabited.
Also [ ] ++ [ ] ≡ [ ] and as perm is reflexive (see lemma 6.2, part 12) we
have

perm l (l′ ++l′′)

is inhabited. Putting the proof objects together we have some p0,

p0 : P ([ ])

as required in an inductive proof.

Case: l ≡ (a :: m)
Suppose that pm : P (m). Now,

pm ≡ ((l′, l′′), q)

where q ≡ (q1, q2, q3) and

(q1, q2, q3) : (allRed l′ ∧ allWhite l′′ ∧ perm m (l′ ++l′′))

Now, since there are only two booleans, a will be either red or white. The
proof proceeds now by a case analysis. Suppose that

csw : isWhite a

It is not hard to see that

q′2 ≡df (csr, q2) : allWhite (a :: l′′)

and certainly

q1 : allred l′

Now, by an earlier result on the simple properties of perm, lemma 6.2, parts
9 and 11, we can find

q′3 : perm (a :: m) (l′ ++(a :: l′′))

where q′3 depends upon the proof object q3. Pulling this together, we have

qw ≡df (q1, q
′
2, q

′
3) :

(allRed l′ ∧ allWhite (a :: l′′) ∧ perm m (l′ ++(a :: l′′)))

and so

pw ≡df ( (l′, (a :: l′′)) , qw ) : P (a :: m)
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In a similar way if we assume

csr : isRed a

then we can find

pr ≡df ( ((a :: l′), l′′) , qr ) : P (a :: m)

Since every element a is either red or white, we have

p′ ≡df if a then pr else pw : P (a :: m)

This gives us an inductive construction of an element of P (a :: m) from
objects a :C, m : [C] and a proof q :P (m), and so amounts to the proof of
the induction step.

Formalising the derivation, we have

λl . (lrec l p0 λa . λm . λq . p′) : (∀l : [C]) . P (l)

which completes the derivation of an object of the type required. 2

We can see that the function extracted from the proof by the method
which was outlined above will be exactly the function split defined earlier.

6.7 Program Transformation

We have so far seen a number of approaches to program construction in
type theory. In this section we consider the transformational approach
to program development. We show how a program may be transformed
within the system TT into another program which has the same behaviour
yet which has other desirable properties like time or space efficiency or
parallelisability.

How might the starting point of a sequence of transformations arise?
Two ways suggest themselves:

• A program may be written directly to reflect the specification, an
executable specification in the popular jargon.

• A program may be extracted from a proof: often a proof will use
‘brute force’ rather than subtlety to achieve its result.

The example we look at in this section can be thought of arising in either
way, in fact. Our example has been examined in a number of places in-
cluding [Tho89a] and the excellent [Ben86], Column 7. It is the problem of
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finding the maximum sum of a contiguous segment of a finite sequence of
integers. For the sequence

−2 3 4 −3 5︸ ︷︷ ︸
9

−2 1

the segment indicated has the maximum value.
The essence of program transformation is to take a program into another

with the same applicative behaviour, yet improved in some aspect like time
efficiency or space usage. Two functions have the same behaviour when
they return the same results for all arguments, when they are extensionally
equal, in other words. In TT program transformation will therefore involve
the replacement of an object by an extensionally equivalent one, through a
series of simple steps of the same kind.

In the discussion of the problem here, a list of integers is used to imple-
ment the sequence. One implementation of the integers was given on page
136.

We begin our discussion by introducing the operators map and fold,
and examining some of their properties, including how they are modified to
operate over non-empty lists. Readers who are familiar with these functions
may prefer to move straight on to the transformation, returning to the next
subsection when and if necessary.

6.7.1 map and fold

Two of the most useful operations over lists are map and fold. map ap-
plies a function to every element of a list, and has the primitive recursive
definition

map : (A⇒ B)⇒ [A]⇒ [B]
map f [ ] ≡df [ ]

map f (a :: x) ≡df (f a) :: (map f x)

which can be written formally

λf . λl . lrec l [ ] hf

where

hf a l p≡df (f a) :: p

By the rule of I introduction and the computation rules for lrec, we can
see that for all f , the types

map f [ ] = [ ] (6.9)
map f (a :: x) = (f a) :: (map f x) (6.10)
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are inhabited. The composition operator ◦, which is written in an infix
form for readability, has the definition

(g ◦ f)≡df λx . (g (f x)) (6.11)

Recall also that the ++ operator joins two lists together.
The transformations we give later are based on the application of a small

number of general ‘laws’ embodying properties of the standard functions.
The first law relates map and the append operation

Theorem 6.11 mapf (l ++m) = (mapf l)++(mapf m) for all lists l and
m.

Proof: The proof is by induction over l. 2

The second law relates map and composition

Theorem 6.12 map g ◦map f ' map (g ◦ f) for all functions f and g.

Proof: We show that for all x

(map g ◦map f) x = map (g ◦ f) x

which we do by induction over the list argument x. In the base case we
have to prove that

(map g ◦map f) [ ] = map (g ◦ f) [ ]

By 6.11

(map g ◦map f) [ ] = map g (map f [ ])

which by 6.9

= map g [ ]

which by 6.9 again is [ ]. A single application of the same equation shows
that the right hand side also equals [ ].

At the induction step, we aim to show

(map g ◦map f) (a :: x) = map (g ◦ f) (a :: x) (6.12)

using

(map g ◦map f) x = map (g ◦ f) x (6.13)

Expanding the left hand side of 6.12 first by 6.11 and then by 6.10 twice,
we have

= map g (map f (a :: x))
= map g ((f a) :: (map f x))
= (g (f a)) :: (map g (map f x))
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By 6.11, twice, this is

= (g (f a)) :: ((map g ◦map f) x)
= ((g ◦ f) a) :: ((map g ◦map f) x)

and by the induction hypothesis 6.13

= ((g ◦ f) a) :: (map (g ◦ f) x)

By 6.10 for (g ◦ f), this is

= map (g ◦ f) (a :: x)

which is the right hand side of 6.12. This completes the induction step and
therefore the proof itself. 2

The elements of a non-empty list can be combined together using the
operator fold. For instance, we get the product of the elements of a list by
folding in the multiplication operator.

fold : (A⇒ A⇒ A)⇒ (nel A)⇒ A

fold f ( [ ], p ) ≡df abortA p

fold f ( (a :: [ ]), p ) ≡df a

fold f ( (a :: (b :: x)), p ) ≡df f a (fold f ( (b :: x), T riv ))

where the type of non-empty lists, (nel A) is defined by

(nel A)≡df (∃l : [A]) . (nempty l)

where

nempty [ ] ≡df ⊥
nempty (a :: x) ≡df >

We would like to use the standard functions map and ++ over non-
empty lists as well as over the usual list type. We cannot use the functions
directly, but we can define analogues of them, map′ and ++′ operating over
the type (nel A) because of the following lemma.

Lemma 6.13 If l and m are non-empty, then so are map f l and l ++m.

Proof: The proofs are by induction. 2

Formally, the last lemma gives functions mapp, appp of type

mapp : (∀l : [A]) . ( (nempty l)⇒ (nempty (map f l)) )
appp : (∀l : [A]) . (∀l : [A]) . ( (nempty l)⇒

(nempty m)⇒ (nempty (l ++m)) )
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The functions map′ and ++′ are now defined

map′ : (A⇒ A)⇒ (nel A)⇒ (nel A)
map′ f (l, p) ≡df (map f l , mapp l p)

++′ : (nel A)⇒ (nel A)⇒ (nel A)
(l, p)++′(m, q) ≡df (l ++m , appp l m p q)

These functions combine computation with proof, as they transmit the
information witnessing the non-emptiness of the argument(s) to the same
information about the result.

We also have analogues of theorems 6.11 and 6.12,

Theorem 6.14 For all functions f , and non-empty lists l′, m′

map′ f (l′ ++′m′) = (map′ f l′) ++′(map′ f m′)

Theorem 6.15 For all functions f , g,

map′ g ◦map′ f ' map′ (g ◦ f)

Proofs: As the theorems above. 2

Theorem 6.16 If f is an associative function, that is for all a, b and c,

f a(f b c) = f (f a b) c

then for non-empty l′ and m′

fold f (l′ ++′m′) = f (fold f l′) (fold f m′)

Proof: The proof is by induction over the non-empty list l′. 2

The final law we give relates the action of fold and map′, and shows
a case in which a map before a fold is transformed into a single function
application following a fold.

Theorem 6.17 If f and g satisfy f (g a) (g b) = g (f a b) then

(fold f) ◦ (map′ g) ' g ◦ (fold f)

The analogue of fold over [A] is called foldr. It takes an extra parame-
ter, which is the value returned on the empty list; a starting value, in other
words. It is defined by

foldr : (A⇒ B ⇒ B)⇒ B ⇒ [A]⇒ B

foldr f st [ ] ≡df st

foldr f st (a :: x) ≡df f a (foldr f st x)
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This is in fact a specialisation of the recursion operator lrec, which omits
to use the tail of the list, x, in the recursive call at (a :: x). Using foldr we
can define many operations over lists, including

sum≡df foldr (+) 0

where (θ) denotes the prefix form of the infix operator θ.

Theorem 6.18 For all f and st,

(foldr f st) ◦ ((::) a) ' (f a) ◦ (foldr f st)

Proof: This is proved without induction, simply by expanding both sides
when applied to an argument x. 2

6.7.2 The Algorithm

The problem we aim to solve is finding the maximum sum of a segment of
a finite list of integers. There is a näıve solution, which forms the starting
point of the transformation. In this we

• Take all the (contiguous) sublists of the list,

• find the sum of each, and

• take the maximum of these sums.

We can write this as the composition

maxsub≡df (fold bimax) ◦ (map′ sum) ◦ sublists′

where bimax is the binary maximum function over the integers and sublists′

is the function of type [A] ⇒ (nel [A]), returning the non-empty list of
sublists of a list. The result is non-empty since even an empty list has itself
as a sublist. We then apply map′ sum to the result, transmitting the proof
information, and so permitting the application of fold which demands a
non-empty argument.

How is the function sublists′ to be defined? We define a function
sublists which returns a list of the sublists, and then combine its result
with a proof that it is non-empty. This proof is an inductive one, which
it is not hard to construct given the definitions which follow. To explain
them, observe that a sublist of (a :: x) is either a sublist of x, or includes a,
in which case a must be followed by a sublist of x which starts at the front
of x; these lists are returned by frontlists x.
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sublists : [A]⇒ [ [A] ]
sublists [ ] ≡df [ [ ] ]

sublists (a :: x) ≡df map ((::) a) (frontlists x)
++ sublists x

where

frontlists : [A]⇒ [ [A] ]
frontlists [ ] ≡df [ [ ] ]

frontlists (a :: x) ≡df map ((::) a) (frontlists x)
++ [ [ ] ]

We have presented this solution as a direct implementation of the spec-
ification. Such a program might also be extracted from a proof of the
existence of a maximum segment sum: maxima of finite collections exist
simply by exhaustion arguments, and such a strategy would give rise to an
algorithm as we have just defined.

So, derived in whatever way, we have our näıve solution, which is un-
satisfactory for two reasons. The first is an efficiency consideration: to
compute the result, we use time (and space) quadratic in the length of the
list, as we examine all the (contiguous) sublists of the list, and the number
of these grows as the square of the length of the list. Secondly, we carry
proof-theoretic information through the computation, which seems to be
unnecessary. The transformation remedies both these difficulties.

6.7.3 The Transformation

We transform the program for maxsub beginning with a case analysis. Take
the argument [ ]

maxsub [ ]
= ((fold bimax) ◦ (map′ sum) ◦ sublists′) [ ]
= (fold bimax) ( (map′ sum) ( sublists′ [ ] ) )
= (fold bimax) ( (map′ sum) ( [ [ ] ] , T riv ) )
= (fold bimax) ( 0 , T riv )
= 0

where each of the steps above is justified by the definition of the appropriate
function. Now we examine the case of (a :: x).

((fold bimax) ◦ (map′ sum) ◦ sublists′) (a :: x)
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= (fold bimax) ( (map′ sum) ( sublists′ (a :: x) ) )
= (fold bimax) ( (map′ sum) (l1 ++′l2) )

where

l1 ≡df map′ ((::) a) (frontlists′ x)
l2 ≡df sublists′ x

both of which are non-empty. By theorem 6.14, the expression equals

(fold bimax) ( (map′ sum l1) ++′(map′ sum l2) )

which by theorem 6.16 is

bimax (fold bimax (map′ sum l1))
(fold bimax (map′ sum l2))

Recalling that l2 ≡df sublists′ x, and the definition of maxsub, this is

bimax (fold bimax (map′ sum l1)) (6.14)
(maxsub x)

We now concentrate on the first argument in the expression, which when
expanded is

(fold bimax) (map′ sum (map′ ((::) a) (frontlists′ x)))︸ ︷︷ ︸ (6.15)

The sub-expression indicated is a composition of two map′s, so we replace
it with

map′ (sum ◦ ((::) a)) (frontlists′ x)

Now, by theorem 6.18, since sum = foldr (+) 0 we have

sum ◦ ((::) a) ' ((+) a) ◦ sum

so this gives

map′ (((+) a) ◦ sum) (frontlists′ x)

which by theorem 6.15 is

( (map′ ((+) a)) ◦ (map′ sum) ) (frontlists′ x)

This means that 6.15 becomes, using the associativity of ‘◦’,

( (fold bimax) ◦ (map′ ((+) a)) ◦ (map′ sum) ) (frontlists′ x)
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Here we have an interaction between fold and map′, and as the conditions
of theorem 6.17 apply, we have

a + ( ((fold bimax) ◦ (map′ sum) ◦ frontlists′) x)

If we now write

maxfront≡df (fold bimax) ◦ (map′ sum) ◦ frontlists′

we have the original expression 6.14 equal to

bimax (a + maxfront x) (maxsub x)

A similar transformation of maxfront yields

maxfront [ ] = 0
maxfront (a :: x) = bimax 0 (a + maxfront x)

and for the original function we have the final form

maxsub [ ] = 0
maxsub (a :: x) = bimax (maxsub x) (a + maxfront x)

We can make these equations a definition of the maxsub function, and it
can be seen that its complexity dependent on the length of the list. Also,
the functions are free of any of the proof information which appeared in
the original algorithm, because it used non-empty lists.

Exercises

6.34. What is the principle of induction for the type of integers int intro-
duced above? [Hint: it can be derived from the principles of induction on
the component parts of the type int.]
6.35. In the proof of theorem 6.11 why is the induction over the list l and
not the list m?
6.36. Complete the proofs which were only sketched in the text.
6.37. State and prove the theorem corresponding to theorem 6.16 for the

operator foldr rather than fold.
6.38. Give a formal derivation of the function

sublists′ : [A]⇒ (nel A)

6.39. Explain why the original definition of maxsub has quadratic com-
plexity and why the final one is linear.
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6.8 Imperative Programming

Our programming focus has been functional in the development so far.
Can similar techniques be brought to bear on imperative programs? The
full answer to this is a topic of current research, but a partially positive
answer can be given, via an identification of a particular class of functional
programs, the tail recursive functions, with imperative programs.

Definition 6.19 A function is tail recursive if its definition takes the
form

f a1 . . . an ≡df f (g1,1 ~a) . . . (g1,n ~a) if c1 ~a
≡df . . . if . . .
≡df f (gk,1 ~a) . . . (gk,n ~a) if ck ~a
≡df h~a if not

where ~a denotes the sequence a1 . . . an, and each of the functions c1, . . . , ck,
g1, . . . , gk and h does not mention f .

First note that these functions are called tail recursive since the only re-
cursive calls the right hand sides make to f are in the tail of the code, after
evaluating all the function arguments (assuming applicative order evalua-
tion of the code, of course). Why should these functions be identified with
imperative programs? Take the simple case of

f a1 . . . an ≡df f (g1 ~a) . . . (gn ~a) if c ~a
≡df h~a if not

If the condition c ~a is true, we make a recursive call which transforms the
argument ai to gi~a, if not we return the result h~a. Rephrasing this slightly,
while the condition c ~a is true, we perform the parallel assignment

a1 , . . . , an := (g1 ~a) , . . . , (gn ~a)

and so in an imperative pseudo-code we have

while c ~a do
a1 , . . . , an := (g1 ~a) , . . . , (gn ~a) ;

return h~a ;

To illustrate the point, there follows a tail recursive version of the factorial
function

fac n ≡df tfac n 1
tfac 0 p ≡df p

tfac (n + 1) p ≡df tfac n ((n + 1)∗p)
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This is not an isolated phenomenon; every primitive recursive function can
be given a tail recursive definition using the function tprim

tprim : N ⇒ C ⇒ (N ⇒ C ⇒ C)⇒ N ⇒ C ⇒ C

tprim n c f 0 v ≡df v
tprim n c f (m + 1) v ≡df tprim n c f m (f (n−m− 1) v)

if (m < n)
≡df v if not

where we assert that for all n, c and f ,

prim n c f = tprim n c f n c

The idea of the transformation is that the last argument starts off at c,
which is prim 0 c f , and is transformed by the successive application of
f 0, f 1, . . . into prim 1 c f , prim 2 c f , . . . . The result is a corollary of the
following theorem.

Theorem 6.20 For all n, c, f and m ≤ n,

tprim n c f (n−m) (prim m c f) = prim n c f

Proof: The proof is by induction over the difference n−m which is non-
negative by hypothesis. The base case is that of n−m = 0. In that case

tprim n c f (n−m) (prim m c f)
= tprim n c f 0 (prim n c f)
= (prim n c f)

the second equality being an immediate consequence of the definition of
tprim. At the induction step, suppose that n − m = p + 1 and that the
result holds for a difference of p.

tprim n c f (n−m) (prim m c f)
= tprim n c f (p + 1) (prim m c f)
= tprim n c f p (f m (prim m c f))
= tprim n c f p (prim (m + 1) c f)

By the induction hypothesis, since n− (m + 1) = p,

= prim n c f

which completes the induction step and the proof itself. 2
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Corollary 6.21 For all n, c and f ,

tprim n c f n c = prim n c f

Proof: Take m = 0 in the theorem. 2

Note that in the action of tprim the first three arguments are not mod-
ified in the recursive calls — they act as parameters or constants of the
program, and no storage locations need to be allocated to them; the other
two parameters do of course need to be allotted space.

The corollary justifies the transformation of any primitive recursive
function into a tail recursive one, and thus into an imperative form. We
can prove similar theorems for the other recursion operators in the system,
so a functional program can form an intermediate step in the development
of an imperative program, as long as the imperative target language can
support all the higher order data types of TT . In the case that it cannot,
other coding techniques can be found, but the correspondence is less direct.

If we take any imperative program there will be a functional form for
it, in which the only recursion is tail recursion. However that tail recursion
may not be formalizable in TT , since it may lead to non-termination. If
we can supply a proof of termination for the imperative program, and the
proof can be formalised in first-order arithmetic (see section 5.11), then
there will be an equivalent of the program in TT .

Exercises

6.40. Give tail recursive forms of the recursion operators over lists and
trees.
6.41. Comment on the space efficiency of the tail recursive form of the fac-
torial function. Does your observation depend upon the form of evaluation
chosen for terms of TT?

6.9 Examples in the literature

This section provides a survey of examples in the published literature of
proof and program development in theories similar to TT . Many of the
examples use the subset type; we shall discuss this and its relevance to
program development in the chapter to come, which contains examples of
new concepts as they are introduced.
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6.9.1 Martin-Löf

In Martin-Löf’s work there are few examples. The extensional version of
the theory, [ML85], contains a proof of the axiom of choice,

(∀x :A) . (∃y :B) . C ⇒ (∃f : (∀x :A) . B) . (∀x :A) . C[(f x)/y]

which involves the strong existential elimination rule, (∃E), in an essential
way. As well as a proof of the axiom of choice, the Padova notes [ML84],
contain small examples but nothing large-scale. Martin-Löf’s notes on con-
structive mathematics, [ML70], contain examples of mathematical proofs
developed from a constructive standpoint, but it is fair to say that they
bear little formal relation to proofs in TT .

6.9.2 Goteborg

A source of many examples is the Programming Methodology Group at the
University of Goteborg and Chalmers University of Technology, in Sweden.
In [Dyb87] type theory is examined as one of a number of systems applied
to the example of the derivation of an algorithm to normalise the syntactic
form of propositional expressions.

Generalising the idea of a multilevel array, as used in VDL and VDM,
is the type of multilevel functions, which also encompasses the types of
vectors, natural numbers, lists and others. A formal presentation of this
type as an addition to TT is given in [Nor85]. The types could also be
developed using the W -types of TT+ but the authors argue that it is more
natural to add the new rules to embody the type directly.

In [NP85] there is a discussion of how the quantifiers and dependent
types of TT can be used to provide specifications of modules.

6.9.3 Backhouse et al.

Roland Backhouse and his co-workers at the Universities of Groningen and
Eindhoven have written widely on the topic of type theory. We shall look at
their work later when we look at extensions of the theory, but there are a
number of sources we should mention now. The tutorial notes [Bac87a]
contain a number of shorter examples, chosen to illustrate the system
construct-by-construct. The paper [BCMS89], which introduces a num-
ber of additions, also contains useful examples, such as the Boyer-Moore
majority vote algorithm and a collection of game playing operations, similar
to those in [Hug90].
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A substantial derivation of a parsing algorithm is given in [Chi87]. The
parser is specified by the assertion

(∀w :Word) . Parse w ∨ ¬Parse w

where the proposition Parse w is an assertion of the fact that the string w
is a sentence of the language. Proofs of this proposition consist of showing
that there is a valid parse tree for the word, as expressed by

w = spell pt

spell being the function to ‘spell out’ the word coded by a parse tree pt. The
implementation is compared with the result of an earlier effort to derive a
program using the LCF system, [CM82].

6.9.4 Nuprl

Constable’s group at Cornell University have concentrated in their Nuprl
system, which we shall discuss in more detail in section 9.1.1 on ‘Imple-
menting Mathematics’, which is indeed the title of their exposition of Nuprl,
[C+86a]. The system is sufficiently close to type theory for the majority
of their examples to be comprehensible if not translatable. [C+86a] con-
tains short expository examples, of course, but also develops a number of
libraries of mathematical objects in Chapter 11.

Howe’s thesis, [How88], gives a detailed analysis of Girard’s paradox in
Chapter 4. Sections 3.10 and 3.11 contain a number-theoretic example, and
a saddleback search, and chapter 5 addresses the issue of reflection, which
is taken up by [KC86]. The addition of partial objects to type theory is
discussed in [CS87]

A more concrete application to hardware specification and verification
is presented in [BdV89]. The specific component investigated is the front
end of a floating point adder/subtractor.

6.9.5 Calculus of Constructions

One other system which bears a rather less close relation to TT is Huet and
Coquand’s Calculus of Constructions, [CH85]. An example of algorithm de-
velopment is to be found in [PM87] and the extraction of programs from
proofs in the calculus is examined in [PM89]. An analysis of Girard’s para-
dox is given in [Coq86].
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Chapter 7

Augmenting Type Theory

Using type theory as a program development system has lead a number of
people to propose that new constructs be added to the theory. Although we
have seen that in theory the system is highly expressive, there are questions
of whether it expresses what is required in either a natural or an efficient
way. This chapter contains an account of the proposals concerning ways in
which the system may be augmented.

An important point which should be made before we embark is that
each of the additions, whilst arguably adding to the power of the system
in some way, also makes it more complicated, either from a user’s point of
view, or for foundational reasons, such as the loss of strong normalisation.
We shall discuss the pros and cons of each proposal section-by-section, and
shall in the conclusion to the book have something more to say on the topic.

Central to the proposals is the notion of a subset type, distinct from the
existential type, whose members are simply those elements of the base type
with the required property, rather than such objects paired with a witness
to that property. To set the discussion in its proper context, we begin in
section 7.1 by looking at the exact nature of specifications, a topic we first
examined when we looked at the case study of the Polish National Flag.
What precisely are specifications in type theory has been the subject of
some confusion in the literature; we hope to have to clarified the issue here.

Another general topic connected with the introduction of the subset type
is that of computational relevance: some parts of expressions seem to have a
purely logical role, rather than contributing to the result of a computational
process. We discuss two approaches to capturing this intuition, and also
look at how it is linked with lazy evaluation. Naturally, any argument
about computational relevance or efficiency can only be conducted relative
to some evaluation scheme, and we argue that many of the reasons advanced
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for a more complicated type system in view of computational efficiency are
irrelevant in case the system is implemented using lazy evaluation.

After this background discussion, in section 7.2 we introduce the näıve
definition of the subset type, and examine some of its theoretical draw-
backs. As we said above, much of the motivation for subsets is to achieve
a separation between logical and computational aspects of type theory; in
section 7.3 we look at how subsets can properly be expressed only in a
system in which propositions and types are no longer identified.

We give a review of the proposals in section 7.4 where we argue that
all the examples of subsets in the literature can be handled quite smoothly
within TT , without recourse to the new type. This is achieved by a lazy
implementation together with a judicious choice of types in specifications:
we choose to specify a function by asserting its existence rather than by
a ∀∃-formula, for instance. We provide a number of general and concrete
examples by way of illustration.

The primitive type forming operation, W , constructs free data types,
whilst there are examples in which an abstract object can best be repre-
sented by a collection of concrete items: a set represented as a list is one
case. To reason and program most simply with such a type it is argued that
a quotient type, consisting of equivalence classes, be formed. We examine
two variants of this idea in section 7.5.

An important application area for constructive mathematics is real anal-
ysis. Section 7.6 gives the beginnings of a treatment of the topic, and also
serves as a case study in which to examine the utility of the subset and
quotient type.

Various infelicities have been shown in the rules for elimination — the
following section examines proposals to overcome these by means of the
strong elimination rules. A generalisation of these, the polymorphic types
of Backhouse et. al. are also introduced. It is interesting to observe that
an addition of this sort can lead to a term which has no normal form
and indeed no weak head normal form: a genuine non-termination is thus
present in the augmented system. This will maybe underline the fact the
‘reasonable’ additions to a system made in an ad hoc way can lead to
unforeseen circumstances, and that we should make quite certain that any
addition we make does not destroy something more important than it adds.

As we saw in the last chapter, recursions can be coded in type theory
only in terms of the primitives provided. The most general form of termi-
nating recursion is called well-founded recursion. We first look at what this
is in a set-theoretic context in section 7.8, and then in the following section
we look at two different ways that well-founded recursion can be added
to type theory. The general mechanism provided derives once-and-for-all
the principles of which particular cases, like quicksort, were derived in the
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course of the proof developments of the last chapter.
A different approach again is to provide new methods of defining types,

together with definition mechanisms. Equivalent to well-founded recursion
we can add types defined by a general principle of induction, which we do in
section 7.10. We discuss the relation between these types and the W types
of TT , and argue that the latter can be used to provide a representation of
the former.

A novel idea, at least from the programming point of view, is to de-
fine the co-inductive types, which are the largest solutions of certain type
equations. If we solve the equation characterising lists, then the smallest
solution contains simply the finite elements, whilst the largest contains infi-
nite elements also. The presence of infinite lists is not a surprise to the lazy
functional programmer, but remarkable is the absence of partial lists. We
show how a general scheme of co-induction is introduced, and then exam-
ine in more detail the type of infinite lists or streams. In this context it is
interesting to note that if we use infinite lists as models for communications
between communicating processes (à la Kahn and MacQueen) then in type
theory we can be sure that if a recursion is possible it give a completely
defined list, ruling out the possibility of deadlock.

Consistency of TT as a logical system will be lost if partial objects are
permitted to inhabit every type, since then the undefined element will be
a member of each type, which from a logical point of view means that
every theorem is provable. There are other ways for partial objects to be
added, however – a proposal for the incorporation of a representation of
such objects is given in section 7.12. This is done without sacrificing the
Curry Howard isomorphism or the consistency of the logical system.

The proposals thus far are general, but another kind of extension is
possible. Martin-Löf has always stressed the open-endedness of the system,
and in the final section we look at how a particular kind of object, the semi-
group, can be modelled by adding a set of new rules governing its behaviour.
We contrast this approach with that of forming an explicit model of the type
within the theory. Naturally, this approach is not limited to semi-groups
but can be used in any particular application area.

7.1 Background

This section explores some of the background to the introduction of the
subset type into TT , before we go on to discuss exactly how this might be
done, and indeed whether it is necessary.
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7.1.1 What is a specification?

We first examined this question in section 6.6 above in the particular con-
text of the Polish National Flag problem. Here we reconsider it from a
more general point of view.

The judgement a : A can be thought of as expressing ‘a proves the
proposition A’ and ‘a is an object of type A’, but it has also been proposed,
in [ML85, PS85] for example, that it be read as saying

a is a program which meets the specification A (†)

This interpretation does not apply in general to every judgement a : A.
Take for instance the case of a function f which sorts lists; this has type
[A]⇒ [A], and so,

f : [A]⇒ [A]

Should we therefore say that it meets the specification [A] ⇒ [A]? It
does, but then so do the identity and the reverse functions! The type of
a function is but one aspect of its specification, which should describe the
relation between its input and output. This characterisation takes the form

The result (f l) is ordered and a permutation of the list l

for which we will write S(f). To assert that the specification can be met
by some implementation, we write

(∃x : [A]⇒ [A]) . S(x)

What form do objects of this type take? They are pairs (f, p) with f :
[A] ⇒ [A] and p a proof that f has the property S(f). The confusion in
(†) is thus that the object a consists not only of the program meeting the
specification, but also of the proof that it meets that specification.

In the light of the discussion above, it seems sensible to suggest that
we conceive of specifications as statements (∃o :T ) . P , and that the formal
assertion

(o, p) : (∃o :T ) . P

be interpreted as saying

The object o, of type T is shown to meet the specification P by
the proof object p.

an interpretation which combines the logical and programming interpre-
tations of the language in an elegant way. This would be obvious to a
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constructivist, who would argue that we can only assert (†) if we have the
appropriate evidence, namely the proof object.

In developing a proof of the formula (∃o :T ) . P we construct a pair con-
sisting of an object of type T and a proof that the object has the property
P . Such a pair keeps separate the computational and logical aspects of the
development, so that we can extract directly the computational part simply
by choosing the first element of the pair.

There is a variation on this theme, mentioned in [NPS90] and examined
in section 6.6, which suggests that a specification of a function should be
of the form

(∀x :A) . (∃y :B) . P (x, y) (7.1)

Elements of this type are functions F so that for all x :A,

F x : (∃y :B) . P (x, y)

and each of these values will be a pair (yx, px) with

yx :B and px :P (x, y)

The pair consists of value and proof information, showing that under this
approach the program and its verification are inextricably mixed. It has
been argued that the only way to achieve this separation is to replace
the inner existential type with a subset type, which removes the proof
information px. This can be done, but the intermingling can be avoided
without augmenting the system. We simply have to give the intended
function a name. That such a naming can be achieved in general is a
simple consequence of the axiom of choice, which states that

(∀x :A) . (∃y :B) . P (x, y)⇒ (∃f :A⇒ B) . (∀x :A) . P (x, f x)

and applying modus ponens to this and (7.1) we deduce an ‘existential’
specification as above. Note that the converse implication to that of the
axiom of choice is easily derivable, making the two forms of the specification
logically equivalent.

The equivalent specifications can be thought of as suggesting different
program development methods: using the ∃∀ form, we develop the function
and its proof as separate entities, either separately or together, whilst in
the ∀∃ form we extract a function from a proof, post hoc.

This analysis of specifications makes it clear that when we seek a pro-
gram to meet a specification, we look for the first component of a mem-
ber of an existential type; the second proves that the program meets the
constraint part of the specification. As long as we realise this, it seems
irrelevant whether or not our system includes a type of first components,



258 CHAPTER 7. AUGMENTING TYPE THEORY

which is what the subset type consists of. There are other arguments for
the introduction of a subset type, which we review now.

Exercises

7.1. How would you specify the operations + and ∗ over the natural num-
bers N? In general, how would you specify functions whose natural speci-
fications are their primitive recursive definitions?
7.2. How would you specify the head and tail functions, ++, and the length
and sorting functions over lists?
7.3. When we discussed quicksort, we specified permutation by means of

the predicate perm, which used the equality function eqN over the type N .
Give a definition of permutation which does not depend upon the existence
of an equality function and which can therefore be used over any type of
lists.
7.4. Discuss ways in which specifications can be made modular, using the

universal and existential quantifiers.

7.1.2 Computational Irrelevance; Lazy Evaluation

Recall our discussion in section 6.1 of the ‘head’ function over lists. It is
defined only over those lists which have a head, the non-empty lists, where
we say

(nelist A)≡df (∃l : [A]) . (nonempty l)

where the predicate nonempty has the inductive definition

nonempty [ ] ≡df ⊥
nonempty (a :: x) ≡df >

and the head function, hd, itself is given by

hd : (nelist A)⇒ A

hd ([ ], p) ≡df abortA p

hd ((a :: x), p) ≡df a

(This is formalised in TT by a list induction over the first component of a
variable of the existential type.) Given an application

hd ((2 :: . . .), . . .)

computation to 2 can proceed with no information about the elided por-
tions. In particular, the proof information is not necessary for the process
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of computation to proceed in such a case. Nonetheless, the proof informa-
tion is crucial in showing that the application is properly typed; we cannot
apply the function to a bare list, as that list might be empty. There is
thus a tension between what are usually thought of as the dynamic and
static parts of the language. In particular it is thought that if no separa-
tion is achieved, then the efficiency of programs will be impaired by the
welter of irrelevant information which they carry around – see section 3.4
of [BCMS89] and section 10.3 (page 213) of [C+86a].

Any conclusion about the efficiency of an object or program is predicated
on the evaluation mechanism for the system under consideration, and we
now argue that a lazy or outermost first strategy has the advantage of not
evaluating the computationally irrelevant, a topic we first discussed at the
end of section 6.2.

Recalling the results of section 5.6, since the system is strongly normal-
ising, any sequence of reductions will lead us to a result. Since we also
have the Church Rosser property, every reduction sequence leads to the
same result. We can therefore choose how expressions are to be evaluated.
There are two obvious choices. Strict evaluation is the norm for imper-
ative languages and many functional languages (Standard ML, [Har86], is
an example). Under this discipline, in an application like

f a1 . . . an

the arguments ai are evaluated fully before the whole expression is evalu-
ated. In such a situation, if an argument ak is computationally irrelevant,
then its evaluation will degrade the efficiency of the program. The alter-
native, of normal order evaluation is to begin evaluation of the whole
expression, prior to argument evaluation: if the value of an argument is
unnecessary, then it is not evaluated.

Definition 7.1 Evaluation in which we always choose the leftmost outer-
most redex (c.f. definition 2.13) is called normal order evaluation. If in
addition we ensure that no redex is evaluated more than once we call the
evaluation lazy.

In a language with structured data such as pairs and lists, there is a
further clause to the definition: when an argument is evaluated it need
not be evaluated to normal form; it is only evaluated to the extent that
is necessary for computation to proceed. This will usually imply that it
is evaluated to weak head normal form. This means that, for example,
an argument of type A ∧ B will be reduced to a pair (a, b), with the sub-
expressions a and b as yet unevaluated. These may or may not be evaluated
in subsequent computation.
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Recent research has shown that efficient lazy implementations of func-
tional languages like Miranda are feasible, and there is every reason that
the same techniques could be used for an implementation of TT . It would
take us away from our theme to go into this any further; the interested
reader can consult the book [Pey87] which is an excellent introduction to
the topic.

Under lazy evaluation computationally irrelevant objects or components
of structured objects will simply be ignored, and so no additional compu-
tational overhead is imposed. Indeed, it can be argued that the proper
definition of computational relevance would be that which chose just that
portion of an expression which is used in calculating a result under a lazy
evaluation discipline.

There is another possible approach to computational relevance, and that
involves an examination of the different forms that types (i.e. propositions)
can take.

Since there are no closed normal forms in ⊥ and there is only the trivial
Triv in >, computation of objects of these types will never be important.
What is of importance is whether the type is inhabited or not in any par-
ticular case. This is exactly the role played by these types in the definition
of the head function hd, where we should recall that

nelist A≡df (∃l : [A]) . (nonempty l)

with

nonempty : [A]⇒ U0

nonempty [ ] ≡df ⊥
nonempty (a :: x) ≡df >

An application of hd to a list l is only possible if we can pair l with a
proof p that l is nonempty; the proof will contribute nothing to further
evaluation, rather it ensures (through the type system of the language)
that the application is to a non-empty list.

It can be argued that this sort of computational irrelevance is preserved
when combinations are taken using the connectives ∧,⇒ and ∀. A different
perspective on the topic in the context of the extensional theory of [ML85]
is given in section 3.4 of [BCMS89].

Exercises

7.5. Compute the result of the expression hd ((2 :: a), b) using the lazy
evaluation strategy discussed above.
7.6. Discuss why combination of formulas by the connectives ∧, ⇒ and ∀

should preserve computational irrelevance.
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7.7. Examine the examples of the previous chapter to find cases of compu-
tational irrelevance.

7.2 The subset type

How should we represent the collection of objects of type A with the prop-
erty B? According to the principle of complete presentation, we would form
the type

(∃x :A) . B

consisting of pairs of objects and the proofs that they have the property
P . This is how we have dealt with the type so far in this exposition. An
alternative approach is to build the ‘subset’ type

{ x :A | B }

whose members consist of those a in A which have the property B[a/x],
i.e. those for which the type B[a/x] is inhabited. This has the consequence
that we lose the uniqueness of types in the system TT ; an object a will be
a member of the type { x :A | B } for every B which is a property of a.

What are the formal rules for the subset type? The rules we give now
are those first proposed in [NP83], and used in [C+86a], page 167, and
[BCMS89], section 3.4.2. Formation is completely standard

Formation Rule for Set

A is a type

[x :A]
...

B is a type

{ x :A | B } is a type
(SetF )

and objects are introduced as we described above,

Introduction Rule for Set

a :A p :B[a/x]
a : { x :A | B }

(SetI)

How should a set be eliminated? If we know that a : { x : A | B } then
we certainly know that a : A, but also that B[a/x]. What we don’t have
is a specific proof that B[a/x], so how could we encapsulate this? We
can modify the existential elimination rule (∃E) so that the hypothetical
judgement c : C is derived assuming some y : B[a/x], but that c and C
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cannot depend upon this y. We use the fact that B[a/x] is provable, but
we cannot depend on the proof y itself:

Elimination Rule for Set

a :{ x :A | B }

[x :A; y :B]
...

c(x) :C(x)
c(a) : C(a)

(SetE)

Since no new operator is added by the elimination rule, there is no compu-
tation rule for the subset type. We should note that this makes these rules
different from the others in type theory. This is also evident from the fact
that they fail to satisfy the inversion principle of section 8.4.

We shall write TTS
0 for the system TT0 with the above rules for subsets

added. How are TT0 and TTS
0 related? The following theorems are proved

in [Chi88a].

Theorem 7.2 From a derivation d in TTS
0 of the judgement p : (∃x :A) . B

a derivation of

fst p : { x :A | B }

from the same set of assumptions can be constructed.

Proof: Use the rule (SetI). 2

Theorem 7.3 If in TTS
0 we can derive p :{x :A | B } from the assumptions

Γ, then from this derivation we can, for some q :B, construct a derivation
in TT0 of

(p, q) : (∃x :A) . B

from the assumptions Γ′. The assumptions Γ′ result from Γ by replacing
assumptions of the form y : { y :C | D } by y :C; y′ :D where y′ is chosen
to be a new variable.

Proof: The proof is by induction over the size of the derivation of the
judgement p :{ x :A | B }; details can be found in [Chi88a]. 2

Neither of these results should be a surprise. The first simply uses
subset introduction, whilst the second shows that if we are able to derive
membership of a subset type then implicit in that derivation is a proof that
the element has the property required of it. Examining the derivation allows
us to extract that proof object. On the other hand, Smith and Salvesen
show by an elaboration of Martin-Löf’s normalisation proof (in section 5.6
and [ML75b]) that
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Theorem 7.4 If the judgement

t : (∀x :{ z :A | P (z) }) . P (x) (7.2)

is derivable in TTS
0 , and A and P do not contain the subset type, then for

some term t′,

t′ : (∀x :A) . P (x) (7.3)

can be derived.

Proof: See [SS89]. 2

This shows that the rules for subsets are very weak. In the judgement
(7.2) the term t witnesses the property P of the objects in the subset type.
The result says that we can only extract this information when (7.3) is
derivable, in other words when all the elements of the type A have the
property P ! Wherein lies the weakness of the rules for subset? Examining
the rule (SetE), we should look at the hypothesis

x :A; y :B
...

c(x) :C(x)

we are allowed to use the assumption y : B, but y cannot occur free in c
or C. Examining the rules for TT0, if any of the rules contains a variable
free in an undischarged hypothesis, then this variable will appear free in
the conclusion. In other words, if we use the assumption, and it is not
discharged, then it will appear free in the conclusion.

The theorem shows that many functions are not derivable in TTS
0 . Look-

ing first at lists, suppose that we can derive functions

head′ : { l : [A] | nonempty l } ⇒ A

tail′ : { l : [A] | nonempty l } ⇒ [A]

with the property that for a non-empty list l

l = (head′ l :: tail′l)

From this we can construct a proof of (nonempty l). This is the hypothesis
(7.2) and so we can infer

(∀l : [A]) . (nonempty l)

resulting in a contradiction.
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7.2.1 The extensional theory

The case of the extensional theory, [ML85], is different, since the proof
rule (IEext) (introduced on page 170) together with the rule (II) allow the
derivation of r(a) : I(A, a, b) from e : I(A, a, b) for any expression e. Since
r(a) is a constant, this results in a proof object of type I(A, a, b) containing
no free variables. This in turn makes it possible to give a derivation of
a proof object which contains a number of variables in its hypotheses, yet
with these variables not appearing free in the proof object: this condition is
exactly what is required for the application of the rule (SetE). In [Sal89a]
there is a derivation of

(∀x : [N ]) . (∀n :{ z :N | ( z in x ) }) . ( n in x )

where ( n in x ) is the inductively defined proposition expressing that n is a
member of the list x. This derivation is by no means straightforward, using
the type U0 and the type substitution rule in an essential way, but this is
not an isolated phenomenon.

Definition 7.5 A formula P over A is stable if

(∀x :A) . (¬¬P ⇒ P )

Salvesen and Smith show that for all stable formulas,

(∀x :{ z :A | P (z) }) . P (x)

is derivable in the extensional version of type theory.
A syntactic characterisation of (some of) the stable formulas was first

given by Harrop in [Har60], and similar characterisations of computation-
ally irrelevant formulas can be found in [BCMS89]. (Note that as is re-
marked in [Sal89a] it is more difficult to recognise the stable formulas when
universes are present, as non-normal type expressions can be introduced
with the aid of a universe.) The result on stable formulas is in some sense
the best possible, as it is also shown in [SS89] that (∀x :{z :A | P (z)}) . P (x)
cannot be proved for all formulas. Their proof is based on an idea of Troel-
stra’s for the refutation of Church’s Thesis in an extensional context.

This limitation has lead to a re-evaluation of the subset type by the
Goteborg group, with a different approach being adopted. We look at this
in section 7.3 below.

Exercises

7.8. Complete the proof of theorem 7.3 above.
7.9. Formalise the argument above that the existence of the head′ and tail′

functions leads to an inconsistency.
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7.10. Can the functions head′ and tail′ be defined in the extensional version
of type theory discussed above?
7.11. Show that the propositions N , Nn, are stable, and that if equality

over A is formally decidable then x =A y is stable. Show that if A and B
are stable, then so are A ∧B, A⇒ B and (∀x :A) . B.
7.12. Give examples of formulas which are not stable using disjunction and
existential quantification.

7.3 Propositions not types

Immediately after introducing the rules for subsets in section 7.2 we saw in
theorem 7.4 that they were unsatisfactory. The question remains of how to
improve the representation of subsets in type theories. The proposed res-
olutions all involve a representation of propositions as distinct from types.
There is intuitive sense in this; prima facie the user of a logic is interested
in establishing judgements of the form

A is true

rather than in showing that a particular proof object makes the proposition
true.

7.3.1 ‘Squash’ types

The first approach to representing the proposition is to consider the ‘squash’
type, defined in [C+86a] to be

‖A‖ ≡df { t :> | A }

which will be inhabited by the object Triv if and only if there is some proof
object a :A. It is called the squash type, as all the information about the
proof is ‘squashed’ out of it. We should ask whether the judgement

Triv : ‖A‖

gives a reasonable representation of the judgement ‘A is true’. What would
this entail? We would expect that all the rules of constructive logic, as
presented in TT0 say, would remain true when judgements of the form b :B
are replaced by others stating B is true. For example, we should have

A is true B is true
A ∧B is true

(7.4)

This we can prove. Suppose that we assume, in accordance with (SetE),

x :> , p :A
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and

y :> , q :B

From these we can infer (p, q) : (A ∧B), and so by the law (SetI),

Triv : { t :> | A ∧B }

a judgement in which neither p nor q is free. This means that by subset
elimination twice, we have the same result on the assumption

Triv : { t :> | A } , T riv : { t :> | B }

which is precisely (7.4).
This programme comes to grief when we try to prove that

[x :A]
...

B(x) is true
(∀x :A) . B(x) is true

(7.5)

as it is not difficult to show that a derivation of this will contradict rule 7.4;
see [Sal89a, Section 3]. Intuitively we might argue that knowing that B is
true at each instance is not sufficient to establish in a uniform way that it
is true universally. This is the only rule for which the criterion fails, but it
shows that a different approach must be adopted if we are to find a proper
representation of the judgement A is true in type theory.

7.3.2 The subset theory

If the representation of the judgement is to be an improvement on TT , as
far as subsets are concerned, it is desirable that the system validates the
rule

a : { x :A | P }

[x :A , P is true]
...

Q(x) is true

Q(a) is true
(SetE′)

which has the consequence, setting P and Q the same, that

a : { x :A | P }
P (a) is true

For this to be valid, we need to move to a system in which propositions
and types are distinct, for we cannot have this rule if P is a type, as seen
by theorem 7.4.
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In [NPS90] the Goteborg group, ‘following ideas of Martin-Löf’, have
introduced a system called the subset theory in which the new judgements

P prop and P is true

are added to the system, together with a set of logical connectives, distinct
from the type forming operations introduced in their extensional version
of TT . Their system uses the names ×,+,Π, . . . for the type forming op-
erations, reserving ∧,∨,∀, . . . for the operations on propositions. They
introduce the rules, which looking at the example of the logical ∀, state

A prop

[x :A]
...

P (x) prop
(∀x :A) . P (x) prop

[x :A]
...

P (x) is true
(∀x :A) . P (x) is true

(∀x :A) . P (x) is true a :A
P (a) is true

As well as this, they give the following rules for subsets,

A is a type

[x :A]
...

P (x) prop
{ x :A | P (x) } prop

a :A P (a) is true
a : { x :A | P (x) }

a : { x :A | P (x) }

[x :A , P (x) is true]
...

c(x) :C(x)
c(a) :C(a)

a : { x :A | P (x) }

[x :A , P (x) is true]
...

Q(x) is true
Q(a) is true

There are two elimination rules for subsets: the first for types, as previously,
and the second for propositions, which is (SetE′), the rule we wanted to be
valid. These rules can be seen to satisfy the inversion principle of 8.4.

An elegant aspect of the subset theory is its justification. It can be
given an interpretation in the ‘basic’ type theory, an extensional version of
TT along the lines of [ML85], thus:
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Types are pairs A, A′ in the basic theory, where A is a type in the theory,
and A′ a predicate over A.

Propositions in the new theory are propositions, i.e. types in the old the-
ory, which may of course contain quantifications over the new types,
and so not all propositions of the old theory are propositions of the
new. The interpretation is defined construct-by-construct.

Under this interpretation, all the rules for the propositions are derivable in
the basic system, so that the consistency of the basic system lifts to the
subset theory.

7.3.3 Gödel Interpretation

A second representation of propositions as distinct from types is given by
[Sal89a, Section 4]. Motivated by the results on Harrop formulas in [SS89],
propositions are interpreted as a certain subclass of types, arising by means
of the Gödel double negation interpretation of classical logic in intuitionistic
logic; see [Dum77] for details. Informally, the interpretation is given by
prefacing each existential quantification, disjunction and equality type by
¬¬, weakening its constructive content. We can derive rules similar to those
above including (SetE′), as well as the classical

A prop
A ∨ ¬A is true

which requires a derivation of ¬¬(A ∨ ¬A) in TT .

Exercises

7.13. Give the proof-less version of (NE), and show that if we use the
judgement Triv : ‖A‖ to represent A is true, this version of the rule is
valid.
7.14. Show how the validity of (7.5) contradicts theorem 7.4.
7.15. Derive the result ¬¬(A ∨ ¬A) in TT0.

7.4 Are subsets necessary?

Is the introduction of a subset type necessary for a usable proof and program
development system? We began this discussion in section 7.1, where we saw
that the major argument for its introduction was to provide some means
of separating (to some degree) the computational and logical aspects of the
system from each other. This is ironic, as one of the most appealing aspects
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of type theory is its identification of propositions and types, proofs and
programs, but it was argued that it was necessary for two major reasons.

• Specifications and functions are made more complicated by the pres-
ence of proof theoretic information. It is argued in [NPS90], page 125,
that the inhabitants of a type like

(∀x :A) . (∃y :B) . P (x, y)

should be functions which solve the problem of finding, for each a
in A, an element b of B with the property P (a, b). This is not the
case, since for each a we will have a pair (b, pb) consisting of such a b
together with a proof that it indeed has the required property. Using
the subset type,

(∀x :A) . { y :B | P (x, y) }

we obtain a function giving only the b without the witnessing infor-
mation.

• In general, the development of many well-known functions, like quick-
sort in section 6.2, involves the introduction of proof information into
the functions, and this will have a deleterious effect on the evalua-
tion efficiency of the function, compared to a ‘purely computational’
version.

Any discussion of efficency, like the latter point above, rests on the imple-
mentation envisaged, and we would argue, as we did in section 7.1.2, that a
lazy implementation of type theory will result in only the computationally
relevant information being evaluated. Now we examine the first argument
in more detail.

The idea is that we should be able to separate from a complex derivation
exactly the part which is computationally relevant, and that this is to be
done by replacing some occurrences of existential types by subset types,
from which the witnessing information is absent. We would propose an
alternative which we believe is superior for two reasons:

• it is a solution which requires no addition to the system of type theory,
and

• it allows for more delicate distinctions between proof and computa-
tion.
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The solution is simply to name the appropriate operations and objects
sought, which in the case cited above involves us in invoking the axiom of
chioce to change the specification to

(∃f :A⇒ B) . (∀x :A) . P (x, (f x))

Now, inhabitants of this type are pairs, (f, p) which are the function sought
together with a proof that it has the required property. Giving this function
an explicit name, which is known as Skolemizing the quantifiers in a logical
context, has resulted in a specification which expresses more naturally what
is required. This method applies to more complex specifications as well.

Take as an example a simplification of the specification of the Pol-
ish/Dutch national flag problem as given in [NPS90]. We now show how it
may be written without the subset type. The original specification has the
form

(∀x :A) . { y :{ y′ :B | C(y′) } | P (x, y) }

with the intention that for each a we find b in the subset { y′ :B | C(y′) } of
B with the property P (a, b). If we replace the subsets by existential types,
we have

(∀x :A) . (∃y : (∃y′ :B) . C(y′)) . P (x, y)

This is logically equivalent to

(∀x :A) . (∃y :B) . ( C(y) ∧ P (x, y) ) (7.6)

and by the axiom of choice to

(∃f :A⇒ B) . (∀x :A) . ( C(f x) ∧ P (x, (f x)) )

which is inhabited by functions together with proofs of their correctness.
It can be argued that this expresses in a clear way what was rather more
implicit in the specification based on sets – the formation of an existential
type bundles together data and proof, the transformation to (7.6) makes
explicit the unbundling process.

As a final example, consider a problem in which we are asked to produce
for each a in A with the property D(a) some b with the property P (a, b).
There is an important question of whether the b depends just upon the a,
or upon both the a and the proof that it has the property D(a). In the
latter case we could write the specification thus:

(∀x : (∃x′ :A) . D(x′)) . (∃y :B) . P (x, y)

and Skolemize to give

(∃f : (∃x′ :A) . D(x′)⇒ B) . (∀x : (∃x′ :A) . D(x′)) . P (x, (f x))
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If we use the Curry equivalence, first proved in section 4.6.1, page 93, which
replaces existential quantifiers in the domain position of a function type,
we have

(∃f : (∀z :A) . (D(z)⇒ B)) . (∀x′ :A) . (∀p :D(x′)) . P ((x′, p), (f x′ p))

which makes manifest the functional dependence required. Observe that
we could indeed have written this formal specification directly on the basis
of the informal version from which we started.

If we do not wish the object sought to depend upon the proof of the
property D, we can write the following specification:

(∃f :A⇒ B) . (∀x′ :A) . (∀p :D(x′)) . P ((x′, p), (f x′)) (7.7)

in which it is plain that the object (f x′) in B is not dependent on the proof
object p :D(x′). Observe that there is still dependence of the property P
on the proof p; if we were to use a subset type to express the specification,
thus, we would have something of the form

(∀x′ :{ x′ :A | D(x′) }) . (∃y :B) . P ′(x′, y)

where the property P ′(x, y) relates x′ : A and y : B. This is equivalent to
the specification

(∃f :A⇒ B) . (∀x′ :A) . (∀p :D(x′)) . P ′(x′, (f x′))

in which the property P ′ must not mention the proof object p, so that with
our more explicit approach we have been able to express the specification
7.7 which cannot be expressed under the näıve subset discipline.

It is instructive to examine examples from the literature in which the
subset type has been used. We have already discussed the Polish flag prob-
lem, a second example is the parsing algorithm of [Chi87]. In fact we find
that in Chisholm’s derivation of the parsing algorithm, the subset type is
not used in an essential way: the solution is presented as a member of the
type

(∀w :Word) . (Parse w) ∨ ¬(Parse w)

where

Parse w ≡df { pt :PT | w = spell pt }

the function spell giving the word spelt out by the parse tree pt which is a
member of the algebraic type PT of parse trees. The subset type is used
nowhere else in the derivation, and it is used here only because the proof
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object for w = spell pt can be ignored ‘because it has no computational
content’. It makes no difference to the derivation to replace the set by

(∃pt :PT ) . (w = spell pt)

which carries the proof objects explicitly. Our remarks in section 7.1.2
would apply as far as the efficiency of the final algorithm is concerned.

As a final example, consider the problem of finding a root of a func-
tion. It is argued, in [C+86a] section 2.4 for example, that the natural
specification for such a function is

(∀f :{ f :N ⇒ N | (∃n :N) . (f n) = 0 }) . ( (∃n :N) . (f n) = 0 )

which might be read ‘given a function for which a root exists, we can find
a root’. It is a simple consequence of theorem 7.4 that the existence of an
object of this type leads to a contradiction.

In any case, this specification seems to miss the point about root finding.
The sort of algorithms we find used in practice are those embodied by
theorems of the form

(∀f :N ⇒ N) . ( C(f)⇒ (∃n :N) . (f n) = 0 )

which we would read ‘if f satisfies the condition C(f) then we can find
a root’. Many of the most important and difficult theorems of number
theory and numerical analysis are precisely theorems of this kind, from
which algorithms are derived. In contrast, the specification above begs the
question of where the proof of existence of the root comes from.

To summarise, there are two responses to the computationally irrele-
vant. We can first ignore it, exploiting lazy evaluation. The second expedi-
ent is to transform the specification so that the computation and verification
are separated. We did this above by a simple series of transformations; in
general, simply naming the function we aim to compute and writing the
specification and derivation in terms of that function can achieve the de-
sired effect. This approach seems to achieve the separation between the
logical and the computational to the appropriate degree, without introduc-
ing the subset type. We have found no example in the literature which is
not amenable to this kind of treatment.

Using the subset type to represent a subset brings problems; as we saw
in the previous section, it is not possible in general to recover the witnessing
information from a subset type, especially in an intensional system like TT ,
and so in these cases, the existential type should be used, retaining the
witnessing information.
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7.5 Quotient or Congruence Types

An important tool for the programmer and the mathematician is the capa-
bility to define an equality relation over a class of objects. For instance in
this account we stipulated that we would consider as the same two expres-
sions which differ only in their bound variables. In a program we might
choose to represent finite sets by finite lists, by taking as equal those lists
which have the same elements, irrespective of their multiplicity or ordering.
In both cases we can be seen to define a new type by taking the quotient of
a type by an equivalence relation (a relation which is reflexive, symmetric
and transitive).

These types are a part of the Nuprl system, [C+86a], and a variant
of them, congruence types, appear in the type theory of [BCMS89]. We
start with an exposition of the quotient type adapted to the context of TT ,
and then compare it with the congruence type. Because of the number of
hypotheses in the following rule, we write them in a vertical list.

Formation Rule for A//Ex,y

A is a type
x :A , y :A ` E is a type
x :A ` r : E[x/x, x/y]
x :A , y :A , r :E ` s :E[y/x, x/y]
x :A , y :A , z :A ,

r :E , s :E[y/x, z/y] ` t :E[x/x, z/y]
A//Ex,y is a type

(QF )

In this rule we have written hypothetical judgements such as

[x :A , y :A]
...

E is a type

in the horizontal form

x :A , y :A ` E is a type

In each case the hypotheses to the left of the ‘`’ are discharged by the
application of the rule.

In forming the type, we have to verify that the predicate is an equiva-
lence relation — that is the purpose of the final three premisses of the rule.
We use the subscript of x, y to indicate that it is these two variables, free in
E, which are bound by the type construct. When no confusion can result,
they will be omitted.
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The introduction rule breaks unicity of typing. An alternative would be
to ‘tag’ variables in some way to indicate to which type they belong.

Introduction Rule for A//Ex,y

a :A
a :A//Ex,y

(QI)

If we define a function over a quotient type, then the value on equivalent
elements has to be equal, otherwise the function is not well-defined, giving
different values when different representatives of the same equivalence class
are chosen. The elimination rule for the quotient type, which is the rule
introducing functions over the type must reflect this.

In eliminating an element of a quotient type, we behave in the same
way as for the an element of type A, producing some object c(x) : C(x),
except that for the elimination to be well-defined, c should give the same
values for equivalent elements. This gives an extra hypothesis in the rule.

Elimination Rule for A//Ex,y

a :A//Ex,y

[x :A]
...

c(x) :C(x)

[x :A , y :A , p :E]
...

t :I(C(x), c(x), c(y))
c(a) : C(a)

(QE)

There is no separate computation rule for the quotient type, but there is a
rule indicating that equivalent elements are deemed to be equal, so making
the equivalence relation the equality over the type.

Equality rule for A//Ex,y

a :A b :A p :E[a/x, b/y]
r(a) : I(A//Ex,y, a, b)

(Q=)

This has the effect of allowing equivalent elements to be substituted for
equivalents in any context involving elements of the type A//Ex,y, and so
it is by this rule that the new equality is defined on the type. Given the
judgement r(a) : I(A//Ex,y, a, b) we can substitute b for a in any context
where a is considered to be of type A//Ex,y — such contexts are of course
restricted to those where these substitutions can be performed safely. Note
that it is not asserted that the type I(A, a, b) is inhabited, so that we cannot
substitute b for a in every context.

If it is thought confusing that a has both the type A and the type
A//Ex,y we could introduce a label to suggest when a is being considered
as an element of the quotient type. There is no inverse to this operation,
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in general, unless each equivalence contains a ‘canonical’ member, such as
the representatives

0, 1, . . . , k − 1

of the equivalence classes for the relation |x− y|mod k = 0.
A typical example of a quotient type is that of the rationals, which can

be represented by pairs (n, m) with n an integer and m a positive integer.
(We suggested a representation of the integers in section 6.7 above.) Two
pairs are equivalent

(n, m) ∼ (n′,m′)

if n ∗m′ = n′ ∗m. The sum of two rationals n/m and p/q is defined to be

n ∗ q + p ∗m

m ∗ q

It is an exercise for the reader to verify that this respects the relation ∼.
Similarly, if we define the ‘less than’ relation over the integers by analogy
with the definition of lt2 over N in section 6.1.2, then defining

(n, m) ≺ (n′,m′)≡df (n ∗m′ < n′ ∗m)

then the predicate is well-defined. (In the Nuprl development, [C+86a, p.
210] this is not true, because a stronger version of type equality is adopted
than that here.) A definition which fails is the function

denom (n, m)≡df m

but we can give a definition,

denom (n, m)≡df m div (gcd n m)

based on the canonical representative (n div g , m div g) of the rational
(n, m), where g = gcd n m.

A second example is given by the extensional equality of section 5.8. In
that section we described ‘'’ as a partial equivalence relation, since it is not
in general reflexive. It will be reflexive on the domain consisting of those
functions which are themselves extensional. The substitution check in the
elimination rule for the type means that we only perform substitutions in
what we called extensional propositions. An advantage of our approach
there is that we have a syntactic criterion for extensionality of propositions
which obviates the necessity of checking the conditions time after time. We
shall look a further example in the following section on congruence types.

What is the advantage of the quotient type, over a simple definition
of an equivalence relation with which we work explicitly? The major one
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is to carry over the rules for substitution etc. to the equivalence relation,
when the formula in which the substitution is being made is insensitive to
the representative of the equivalence class chosen. We examine the real
numbers as a further case study in section 7.6.

7.5.1 Congruence types

A similar construction is given in the paper [BCMS89], where they call it
the congruence type construction. When introducing a (free) algebraic
type, such as that of finite lists, we introduce the constructors [ ] and :: and
the objects built from these are distinct unless they are identical. If we want
to represent finite bags, we might choose finite lists as a representation, but
we shall identify two lists which contain the same elements, in different
orders. This identification is an equivalence relation, and so we could just
write down the equivalence relation, and form the quotient type as above.
The approach of congruence types is slightly different, as we can simply
state that the equation

a • b • x = b • a • x (7.8)

should hold for all a, b and x, where • is the (infix) list constructor for this
type. The requirement (7.8) is considerably simpler to express than the
explicit form for the equivalence relation generated by that equation, and
the property of respecting such an equation, as is required in the elimination
rule, is also easier to express. Apart from this the rules for such algebraic
types are exactly as for the quotient type.

Can we express a general quotient A//Ex,y by these means? We can
indeed, by means of the trivial constructor, ? say. We have the formation
rule

StarE A is a type

and the introduction rule

a :A
? a : StarE A

In eliminating the type, we have

s :StarE A

[a :A]
...

c(a) : C(? a)

[x :A , y :A , p :E]
...

t :I(C(? x), c(x), c(y))
?− elimx(c, s) : C(s)
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with the computation rule

?− elimx(c, ? a) → c(a)

We have simply replaced the equation with a general requirement that
the formula introduced by the elimination respects the relation E. One
advantage of the approach here is that the elements are ‘tagged’ with the
constructor ‘?’ so that we can distinguish between an object a : A and its
equivalence class ? a in the congruence type.

The example of the type of binary numerals implemented as a congru-
ence type appears in [BCMS89, Section 5].

This method is similar to the idea of laws in early versions of the Mi-
randa language; on introducing an algebraic type by means of its construc-
tors, the user was allowed to write down rewrite rules which would be
applied to any expression of the type. To implement the type of ordered
lists, one was allowed to write

Ocons a (Ocons b x) => Ocons b (Ocons a x) , if a>b

which would swap any pairs which were out of order. This is more limited
than the general type theoretic construct both because the language in
which the equivalences could be written was much simpler, and also because
each of the rules had to be oriented, so that rewriting would only take place
in one direction. Further details of the types and the techniques available
to reason about them can be found in [Tho86, Tho90].

As a coda to this discussion, we should mention [Chi88b], in which it is
shown that the subset type can be used to advantage with the congruence
type, reducing the proof burden which arises in checking the conditions for
the elimination rule. The author shows the difference between the deriva-
tions of the cardinality function over types of finite sets implemented with
and without using the subset construct. The example chosen is one in
which the equivalence classes under the equivalence relation fail to have
canonical members, and it is in this sort of example that the advantage is
most marked.

Exercises

7.16. Complete the arguments that + and ≺ are well-defined over the
rationals.
7.17. How would you define the division function over the rationals?
7.18. Give an explicit definition of the equivalence relation generated by

the equation (7.8).
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7.6 Case Study – The Real Numbers

Nowhere is the difference between classical and constructive mathematics
more evident than in the treatment of the real numbers and real analy-
sis. The classical mathematician is happy to treat the reals as equivalence
classes of convergent (or Cauchy) sequences of rationals, choosing arbitrary
representatives of equivalence classes when necessary. He or she is also
accustomed to using non-constructive principles such as that which states
that every increasing sequence of rationals has a least upper bound, which
as we saw in chapter 3 numbers the law of the excluded middle amongst
its consequences. Attention is paid to computation only in numerical anal-
ysis, which can only use the results of classical analysis in a most indirect
manner.

In a constructive setting we can define the reals to be convergent se-
quences of rational numbers (written Q). We define RealC to be the type

(∃s :N ⇒ Q) . (∃m :Q⇒ N) .
(∀q :Q) . (∀n :N) . (q � 0 ∧ n > (m q)⇒ |sn − s(m q)| ≺ q)

where we have used the subscript sn instead of a function application for
readability. What are elements of this type? They have the form

(s, (m, p))

where s is a sequence, m is a modulus of continuity for s and p is a proof
of this fact, which is an element of

(∀q :Q) . (∀n :N) . (q � 0 ∧ n > (m q)⇒ |sn − s(m q)| ≺ q)

In computing with reals, this latter proof information will be computation-
ally irrelevant, but nonetheless has to be dealt with – as we define new
reals, that is a new sequences and its modulus of continuity, we are forced
to show that the latter is indeed a modulus function.

There is a slightly more streamlined approach which has been adopted
in [BB85] amongst other places. We can take the sequences which have a
fixed modulus of continuity, the regular sequences, and write

Real ≡df (∃s :Seq) . Reg(s)

where Seq ≡df (N ⇒ Q) and

Reg(s)≡df (∀m,n :N) . (|sn − sm| ≺
1

m + 1
+

1
n + 1

)

Elements of this type will be pairs

(s, p)
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with s a sequence and p a proof that s is regular. As we said earlier, the
information p is computationally irrelevant.

How can addition be defined? Given two reals (s, p) and (t, q) we can
define a sum sequence thus:

xn ≡df s2∗n+1 + t2∗n+1

but we also need proof that this sequence is regular. Note that

|xn − xm|
≡ |s2∗n+1 + t2∗n+1 − s2∗m+1 − t2∗m+1|
� |s2∗n+1 − s2∗m+1|+ |t2∗n+1 − t2∗m+1|

and using the proofs p and q we have that this is

≺ 1
2∗m+1+1 + 1

2∗n+1+1 + 1
2∗m+1+1 + 1

2∗n+1+1

≡ 1
m+1 + 1

n+1

From this we can build an object v which proves that x is regular, giving
a real (x, v). This has been an informal development, but it is not hard to
see that we can on the basis of this write a function add′ of type

Real⇒ Real⇒ Real

This definition mixes the computationally relevant with the irrelevant, and
we can in fact write, following Bishop, a version add of type

(∃f : (Seq ⇒ Seq ⇒ Seq)) .
(∀s, t :Seq) . (Reg(s) ∧Reg(t)⇒ Reg(f s t))

whose members consist of a (sequence) function of type Seq ⇒ Seq ⇒ Seq
together with a verification that it preserves regularity. We shall write addS

for the sequence function defined above. We can develop other arithmetic
operations in a similar way. We have used our earlier strategy of naming
functions appropriately rather than using a subset type. Other approaches,
such as that in section 11.5 of [C+86b], define the reals thus:

RealSet ≡df { s :Seq | Reg(s) }

In this context it seems more appropriate to use our approach, which makes
explicit the proofs, yet which separates them from the computation opera-
tions over sequences.

Each number on the real line has an infinite number of representatives in
the type Real. Consider zero for instance: it is represented by the constant
zero sequence, as well as by the sequence

zn ≡df
1

k + 2 ∗ n + 3
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for each natural number k. We say that two reals (s, p) and (t, q) are equal
if the following type is inhabited

Eq(s, t)≡df (∀n :N) . (|sn − tn| ≺
1

2 ∗ n + 1
)

Note that this definition depends only upon s and t and not on the proof
information p and q.

We leave it as an exercise for the reader to prove that this equality is an
equivalence relation over the type Real. It is not difficult to see that each
of the representatives of zero above is equal, and to see that the definition
of addition above respects equality, so that the following type is inhabited.

Eq(s, s′) ∧ Eq(t, t′)⇒ Eq(addS s t , addS s′ t′)

As Eq is an equivalence relation over Real, it seems sensible to investigate
the quotient Realq ≡df Real//Eqs,t. We have already seen that addition
respects the relation Eq, so we can define a version of addition

addq : Realq ⇒ Realq ⇒ Realq

In many applications we need to select a particular representative sequence
for a real. A classic example is to select, given a real r and a positive ratio-
nal x, a rational within a distance x of r. This is trivial given a particular
representative sequence, but the rational chosen will depend upon the par-
ticular sequence, different sequences giving different approximations. This
means that for a general treatment of the reals we need to use the type Real;
as is remarked in [C+86b], the type Realq can provide a useful framework
for substitution if nothing else.

It is no surprise that our constructive approach to the reals is quite
different from a classical one, focusing as it does on convergent sequences
of rationals. When we compute with ‘real numbers’ we do precisely this – it
is only in the idealised framework of classical mathematics that we are able
to deal with infinitary objects like equivalence classes of infinite sequences.

For further material we would refer the reader to [C+86b], on which we
have relied here, which develops the theory a little further, and of course
to [BB85] which gives a re-development of much of classical analysis, in a
rigorous but informal way.

Exercises

7.19. Show that equality as defined above is an equivalence relation, and
give definitions of subtraction, absolute value and multiplication which re-
spect this relation.
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7.20. How would you define equality and the arithmetic operations over the
type of Cauchy reals, RealC? How would you separate the computational
from the proof theoretic in making these definitions?
7.21. Give definitions of convergence of sequences of reals, and so of continu-
ity of functions, and using this give a proof of theorem 3.2, the constructive
intermediate value theorem.

7.7 Strengthened rules; polymorphism

Experienced users of type theoretic systems, such as Roy Dyckhoff, the
Cornell group and Backhouse and his co-workers, have noticed that a num-
ber of proofs seem to contain steps which though necessary seem less than
‘intuitive’. After examining an example of this, we look at Dyckhoff’s
strong elimination rules and Backhouse’s ‘hypothetical hypotheses’, a topic
to which we return in 8.4. We conclude with a discussion of the polymor-
phic type A 7→ B defined in [MC88], which can be seen to generalise the
other rules introduced in this section.

7.7.1 An Example

In [Dyc87] the example of the proof of

(∃z :A ∨B) . P (z)⇒ ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) ) (7.9)

is cited as the motivation for a re-examination of the rules of type theory.
How does the proof proceed? Working top-down we assume

p : (∃z :A ∨B) . P (z)

and aim to show that the consequent of the implication above is inhabited.
We have an existential assumption, which is used by means of the rule (∃E).
We should therefore try to prove

( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

on the basis of the assumptions

z :A ∨B , r :P (z) (7.10)

To use the disjunctive assumption z :A ∨B, we would like to reason in the
two cases that z is in the left and right hand sides of the sum; we cannot
do this as the variable z is free in the second assumption. In order to be
able to perform the case analysis, we have to make this extra assumption
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a part of the goal: we make it the hypothesis of an implication, so we aim
to prove

Q(z)≡df P (z)⇒ ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

from the single assumption that z :A ∨B. This proceeds thus

x :A [q :P (inl x)]1

(x, q) : (∃x :A) . P (inl x)
(∃I)

inl (x, q) : ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )
(∨I1)

λq . inl (x, q) : Q(inl x)
(⇒ I)1

By a similar argument we show that λs . inr (y, s) is a member of Q(inr y)
and so by (∨E′′),

vc≡df vcases′′x,y z λq . inl (x, q) λs . inr (y, s)

is a member of

P (z)⇒ ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

assuming that z :A ∨B. Also assuming r :P (z), we have

vc r : ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

and by a final application of (∃E),

Casesx,y p (vc r) : ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

Commentators have argued that the abstractions λq . . . . , λs . . . . in the
term vc and the application of this term to the proof r are spurious as they
arise by our need to transfer the assumption p :P (z) into the goal so that
the effect of the case analysis on the z takes effect.

It would be preferable when we perform a case analysis on the z in 7.10
for that case analysis to percolate through to the other assumptions which
depend upon it, to give the two sets of assumptions

x :A , p :P (inl x) and y :B , p :P (inr y)

It is essentially this which is achieved by the strong rule of [Dyc87], which
we present now.
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7.7.2 Strong and Hypothetical Rules

The stronger version of the elimination rule for disjunction is

p : (A ∨B)

[x :A
r : (p = inl x)]

...
u :C[inl x/z]

[y :B
r : (p = inr y)]

...
v :C[inr y/z]

decidex,y p u v : C[p/z]
(∨SE)

with the computation rules

decidex,y (inl a) u v → u[a/x]
decidex,y (inr b) u v → v[b/y]

The terminology ‘decide’ is used for the operator, as this is the Nuprl
terminology, [C+86a], and the Nuprl rules for the union and the existential
type indeed are strong versions of the rules of TT .

With the extra hypotheses, it is easy to build a proof of 7.9 without
the spurious abstractions and application. We start as before, from the
assumptions 7.10, but now we can perform a case analysis, giving the two
sets of assumptions

x :A , p :P (z) , r : (z = inl x) and y :B , p :P (z) , r : (z = inr y)

From the first set, we have by substitution

p : P (inl x)

giving in a direct fashion first

(x, p) : (∃x :A) . P (inl x)

and then

inl (x, p) : ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

We derive in a similar way from the second

inr (y, p) : ( (∃x :A) . P (inl x) ∨ (∃y :B) . P (inr y) )

and by an application of (∨E′′) we have the required result, with no spurious
abstractions.

An alternative way of expressing these stronger rules is by rules which
contain ‘hypothetical hypotheses’. Up to now, the hypotheses of a rule have
been judgements, such as p : A ∨ B or u : C[inl x/z], from the derivations
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of which certain assumptions may be discharged on the application of the
rule.

A hypothetical hypothesis should be thought of as the hypothesis that
a particular judgement can be derived on the basis of certain assumptions,
rather than being derivable outright. In an adaptation of Backhouse’s no-
tation, as presented in [Bac87b], where we write the hypotheses in a vertical
list and we use the notation

{ J1, . . . , Jk � J }

for the hypothetical hypothesis that J is derivable from the assumptions
J1 to Jk, the stronger rule for disjunction elimination is

p : (A ∨B)
{ v : (A ∨B), w :C � E is a type }
{ x :A,w :C[inl x/w] � b :E[inl x/w] }
{ y :B,w :C[inr y/w] � c :E[inr y/w] }
{ w :C[a/w] � whenx,y a b c : E[a/w] }

(∨EH)

The rules of computation for when are exactly the same as those for vcases
and decide. More details on this material can be found in [MC88], and we
shall have more to say in general about derivations containing hypothetical
hypotheses in section 8.4 below.

The elimination rules for all constructs can be given a hypothetical form;
some details of this are to be found in [SM87], where it is argued that their
use leads to more compact proof objects, for reasons similar to those which
improved the proof above. One slightly unsatisfactory point about the rules
is the case of inductively defined types, like lists, where the rules are less
general than might be hoped (if consistency is to be preserved!) In the next
section we look at an alternative approach.

7.7.3 Polymorphic types

Another case in which spurious abstractions and applications appears is
that of the head function over lists. Even if we work in a theory like
the subset theory of section 7.3, although the type of the function can be
specified to be

{ l : [A] | l 6= [ ] } ⇒ A (7.11)

the best that can be done is to derive a function of type

(∀l : [A]) . (l 6= [ ])⇒ A

which is equivalent to the type using the existential representation of the
set of non-empty lists. Again, as in the earlier example, the problem is
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how to incorporate information about an argument without making that
information (in this case the proof that the list is non-empty) an extra
argument of the function.

A new class of polymorphic types, which can be used to overcome this
problem is defined in section 3.4.3 of [BCMS89].

The non-dependent polymorphic type A 7→ B is characterised by the
rules

[x :A]
...

b :B
b : A 7→ B

(7→ I)
b :A 7→ B a :A

b : B
(7→ E)

where in the introduction rule neither b nor B contains the variable x. b
is thought of as a polymorphic constant, as although it depends upon the
assumption x :A, the value of b is independent of the value of x.

In an extensional system, like that of [ML85], it is possible to derive
that

head l : (l 6= [ ]) 7→ A (7.12)

and then by the elimination rule,

head l : A

This technique can be used to derive the stronger rules of elimination of
[Dyc87], as well.

7.7.4 Non-termination

There are consequences of introducing the polymorphic type A 7→ B in an
extensional system. It is well-known that not every term of [ML85] has a
normal form, as we can derive

(λp :⊥) . ((λx . xx)(λx . xx)) : ⊥ ⇒ A (7.13)

for any type A. This is because assuming that p :⊥, we can deduce that

r : I(Un, A, A⇒ A)

and then

A ↔↔ (A⇒ A)

Using substitution of types, from x :A we can deduce that x : (A⇒ A) and
so that

(xx) : A
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Further deductions give (7.13). On the other hand, we can show that every
closed expression has a canonical value, or weak head normal form (c.f.
section 2.3), so that with this weaker notion, the system is terminating. If
we include the polymorphic type, then there are terms without canonical
form, so the system is not terminating. Take the derivation that

((λx . xx)(λx . xx)) : A

depending upon the assumption p :⊥. By (7→ I), we have

((λx . xx)(λx . xx)) : ⊥ 7→ A

depending upon no assumptions. This term has no canonical form, since

((λx . xx)(λx . xx)) → e

if and only if e ≡ ((λx . xx)(λx . xx)).
In an intensional theory like TT , there is no difficulty of this kind in

adding the polymorphic type, but note that the polymorphic types will
contain fewer objects since as was argued in [SS89] none of the rules of TT
lose mention of objects mentioned in their hypotheses.

Exercises

7.22. Give a strengthened elimination rule for the existential quantifier,
and an example in which its use simplifies a proof object.
7.23. Show how the strong elimination rule for ∨ is a consequence of the

hypothetical rule (∨EH).
7.24. Give ‘hypothetical’ versions of the strengthened rules for ∃and N

elimination.
7.25. Give a derivation of the judgement (7.12) and use this to show that

head can be given the type (7.11).
7.26. Complete the derivation of the judgement (7.13).

7.8 Well-founded recursion

Rather than giving completely explicit definitions of functions, or proofs of
universal propositions, we often have to use recursion, which allows func-
tions to be defined in terms of their values at ‘simpler’ arguments, or prop-
erties to be proved assuming that they already hold of ‘simpler’ objects.

The recursions in the system TT are structural, that is they are linked
to the inductive generation of a data type like N , lists, trees and the W
types. For these types we say that the component parts of an object, such
as the subtrees u and v of the tree

Bnode n u v
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are simpler than the tree itself. The elimination rule for these types legit-
imises definition by recursion and proof by induction over the types. Such
recursions are limited, in that we limit our notion of what is simpler to a
structural one: component parts are simpler than the whole. The ques-
tion we address in this section is whether there is a more general notion of
‘simpler than’ over which we can make recursive definitions and inductive
proofs. We shall see that indeed there is, and that some of the examples of
recursion we have seen in chapter 6 can be cast in a more natural form in
this way.

We shall go on to look at other ways in which the recursive capabilities
of the system may be increased. In particular we shall also examine how
a wider class of ‘inductive’ type definitions can be added to the system,
and also how a treatment of partial functions can be included, without
breaking the important property of strong normalisation. First, however,
we examine well-founded types and recursion.

As this section is intended to be an introduction to the idea of well-
founded recursion, we shall use ideas and notation of näıve set theory, as
discussed in [End77] for instance, going on in the next section to examine
how these ideas can best be incorporated into type theory.

Definition 7.6 A binary relation ≺ is a partial order if for all x, y, z,

x 6≺ x

x ≺ y ∧ y ≺ z ⇒ x ≺ z

We can think of x ≺ y as expressing ‘x is simpler than y’, as we are
certain by the first clause that we have no loops x ≺ x, and in combination
with the second that we have nothing of the form

xo ≺ x1 ≺ . . . ≺ xn ≺ x0

However, being a partial order is insufficient to guarantee that we can
perform recursion over the ordering, and the classic example is the relation

n ≺ m≡df m < n

so that

. . . n + 1 ≺ n ≺ . . . ≺ 1 ≺ 0

How would a recursion over this type work? We would have to define
the value at 0 in terms of the value at 1, 2, . . .. In turn, the value at 1 is
determined by values at 2, 3, . . .: never at any point do we make a start with
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the definition. Consider the concrete case of the definition f : (N ⇒ N) by
‘recursion’ over ≺:

f n≡df f (n + 1)− 1 (7.14)

The problem with this is that it does not define a unique function, for the
functions fk with

fk n≡df n + k

are all solutions of the recursion equation (7.14). Not only is this example
classic, but it characterises those orderings over which recursion fails.

Definition 7.7 A partial ordering ≺ over A is well-founded if and only
if there are no sequences <xn>n in A so that

. . . xn+1 ≺ xn ≺ . . . ≺ x1 ≺ x0

Such a sequence is called an infinite descending chain.

In any ordering with an infinite descending chain, we can reproduce the
example above, showing that ‘recursive’ definitions do not lead to unique
solutions. On the other hand, we can show that recursive definitions are
well-defined over well-founded orderings.

This characterisation of well-foundedness has classical equivalents which
are more suited to a constructive context, as they are more explicit. The
one we shall use is

Theorem 7.8 A partial ordering is well-founded if and only if it satisfies

∀x(∀y(y ≺ x⇒ y ∈ z)⇒ x ∈ z)⇒ ∀x(x ∈ z) (7.15)

for all sets z.

Proof: Standard set theory; see [End77] for example. 2

This characterisation legitimises proof by induction over the ordering.
To prove that P (x) holds for all x, we take z ≡df {y ∈ A|P (y)} so that
(7.15) reads, in rule form

∀x(∀y(y ≺ x⇒ P (y))⇒ P (x))
∀xP (x)

Every partial ordering has a well-founded, or accessible, part.

Definition 7.9 The well-founded or accessible part Acc(A,≺) of the or-
dering ≺ over A is defined to be

{x ∈ A | ¬∃ <xn>n such that x � x0 � . . . xn � xn+1 . . .}
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Theorem 7.10 The accessible part of a partial ordering ≺ over A is the
smallest subset z of A with the property that

(∀y(y ≺ x⇒ y ∈ z))⇒ x ∈ z

Proof: As for theorem 7.8. 2

Corollary 7.11 The principle of induction over ≺ given above holds for
Acc(A,≺).

Theorem 7.10 shows that we can think of defining functions either by
recursion over a well-founded ordering, or by recursion over the well-founded
part of an arbitrary partial ordering. In the latter case the definition will
often be linked with a characterisation of Acc(A,≺), so as to show that
particular arguments of interest lie within the accessible part.

How are functions defined by recursion over a well-founded ordering?
We define the value at an argument a using the values at simpler arguments
x≺a.

Definition 7.12 The function f is defined by well-founded recursion
over the relation ≺ if it has the form

f a≡df . . . f a1 . . . f an . . . (7.16)

where each ai ≺ a

As an example, it is easy to see that the definition of pow from section
6.1.4

pow 0 ≡df 1

pow n ≡df (pow (n div 2))2 ∗ 2(n mod 2)

is justified by induction over the well-founded ordering < on N .
The formal treatment of well-founded recursion is slightly more general.

If we write f↓a for the function f restricted to the domain

{y ∈ x|y ≺ a}

then the recursion is defined by a function F , taking the values so far and
a itself to the value at a

F (f↓a) a = fa (7.17)

This generalises course-of-values recursion — we define the value at a using
the values at all the points preceding a in the ordering, just as we did in
section 6.1.1 above for the natural numbers. We now argue that recursion
is well-defined over well-founded orderings.
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Theorem 7.13 For every function F as above, there is a unique solution
to the equation (7.17).

Proof: The proof is by induction over the relation ≺. 2

Just to show how the formal treatment works, we look again at the pow
function. The function F defining the recursion is given by

F h 0 ≡df 1

F h n ≡df (h (n div 2))2 ∗ 2(n mod 2)

where the function h gives the values of the recursion on arguments smaller
than the second argument. h is only applied to smaller arguments here:
in the first case it is not used, and in the second it is only applied to
(n div 2) < n when n > 0. The F notation is slightly cumbersome, so we
shall tend to present function definitions in the form of (7.16) above.

What examples of well-founded orderings are there? For each of the
types A in TT with a recursion operator we can define a well-founded
ordering ≺A which embodies that recursion. We can read off the relation
from the introduction rules, the elements of the type which appear above
the line being the immediate predecessors of those appearing below it.

For instance, for the type of trees there are two cases as there are two
introduction rules. The node Null has no predecessors, and for a Bnode,
we have

u ≺1 (Bnode n u v) v ≺1 (Bnode n u v)

and for n + 1 > 1,

t ≺n+1 t′ ≡df ∃u(t ≺1 u ∧ u ≺n t′)

Finally, we say that

t ≺ t′ ≡df ∃n(t ≺n t′)

The definition of ≺ specifies the formation of the transitive closure of
the immediate predecessor relation ≺1.

Using the original definition of well-foundedness, it is easy to see that
there is a wealth of well-founded orderings. We summarise them now,
leaving proofs to the reader.

• The orderings induced by the introduction rules for the types N , [A],
tree and the W types in general are well-founded.

• If ≺′ is a well-founded ordering on B and f : (A ⇒ B) then the
ordering ≺ on A defined by

a ≺ a′ ≡df (fa) ≺′ (fa′)
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is well-founded. We call the ordering ≺ the inverse image ≺′ under
f . An example of this is the ordering on lists given by the length
function, #,

l ≺ m≡df #l < #m

• A sub-ordering ≺≺ of a well-founded ordering will be well-founded.
By a sub-ordering we mean that for all a, b,

a ≺≺ b⇒ a ≺ b

• Given orderings ≺ on A and ≺′ on B, we can define a number of
well-founded orderings.

– The product ordering on A × B: (a, b) ≺≺ (a′, b′) if and only if
a ≺ a′ and b ≺′ b′.

– The lexicographic product ordering on A×B: (a, b) ≺≺ (a′, b′) if
and only if either a ≺ a′ or a = a′ and b ≺′ b′. This is called the
lexicographic ordering, as it is the way that words are ordered
in a dictionary, and indeed it can be extended to n-ary products
and lists in general.

– The sum ordering on A ∨B: for which we define

(inl a) ≺≺ (inl a′)≡df a ≺ a′

(inr b) ≺≺ (inr b′)≡df b ≺′ b′

with items from different sides of the sum incomparable.

Having introduced the general subject in a free-wheeling way, we must
now show how we can introduce well-founded recursion into type theory in
a suitable manner. There are a number of proposals to look at, and we do
this in the section to come.

Exercises

7.27. Show that the set Acc(A,≺) is downwards closed, i.e. that if y ≺ x
and x ∈ Acc(A,≺) then y ∈ Acc(A,≺).
7.28. Give explicit definitions of the well-founded orderings induced on lists
and on a general W type by their structure.
7.29. Argue that suborderings, and the product, lexicographic product and
sum orderings are well-founded if their component orderings are.
7.30. Try to discover the orderings over which definitions in chapter 6 are

most naturally expressed. Look in particular at the examples of quicksort
and the Ackermann function.
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7.9 Well-founded recursion in type theory

Having introduced the idea of well-founded recursion, here we look at how
best to add it to our system TT . The most straightforward idea, first
investigated in [Pau86], is to take the characterisation of well-foundedness
given by theorem 7.8, to translate it into type theory and then to ask
which orderings meet the definition. It transpires that all the well-founded
orderings mentioned in the last section can be shown to be well-founded
under the type theoretic characterisation.

A second approach, introduced in [Nor88] and developed in [SM87], is
to permit recursion along the accessible parts of any partial ordering ≺.
The collection of elements Acc(A,≺) has then to be defined in some way,
and this is done by giving type theoretic rules, just as for other types. The
characterisation is unusual, in that we have to reason about the membership
relation

b : B

to characterise properly the class Acc(A,≺), and so some proposition rep-
resenting this judgement has to be introduced, analogous to the internal
representation of equality by ‘=’.

7.9.1 Constructing Recursion Operators

In our earlier discussion, we characterised the well-foundedness of the or-
dering ≺ by

∀x(∀y(y ≺ x⇒ y ∈ z)⇒ x ∈ z)⇒ ∀x(x ∈ z) (7.18)

for all sets z. How can we express the quantification ‘for all sets z’ in type
theory? We can think of it as expressing ‘for all properties P ’, where by
a property we mean a predicate over A. A predicate P (z) over A gives a
proposition P (a) for every a :A, so we can think of a predicate as a member
of

A⇒ U0

(In fact, of course, there are also predicates in the larger universes Un, but
we restrict ourselves to the ‘small’ predicates in U0.) As the ordering ≺ is
a binary relation, we can think of it as a function in A ⇒ A ⇒ U0. We
shall continue to write it in infix form.
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Definition 7.14 A partial ordering ≺ is well-founded in TT if and only
if the type

(∀P :A⇒ U0) .
( (∀x :A) . ((∀y :A) . (y ≺ x⇒ P y)⇒ P x)
⇒ (∀x :A) . (P x) )

(7.19)

is inhabited by an object Ξ satisfying

Ξ P F x = F (λy . λr . (Ξ P F y)) (7.20)

It is worth examining the premiss of the implication (7.19).

(∀x :A) . ((∀y :A) . (y ≺ x⇒ P y)⇒ P x)

An object of this type is like the F of (7.20), taking the values on the
predecessors y of x to the value on x, in P x. Given such a function, we
return a function of type (∀x : A) . (P x) that is defined on the whole of
A. Asking purely that we have an object of type (7.19) guarantees that we
have proof by induction over the type; we add the rider (7.20) to guarantee
that we can also define functions by recursion. The equation states that the
value at x, Ξ P F x, is got by applying F to the values at the predecessors

λy . λr . (Ξ P F y)

Note that the second argument to the function is the proof that y ≺ x.
Given the operator Ξ we can define functions using the syntactic form

f a≡df . . . f a1 . . . f an . . .

where each ai ≺ a and we shall do this in what follows.
To show that the orderings over well-founded types such as lists, trees

and N are well-founded, we have to show that the course-of-values recursion
operator is defined, where the previous values are presented in the form of
a function of type

(∀y :A) . (y ≺ x⇒ P y)

rather than as a list as we did for the natural numbers in section 6.1.4.
This is not difficult to achieve, and we leave it as an exercise for the reader.

As an example derivation, we show that

Theorem 7.15 If ≺′ is a well-founded ordering on B, and f :A⇒ B, then
the ordering ≺ defined on A by

y ≺ x ≡df f y ≺′ f x (7.21)

is well-founded.
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Proof: We need to construct an operator Ξ of type (7.19) given an operator
Ξ′ of type

(∀P ′ :B ⇒ U0) .
( (∀x′ :A) . ((∀y′ :B) . (y′ ≺′ x′ ⇒ P ′ y′)⇒ P ′ x′)
⇒ (∀x′ :B) . (P ′ x′) )

(7.22)

To construct an operator of function type like (7.19) we assume that we
have objects of the argument type and aim to derive an object of the range
type. We therefore assume we have

P : A⇒ U0

F : (∀x :A) . ((∀y :A) . (y ≺ x⇒ P y)⇒ P x)

and try to deduce an object of type (∀x : A) . P x. We will try to use the
operator Ξ′ in this enterprise, and we use this by applying it to P ′ and F ′

of the appropriate type. How should we define P ′? Given f we say

P ′ x′ ≡df (∀x :A) . ( f x=x′ ⇒ P x ) (7.23)

saying that P ′ x′ holds if and only if P holds for all elements of the inverse
image of x′. Note that if we can conclude that

(∀x′ :B) . P ′ x′ (7.24)

then we have in particular

(∀x :A) . P ′ (f x)

which by (7.23) expands to

(∀x :A) . (∀z :A) . ( f x = f z ⇒ P x )

implying (∀x :A) . (P x). Our goal now is therefore to prove (7.24). We can
conclude this if we can define

F ′ : (∀x′ :B) . ((∀y′ :B) . (y′ ≺′ x′ ⇒ P ′ y′)⇒ P ′ x′)

To do this we assume that

θ : (∀y′ :B) . (y′ ≺′ x′ ⇒ P ′ y′) (7.25)

and try to find an object of type P ′ x′, that is of type

(∀x :A) . ( f x=x′ ⇒ P x )

so we also assume that x :A and x′=f x and aim to find an object of type
P x. By substitution into (7.25) we have

θ : (∀y′ :B) . (y′ ≺′ (f x)⇒ P ′ y′)
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so that in particular,

θ′ : (∀y :A) . ((f y) ≺′ (f x)⇒ P ′ (f y))

but then by the definition of P ′, and of ≺

θ′′ : (∀y :A) . (y ≺ x⇒ P y)

We can apply F to this θ′′ to give the result we required, that is

P x

We extract from the proof a definition of the function F ′ and so define Ξ
by

Ξ P F ≡df Ξ′ P ′ F ′

as we discussed above. 2

The product and lexicographic product orderings can also be shown to
preserve well-foundedness. We leave these as exercises for the reader, who
can also find derivations of them in [Pau86].

Theorem 7.15 is important not only in showing that particular orderings
are well-founded. It also forms a part of a characterisation of the well-
founded orderings, proved in section 14 of [Pau86]:

Theorem 7.16 An ordering ≺ on A is well-founded if and only if there
is some W type B and a function norm : A ⇒ B so that ≺ is logically
equivalent to the inverse image under norm of the canonical ordering on
B.

Exercises

7.31. Check that orderings on the types N , lists, trees and so forth are
well-founded according to the definition above – this will involve using the
recursion operators in an essential way.
7.32. Complete the proof of theorem 7.15 by giving an explicit definition

for the expression Ξ, and checking that it has the property (7.20).
7.33. Show that the well-founded orderings defined in the previous section,
including the product and lexicographic product, satisfy definition 7.14.
7.34. Can you define an ordering on A which is well-founded according to

predicates A⇒ U0 but not with respect to predicates in A⇒ U1?
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7.9.2 The Accessible Elements

The approach taken in [Nor88] is to axiomatise definition by recursion over
the set of accessible elements of the ordering ≺. We first give the rules
as introduced by Nordström, and then discuss them, and their subsequent
elaboration in [SM87].

Formation Rule for Acc

A is a type

[x :A, y :A]
...

(x ≺ y) is a type

Acc(A,≺) is a type
(AccF )

Introduction Rule for Acc

a :A

[y :A, y ≺ a]
...

y :Acc(A,≺)
a :Acc(A,≺)

(AccI)

Elimination Rule for Acc

p : Acc(A,≺)

[
x :Acc(A,≺)
z :A, z ≺ x � (f z) :C(z)

]
...

(e x f) :C(x)
rec e p : C(p)

(AccE)

Computation Rule for Acc

rec e p → e p (rec e)

The formation and computation rules are standard, but the other two
rules deserve some comment. In the elimination rule, the second hypothesis
in the deduction of (e x f) : C(x) is itself hypothetical; assuming that z is
a predecessor of x, f has a value on z. This f gives the values on the
predecessors which are used in the expression e to calculate the value at x
itself. We shall say more about this form of rule in section 8.4.

More unfamiliar is the rule (AccI). To fulfill the second hypothesis, we
have to infer that

y :Acc(A,≺)
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on the basis of the assumptions

y :A, y ≺ a

This is an unlikely inference, and misleading, as what we want to infer is
the proposition that

y ∈ Acc(A,≺)

on the basis of y ∈ A and y ≺ a. In order to do this, we have to give an
internal form of the membership relation, just as ‘=’ gives an internalisa-
tion of equality. This can be done, and indeed was done in [SM87]. The
introduction and elimination rules for ‘∈’ are

Introduction Rule for ∈
b : B

el : (b ∈ B)
(∈ I)

Elimination Rule for ∈

c : (b ∈ B)
b : B

(∈ E)

In fact Saaman and Malcolm use a collection of simplified elimination
rules, based on the presence of the ‘∈’ types, of which an example is the
rule for N .

n :N v[0/x] :C[0/x]

[ i :N, v[i/x] :C[i/x] ]
...

v[succ i/x] :C[succ i/x]
v[n/x] :C[n/x]

(SNE)

These rules can be thought of as performing the appropriate reductions on
the expressions usually introduced by the elimination rules, and using these
the ‘∈’ type does not need to be discussed explicitly.

A relation on a type A will be well-founded if Acc(A,≺) is the whole
set. Saaman and Malcolm derive this result for the examples in [Pau86], as
well as showing that the unbounded search program, of type

(∀f :{ f | (∃x :N) . f x = 0 }) . (∃x :N) . ( f x = 0 )

which they build using the observation that the ordering m ≺ n≡df m > n
which is well-founded on the set

{ n :N | (∀m :N) . (m < n⇒ fm 6= 0) }
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Exercises

7.35. Show that the class of elements accessible under the ordering ‘<’ on
N is N itself.
7.36. Given orderings ≺ and ≺′ on A and A′, how would you charac-

terise the elments accessible in the product, lexicographic product and sum
orderings on A ∧B and A ∨B?

7.9.3 Conclusions

Two alternatives have been suggested to augment the ‘structural’ recur-
sions over types such as N , lists, trees and so on. In the first, in [Pau86],
the theory TT is shown to be sufficiently powerful to define many of the re-
cursion operators over well-founded relations. This has the advantage that
no changes need to be made to the system, and also the advantage over the
derivations given in chapter 6, in which implicitly at least, the derivation
of well-foundedness has to be repeated for each function definition. In this
respect Paulson’s approach adds a useful modularity to the system.

Saaman and Chisholm’s proposal is more far-reaching, involving the
introduction of a new predicate ‘∈’ of uncertain effect on, for example, the
termination properties of the system. On the other hand, they claim that
it simplifies considerably the proof objects given by Paulson’s approach, as
well as allowing the definition of the root-finding program.

7.10 Inductive types

The idea examined in this section is that types can be generated by induc-
tion. We begin with an informal introduction, and then turn to a discussion
of how the process can be formalised in type theory. [Mos74] gives an ele-
gant treatment of inductive definitions from a set-theoretic standpoint, the
type theoretic-treatment appearing in [Men87b] and [Dyb88].

7.10.1 Inductive definitions

We look at the idea of inductive generation of types using the running
example of finite lists of natural numbers. We have already seen that lists
can be introduced by means of the W -type mechanism, but an informal
specification might say

[ ] is a list, and if n is a number, and x a list, then (n :: x) is
also a list . . .
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The type of lists L, has to contain [ ], and if it contains x it must contain
(n :: x) also. Moreover, the intention of the definition is that L is the
smallest such set, as the informal specification has the implicit conclusion

. . . and lists can only arise in this way.

We can formalise by saying that L is the smallest solution of the equation

L≡df {[ ]} ∨ (N ∧ L)

if we represent the list (n :: x) by the pair (n, x). We shall in fact continue
to use the familiar notation (n :: x) instead of the pair. Not every equation

T ≡ Θ T

has a solution or a least solution: a sufficient condition for a least solution
is that the operator Θ is monotonic, so that if S ⊆ T then

Θ S ⊆ Θ T

The least solution of the equation is called the least fixed point of the
operator Θ, and we write it FixΘ. To show that the equation has a solution
we consider the sequence of sets

Θ0 ≡df ∅ ⊆ . . . ⊆ Θα+1 ≡df Θ Θα ⊆ . . .

Assuming that we are working in some universe set, this sequence must
have a fixed point, Θβ+1 = Θβ . In general, the superscript β may be an
infinite ordinal number, reflecting the complexity of the type thus defined.
This fixed point is the least fixed point of Θ, but we can also deduce that
a least fixed point exists from the fact that for a monotonic operator, the
intersection of all the solutions is itself a solution, and that will be the least
such.

We shall use the notation L for the operator of which L is the least fixed
point:

L T ≡df {[ ]} ∨ (N ∧ T )

The equation

L ≡ {[ ]} ∨ (N ∧ L)

characterises that L is a fixed point of L. How do we characterise that L
is the least solution?

We need to express that elements only go in by the action of the operator
L. We do this by giving an elimination rule which constructs a function by
recursion over L. To make such a definition it is necessary and sufficient
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to state a value at [ ] and a way of going from a value at x to a value at
(n :: x). Looking at this in a slightly different way, we have give a way of
going from a value at an object of type T to a value at an object of type
L T , since a value of type

L T ≡ {[ ]} ∨ (N ∧ T )

will be either [ ] or (n :: x) with x :T .
Abstracting from this, to define a function

fix g : Fix L ⇒ R

we give a function

g : (T ⇒ R)⇒ (L T ⇒ R)

Consider the example of the sum function, which returns the sum of a
numerical list. This is characterised by the function g,

g f [ ] ≡df 0
g f (n, x) ≡df n + (f x)

since if we define its fixed point, fix g, it will satisfy

fix g [ ] ≡ 0
fix g (n, x) ≡ n + (fix g x)

In the general case this is encapsulated by the computation rule

(fix g) → g (fix g)

Before we give a type theoretic treatment of inductive definitions, we ob-
serve that there is a link between inductively defined sets and well-founded
orderings. Every inductive set has an ordering given by comparing the
stages at which the elements go into the set. We define

‖x‖ ≡df the α such that x ∈ Θα+1 −Θα

Now we say that x ≺ y if and only if ‖x‖ < ‖y‖; this ordering is well-
founded as it is the inverse image of the ordering of the ordinal numbers.
This characterisation also suggests that we can give a representation of
inductively defined sets by means of well-founded recursion, and ultimately
by means of the W -types.

Exercises

7.37. Show that the type of finite and infinite lists of natural numbers is a
solution of the equation

L≡df {[ ]} ∨ (N ∧ L)
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How would you argue that it does not meet the inductive characterisation
of the least fixed point?
7.38. Argue that the operator which sends T to {1} if 0 ∈ T , and to {0} if
not has no fixed point.
7.39. Show that the intersection of a non-empty set of fixed points of a

monotonic operator Θ is a fixed point of Θ, and therefore that a least fixed
point exists.
7.40. Give fixed point definitions of the types of natural numbers and trees.
7.41. How would you define a type of lists whose elements are either natural
numbers or lists themselves?
7.42. Give a fixed point definition of a type of finite and countable ordinal
numbers.

7.10.2 Inductive definitions in type theory

Formation of inductive types is permitted when we have a monotonic op-
eration

Θ : Type⇒ Type

There are two approaches to verifying the monotonicity of an operator.
In the first, which is adopted in [Dyb88], a meta-theorem guarantees that
operations of a restricted syntactic form are monotonic. If the symbol T
does not appear embedded in the domain part of any function or universal
type in T , then the operation

Θ:T 7→ T

is called positive, and can readily be shown to be monotonic. We can
refine this to sanction negative appearances of T in the domain part, where
such appearances have the dual definition to positive ones.

In [Men87b], an explicit check for monotonicity is added to the rule,
forcing the verification of a statement like

T1 ⊆ T2 � T [T1/T ] ⊆ T [T2/T ]

To facilitate this, various straightforward rules for the new judgement form
T1 ⊆ T2 have to be added to the system. The two approaches are com-
plementary, and there is no reason at all why they should not be used
together.

The rules for the inductive type take the form

Formation Rule for Ind

Θ monotonic
Fix Θ is a type

(IndF )
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There is no introduction rule for the type, rather we have a rule of type
equality.

Type equality rule for Ind:

Fix Θ → Θ (Fix Θ) (7.26)

This rule is sufficient to give the usual introduction rule in the case of the
operator L. We have

[ ] : L (Fix L)

so that by (7.26), [ ] : Fix L. Similarly, if n :N and x :Fix L then

(n :: x) : L (Fix L)

and thus (n :: x) is in Fix L itself.
The elimination rule can be written in a number of forms. Giving it the

full parametricity, we have

Elimination Rule for Ind

[ T ⊆ Fix Θ ]
...

g : (∀x :T ) . C ⇒ (∀y :Θ T ) . C[y/x]
fix g : (∀z :Fix Θ) . C[z/x]

(IndE)

and the computation rule is

Computation Rule for Ind

fix g → g (fix g)

Examples of types thus definable are lists, trees, and the general W -
types. Mendler augments the mechanism by allowing the definitions to be
parametric. This means that types can be defined by simultaneous recur-
sion, and in this context the types can readily be thought of as predicates.
For instance, the definition

Root f n≡df (f n = 0) ∨ (Root f (n + 1))

defines a family of types by a simultaneous recursion over n : N . The
predicate defined expresses the property that f has a root greater than or
equal to n. Note that here we have a predicate which depends upon a value
n but which is defined without using the universes Ui. Using the recursion
operator over this type and the subset type to hide information, Mendler
is able to give a function implementing unbounded search.
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[Dyb88] argues than in many cases, the traditional introduction and
elimination rules of the types can be read off from the operator Θ, as indeed
we saw for the operator L above. Certainly if it is a sum of products of
expressions, it is easy to see that this bears a resemblance to, say, the
Miranda algebraic types

ty ::= con1 t11 ... t1k |
con2 t21 ... t2l |

...

with one constructor per summand, and one selector per constructor argu-
ment, or product component. This paper also explores a representation of
these inductively defined sets in TT , by means of the W -types. This rep-
resentation is proved to be an isomorphism in case the type theory carries
an extensional equality.

One drawback to the addition of these types is that equality between
types is made undecidable: we can adopt a tighter notion of equality, like
name equality (see, for example, [Ten79]) but this seems to be in conflict
with the remainder of the system, for which a structural equality of types
can be maintained.

Exercises

7.43. What is the rule of induction for lists given by (IndE)? Compare it
with the rule given earlier in section 5.10.
7.44. Using the rules for sets given in section 7.2, derive a root-finding

program of type

{ f :N ⇒ N | (∃n :N) . (Root f n) } ⇒ (∃n :N) . I(N, (f n), 0)

7.45. Give inductive definitions of the transitive closure of R and of the
smallest equivalence relation extending R when R is a binary relation over
a type A, say.
7.46. (For logicians) Given a formal system F for first-order arithmetic,

give an inductive definition of the set of theorems provable in the system.
Explain how to give an interpretation of the system over the type N of type
theory, and write down an inductive definition of the formulas of F which
are valid under that interpretation.

7.11 Co-inductions

Readers who are familiar with languages which feature lazy evaluation of
all function applications, including those of constructor functions such as
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the (infix) cons, ‘::’ will see the type of lists as sadly deficient, containing
as it does only the finite lists. The Miranda programmer is accustomed to
being able to define infinite lists such as

2::3::5::7::11::...

The approach in such a language is to evaluate any structured expression
only to the extent that is necessary for computation to proceed. In com-
bination with general recursion, this means that lists may be completely
undefined, or more subtly, partially defined. If we write

lis1 = 3 :: undef

where undef=undef is the definition of the tail of the list, this list has a
head of 3; only if we examine the tail do we find that it is undefined. We can
see that the combination of unrestricted recursion and lazy evaluation leads
naturally to these partial lists, which we obviously cannot accommodate in
a hereditarily total type theory. Is there any way that we can retain some
of the power of programming with lazy lists, which is described so clearly in
[Hug90], section 4? We shall see that by looking at the class of co-inductive
definitions, i.e. definitions of greatest fixed points of operators, we can build
types with infinite objects without adding partially-defined data items. We
pursue the example of the type of infinite lists of numbers as a running
illustration.

Infinite lists are described in quite a different way to their finite coun-
terparts. Instead of saying what are the component parts, [ ], 0, 1, . . ., and
the ‘glue’, ::, from which they are built, by introduction rules, all we can
say is that given an infinite list, we can split it up into a head and a tail,
which is again infinite. The equation

I ≡df N ∧ I (7.27)

describes this in another way, for it says if l :I then

l :N ∧ I

so that l ≡ (n :: l′), with n : N and l′ : I. The equation (7.27) has many
solutions, the smallest of which is ∅! Surely anything which decomposes
l → (n :: l′) has a right to be called an infinite list, so we should choose
the largest and not the smallest of the solutions of (7.27), that is the largest
fixed point of the operator I,

I I ≡df N ∧ I
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How can we guarantee that we have chosen the largest fixed point? We
should ensure that any definition of a list is a member of the type, be-
ing careful not to introduce any partiality. As a guide to the form of the
equations, think of how the infinite list of ones can be defined. We can say

ones≡df 1 :: ones

where on the right hand side of the equation we have ensured that we have
given a clearly defined head to the list. Assuming the same about the
recursive call means that we are certain of being able to ‘unfold’ ones any
finite number of times. Using such a form of definition we can make the
radical step of defining all the constant infinite lists! To make any further
progress, such as defining the list 1 :: 2 :: 3 :: . . . we need to be a bit more
ingenious, and think of defining a whole collection of lists simultaneously.

fromn ≡df n :: fromn+1

is a definition of the lists fromn enumerating the natural numbers staring
from n :N . Again, the right hand side guarantees that each list has a head,
recursion supplying the tail. A final example along these lines is a function
making a list from a function f : (N ⇒ N)

makelf ≡df (f 0) :: makelf ′

where the function f ′ is defined by

f ′ n≡df f (n + 1)

This defines (N ⇒ N)-many infinite lists simultaneously, each of which is
guaranteed to have a head by the form of the definition. How are these
recursions structured?

There is a domain D, from which the parameter is taken. How do we
form the right hand side of the definitions we saw above? We can use the
parameter, call it y, and the lists themselves, z : D ⇒ T , say. From these
we have to form a list, but this must be a list with a defined head. Recalling
the definition (7.27), the right hand side must be a member of the type I T ,
rather than simply the type T itself. Given such a term, we can form the
fixed point, which will be the object defined as above.

Let us set this down as a rule, using Ψ for the general monotonic oper-
ator.

Introduction Rule for Coin

d : D

[y :D , z :D ⇒ T ]
...

b : Ψ T

xify,z b d : Xif Ψ
(CoinI)
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where we need also the rules

Formation Rule for Coin

Ψ monotonic
(Xif Ψ) is a type

(CoinF )

Computation with the xif object is straightforward,

Computation Rule for Coin

xify,z b d → b[d/y , λw . (xify,z b w)/z]

where we can see that in the unfolded recursion the function z is replaced
by the whole family of recursively defined objects λw . (xify,z b w), as we
described the recursion above.

In the case of a co-induction, the role of the defining equation (7.27) is
that of an elimination rule, for if we know that l : (Xif I) then

l : I (Xif I) (7.28)

eliminating the (bare) type (Xif I).
The nature of recursion over a co-inductive type is quite different from

that over an inductive type, where the definition is grounded by the fact
that at each appeal we make a call to the value of the function at a simpler
object. Here recursion does not directly explain how a function is defined
over the type Xif Ψ, rather it explains how individual objects of the type
are defined. How are such functions defined? There are two methods.
First, by (7.28) we have the selector functions head and tail over the type.
Given the selectors we can define such functions as

sum27 [a0, a1, . . . , an, . . .]≡df a0 + a1 + · · ·+ a27

We can give fully recursive definitions to standard operators over infinite
lists using the selectors in combination with (CoinI). An example is

mapi : (N ⇒ N)⇒ (Xif I)⇒ (Xif I)
mapi f (a :: x) ≡df (f a) :: mapi f x

which defines the value of mapi f l simultaneously for all infinite lists l.
Functions of the form

sumi n [a0, a1, . . . , an, . . .] ≡df a0 + a1 + · · ·+ an

index n [a0, a1, . . . , an, . . .] ≡df an

can either be defined by tail recursion over the parameter n : N , or by a
simultaneous recursion over all infinite lists.
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Other types which can be defined in this way are the type of finite and
infinite lists, the largest fixed point of the operator L, infinite trees and the
like.

We can define sophisticated functions over the type of infinite lists if
we are prepared to incorporate some proof-theoretic information into the
domain. One example might be a function which splits a stream of char-
acters into a stream of words, splitting at each white space character. We
cannot define this function over all the infinite lists, but only those with
white space occurring infinitely often. We can describe exactly this class
as an existential or subset type, and therefore define the function.

Equality over these types is interesting also. If it is intensional, then we
will only identify (for example) two infinite lists if they are defined in the
same way. An alternative is to adopt an extensional approach, saying that

l ' l′ ⇔ (∀n :N) . ( index n l = index n l′ )

This approach is adopted in a logic for Miranda, [Tho89b], where it ax-
iomatises equality of infinite lists. Using the denotational semantics for
Miranda, we can of course prove that this is the case.

In conclusion, we would suggest that many of the advantages advanced
for lazy lists accrue here also. In particular, the examples of [Hug90, Section
4] seem to carry over with no difficulty.

Exercises

7.47. Give formal definitions of the functions mapi, sumi and index defined
above.
7.48. Define the functions

iterate f st≡df [ st , f st , f (f st) , . . .]

infold f st [a0, a1, . . . , an, . . .]≡df [ st , f st a0 , f (f st a0) a1 , . . .]

7.49. A natural number greater than one is called a Hamming number if
its only prime factors are 2, 3 and 5. Show how to define a function which
will merge two infinite lists, removing duplicate occurrences which appear
in both lists and preserving order in the case that the lists are ordered.
Using this function and the iterate function above give a definition of the
list of Hamming numbers, enumerated in ascending order. (This problem
is described in more detail in [Dij76].)
7.50. Give a definition of the list of prime numbers.
7.51. Write a definition of a general map function over the finite and infinite
lists.
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Figure 7.1: Three communicating processes

7.52. Why cannot an analogue of the filter function over finite lists be
defined over the infinite lists? Can you define one over the type of finite
and infinite lists?

7.53. Give a type and definition to the splitting function discussed above.

7.11.1 Streams

One of the most prominent applications of the infinite lists of Miranda is
to streams between interacting processes. We model a system such as that
in figure 7.1 by giving explicit definitions of the communications along the
three channels. These communications form lists l0, l1, l2, and we can in the
liberal environment of Miranda write definitions of networks of processes
which will result in deadlock — just define each of the processes to copy
its input to its output. What happens if we look at an example like this
in the context of type theory, using the infinite lists of the last section?
We will have in the case above to define the three lists l0, l1, l2 by a mutual
recursion, and moreover by one which ensures that each of the lists li has at
least a head. In other words, the condition on infinite lists ensures that we
never have deadlock in networks of processes that we define — the process
of definition itself prevents that.

In a similar way, we can model streams which can close down by taking
the streams to be in the greatest fixed point of L which gives the type of
finite and infinite lists — the absence of partial lists again shows that if
a system can be defined, then it will not deadlock: it will either continue
forever, or will close down.

Exercise

7.54. Give a solution to the dining philosophers problem using the infinite
lists of type theory.
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7.12 Partial Objects and Types

The literature contains a number of proposals for adding non-terminating
or ‘partial’ objects to type theory. The näıve proposal would be simply
to allow unrestricted recursion and thus non-terminating computations in
the systems TT0 etc. As a programming language this results in something
much closer to current systems like Miranda and Haskell, but we also ap-
pear to lose the logical interpretation of the system. Since the undefined
object, ↑, or bottom (which is confusingly denoted ⊥ in the literature on
denotational semantics) is a member of every type, the logical interpreta-
tion is inconsistent, as every formula is provable, by the proof ↑. Moreover,
principles such as induction have to be modified to take account of the ad-
ditional members of types like N . (Details of how this is done can be found
in [Pau87, Tho89b].)

Can a logical interpretation be given to such a system? It would seem
that there is at least a chance of so doing, if we can identify precisely
those objects which represent ‘total’ and not ‘partial’ proofs. The logic for
Miranda alluded to earlier shows how the total objects can be identified
at simple types, but there is a choice in what should be deemed the total
objects at type

(N ⇒ N)⇒ (N ⇒ N)

say. It would be an interesting research project to see precisely how such a
logical interpretation would work.

A quite different approach is suggested in [CS87], which supersedes the
earlier version of partial types discussed in [C+86a], section 12.2. This pro-
poses the addition of types T which consist of computations of elements
of T , the partial objects which may or may not result in values in the type
T itself. The advantage of this approach over the näıve one is the degree
of descriptive power that it affords. For instance, we can distinguish the
following types of numerical functions

N ⇒ N N ⇒ N N ⇒ N N ⇒ N N ⇒ N N ⇒ N

each of which is sensible and embodies a different notion of function from N
to N . It is a revealing exercise to discover the relations between the types
by finding which embeddings exist between them, and by showing which do
not exist by finding the appropriate counterexamples. A basic relationship
between types is that members of T are members of T , and in the converse
direction, if an element of T is shown to have a canonical form then it is
in T . So as to allow explicit reasoning about termination, we will have to
introduce the membership predicate, a ∈ A, as in section 7.9.2 above.
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Elements of partial types are introduced by parametrised general recur-
sion, with an object f of type A⇒ B being defined in terms of itself:

[q :A⇒ B]
...

f :A⇒ B

recq f : A⇒ B
(recI)

with the associated computation rule

recq f → f [(recq f)/q]

There are a number of induction rules which licence proofs about these
recursively defined functions. They fall into two classes: first we can reason
over the structure of the computation which leads to a result, and this rule
admits a number of formalisations, which have obvious links with the rules
of 7.9 above. Second, we can add the rule of fixed point induction which can
only be applied to admissible predicates (see [Pau87]). This is not so easy
in type theory where in the presence of universes we can have non-canonical
forms for types. Further discussion of these points, the justification for the
addition of the types and their links with classical recursion theory can be
found in [CS87] and [Smi88].

7.13 Modelling

Thus far we have looked at generic extensions of the system; for the indi-
vidual, the problem at hand will normally be to model a small number of
specific kinds of object, such as groups, stacks, records and so forth. Two
approaches suggest themselves:

• A model of the objects is built within type theory, as a series of
abstract data types, for instance.

• The system is itself augmented with new rules describing the objects.

The contrast between these approaches is investigated in [Dyc85], which
examines how to model elementary category theory up to the level of natural
transformations. We look at a simpler case here, that of semigroups.

Definition 7.17 A semigroup is a set A together with an associative
operation ? over A. An identity element is an element ι so that for all
a ∈ A,

a ? ι = a = ι ? a
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and an inverse a−1 of a satisfies

a ? a−1 = ι = a−1 ? a

We can model the class of semigroups as an abstract data type as
follows. First we define the formula Semi A ? to be

(∀a, b, c :A) . ( (a ? b) ? c = a ? (b ? c) )

Elements of this type are functions f with f a b c providing the proof of
associativity at the triple a, b, c. We then define the class of semigroups
thus:

Semigroup≡df (∃A :U0) . (∃? :A⇒ A⇒ A) . ( Semi A ? )

Elements of this type are triples (A, (?, f)), with f as above.
An elementary result about semigroups is that the identity is unique.

We show this formally now. Using the notational conventions of section
5.2.1, we write set, op and assoc for the three projection functions from the
triples above.

Theorem 7.18 Given a particular member S : Semigroup we shall write
A, ?, f for the three projections set S, op S and assoc S. If we assume that

(∀a :A) . a ? ι = a ∧ a = ι ? a (∀a :A) . a ? ι′ = a ∧ a = ι′ ? a

are inhabited, then we can show that

ι = ι′

is inhabited. This shows that the identity is unique if it exists.

Proof: Take

g : (∀a :A) . a ? ι = a ∧ a = ι ? a

apply it to ι′, and take the first projection. We have

fst (g ι′) : ι′ ? ι = ι′ (7.29)

Similarly, if we take

h : (∀a :A) . a ? ι′ = a ∧ a = ι′ ? a

apply it to ι, and take the second projection, we obtain

snd (h ι) : ι = ι′ ? ι (7.30)

By (7.29), (7.30) and the transitivity of equality, we have that

ι = ι′

is inhabited, as required. 2
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Theorem 7.19 Using the same convention as above, if for a particular
element a of A it is the case that

a ? a′ = ι ∧ ι = a′ ? a

a ? a′′ = ι ∧ ι = a′′ ? a

are both inhabited, then a′ = a′′ is inhabited, proving that inverses are
unique if they exist.

Proof: Exercise: the proof uses the fact that the operation ‘?’ is associa-
tive. 2

The results depend upon us repeatedly unpacking the triples (A, (?, f))
and upon the system having the capability of giving temporary names to
objects. Dyckhoff found that as this was difficult in the implementation
available to him, it would be more appropriate to axiomatise the theory
directly. For semigroups, axioms would take the form.

Formation Rule for Semigroup

Semigroup is a type
(SemiF )

Writing the three hypotheses in a vertical list, we have the introduction
rule

Introduction Rule for Semigroup

A istype
? : A⇒ A⇒ A
r : (∀a, b, c :A) . ( (a ? b) ? c = a ? (b ? c) )

SG A ? r : Semigroup
(SemiI)

Elimination Rules for Semigroup

S :Semigroup

set S is a type
(SemiE1)

S :Semigroup

op S : setS ⇒ set S ⇒ set S
(SemiE2)

S :Semigroup

assoc S : (∀a, b, c :set S) . ( (a (op S) b)(op S) c
= a (op S)(b (op S) c) )

(SemiE3)

The computation rules show that set, op and assoc behave as projections
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Computation Rules for Semi

set (SG A ? r) → A

op (SG A ? r) → ?

assoc (SG A ? r) → r

Using these rules we can prove results such as theorems 7.18, 7.19 in a
similar way to those above.

In comparing the two approaches, it is clear that they are very close. The
positive effect of moving to rules is that we have access to a naming facility,
but we have shown that this can be integrated with a representational
approach. A disadvantage of adding rules to the system is that we may
well disturb the formal properties of the system, such as logical consistency
or strong normalisation. In this case there is no difficulty, as we could
read the rules as being derived from the representation, providing a cleaner
interface to the particular data abstraction. This possible disruption of the
formal properties of the system by the addition of rules is something which
might be said of all the additions of this chapter; we shall look into it in
more depth in the chapter to come.

[Dyc85], on which this section is based, gives a similar comparison of
approaches for the more significant example of categories.

Exercises

7.55. What are the types of the projection functions set , op and assoc?
7.56. Prove theorem 7.19.
7.57. Prove versions of the theorems 7.18, 7.19 using the rules for the new
type Semigroup.
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Chapter 8

Foundations

This chapter marks a return to looking at the system as a whole, rather
than at particular examples of terms and proofs derivable in it, or at pos-
sible extensions. We investigate various questions about the mathematical
foundations of the system. From the point of view of traditional proof the-
ory, we can compare its strength with other formal systems for arithmetic
— this we do in the first section. The technique used here is that of realiz-
ability, which forms one sort of model of the formal system. We discuss the
motivation for developing a model theory of TT in the subsequent section,
giving other methods of model construction.

The topic of realizability is interesting not just from the proof-theoretic
point of view: it provides a general mechanism for extracting the compu-
tational content of a derivation, and as such may give a means of deriving
more efficient programs from type theoretic derivations.

We conclude the discussion with an overview of Schroeder-Heister and
Dybjer’s work on the inversion of proof rules. At an intuitive level, if we
are given the introduction rules for a type then we seem to know all the
forms that elements can take, and this really characterises the type. The
inversion principle gives a formal description of how an introduction rule
can be inverted to generate the elimination and computation rules. We also
look at a primitive justification of the inversion principle itself.

8.1 Proof Theory

In this section we look at the relationship between the systems TT0, . . . and
more traditional presentations of constructive arithmetic. In particular we
examine the system HA of first-order intuitionistic arithmetic and its gen-

315
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eralisation to the simple types, HAω. The ‘H’ in these titles is in honour of
the intuitionist Heyting, who was one of the first constructivists. We follow
this with a discussion of the technique of realizability, which is used to give
interpretations of intuitionistic systems, and which can form the basis of a
more flexible algorithm extraction discipline than that of type theory. We
conclude with a discussion of the various rules for existential elimination,
and what consequences the choice of rules has for our implementation of
modules.

8.1.1 Intuitionistic Arithmetic

Definition 8.1 A full definition the system of First Order Heyting
Arithmetic, HA, is given in [Tro73], section I.3. The system consists
of a first order theory of the natural numbers, with a function constant
for each primitive recursive function. Axioms assert the basic properties of
equality; the standard Peano axioms stating that zero is not a successor,
that the successor is 1-1 and the axiom scheme of induction

φ(0) ∧ ∀n.(φ(n)⇒ φ(n + 1))⇒ ∀n.φ(n)

for every formula ‘φ’; and finally the defining equations of each of the
primitive recursive functions.

The rules of deduction are the standard set for constructive predicate
calculus, which can be derived, by omitting the proof objects, from our
introduction and elimination rules for ∧, ∨, ⇒, ⊥, ∀, ∃, choosing the weak
rules for the elimination of disjunction and the existential quantifier, viz.
(∨E) and (∃E′).

Definition 8.2 The system of Heyting Arithmetic at Finite Types,
HAω, and called N −HAω in the definition [Tro73] section I.6, is similar
to HA, except that objects can be of any of the finite types formed from N
by the function space constructor. An operator which embodies definition
by primitive recursion is included at each type. Quantifiers range over
particular types, rather than the whole domain.

These systems have been studied extensively, and their relation with
TT0 can tell us something about the system itself. Obviously the system
HAω is an extension of HA in a sense to be made clearer by the next
definition. We write S ` φ for ‘φ is a theorem of the formal system S’.

Definition 8.3 Given two formal systems S1 and S2, a function f from
the formulas of S1 to those of S2 is an embedding of the first system in
the second if for all formulas φ,

S1 ` φ implies S2 ` (f φ)
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If the relationship above is an equivalence, then S2 is called a conservative
extension of S1, and we can call the function f an interpretation of S1

in S2.

The system S2 is a conservative extension of S1 if the two theories prove
the same theorems in the language of the smaller, S1; they give consistent
pictures of their common domain.

Obviously there is an embedding of HA in HAω. We can also embed
the formulas of HAω as formulas of TT0, and prove the result that

Theorem 8.4 For any formula φ, if HAω ` φ then for some term t, we
can derive in TT0 the judgement t :φ.

Proof: The term t is a coding of the proof of φ in HAω. More details are
given in [Bee85], theorem XI.17.1. 2

Moreover, if we add to HAω the axiom of choice over finite types, ACFT ,

∀x.∃y.A(x, y)⇒ ∃f.∀x.A(x, f x)

this is also validated by TT0. Showing that the Axiom of Choice is derivable
in type theory is one of Martin-Löf’s few concessions to examples in his
papers. See [ML85, ML84], and observe that the derivation does not use
extensionality. If we adopt the extensional theory of [ML85], then our type
theory extends the extensional version HAω + Ext + ACFT .

What results can we derive on the basis of this relationship?
Our first result, due to Troelstra, is typical of the gain we can get by

looking at these inter-relationships: we are able to transfer a negative result
from HAω to type theory. First we give another definition.

Definition 8.5 A function F from N ⇒ N to N is called continuous if
for all f : (N ⇒ N) there is an n, so that if f i = g i for all i ≤ n, then
F f = F g. The value n is called a modulus of continuity of F at f .

Continuity is an assertion of the finitary nature of the functions over
N ⇒ N : the value of such a function at f is determined by a finite amount
of information about f . We would therefore expect that this would be true
of all the functions F definable in TT0. However, we can show that TT0

does not prove the formal statement of this,

(∀F : (N ⇒ N)⇒ N) . Cont(F )

This itself follows from the theorem
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Theorem 8.6 The theory

HAω + ACFT + Ext + (∀F : (N ⇒ N)⇒ N) . Cont(F )

is inconsistent (i.e. derives ⊥)

Proof: See [Bee85], theorem XI.19.1. Using the axiom of choice, we can
define a function µ returning the modulus of continuity of a function F
at the argument f . Extensionality means that this modulus is determined
by function values rather than representations, and this can be shown to
lead to a finite procedure solving the limited principle of omniscience, a
contradiction. 2

Corollary 8.7 The theory TT0 does not prove

(∀F : (N ⇒ N)⇒ N) . Cont(F )

Proof: If TT0 proves this, then the extensional version of type theory
proves it also and, as it also derives the axiom of choice, by the theorem is
inconsistent. We have a proof of consistency, and so the original assumption
is untrue. 2

Can we characterise the arithmetical theorems provable in type theory?
Again, the answer is yes,

Theorem 8.8 TT0 is a conservative extension of HA, where we say that
TT0 makes a proposition A valid when we can derive t :A for some expres-
sion t.

Proof: This is due to a number of authors, including Beeson and Renardel,
[Bee85, DT84]. The proof uses the technique of realizability, to which we
turn in the next section. 2

It is worth noting what the theorem says. It asserts that the system of
TT0 — which extends first-order arithmetic by embedding it in a system of
types, for which the axiom of choice is assumed to hold (and which might
be made extensional as far as this result is concerned) — is no stronger
than first-order arithmetic as far as arithmetical statements are concerned.

We have said nothing about the theories TT , TT+ and TT+
0 . Each of

these is stronger than TT0. We have already shown that TT is stronger
than TT0, other remarks about this can be found in [Bee85], section XIII.5.
We know of no results for the theories with the full W -type.
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8.1.2 Realizability

We remarked that the proof of theorem 8.8 was by the realizability method.
We take the opportunity of explaining that method here, as it forms the
foundation of an important piece of research which we also describe.

Realizability was introduced by Kleene in 1945 as a way of forming re-
cursive models of intuitionistic theories. Given the informal explanations
of the connectives which we first encountered in chapter 3, we can see that
central to any explanation of a constructive system is a notion of transfor-
mation, as it is thus that implication and universal quantification are in-
terpreted. Kleene’s idea was to use recursive functions as the transforming
functions. Of course, recursive functions can be coded by natural numbers,
and so we shall define a relation

e ‖− φ

with e a natural number and φ a formula. We also write {e}(q) ↓ for ‘the
recursive function e terminates on argument q’. Now we define realizability
as originally given in [Kle45]:

Definition 8.9 Realizability for arithmetic (r-realizability, in fact) is de-
fined by the following clauses.

e ‖− (A⇒ B) iff ∀q.(q ‖−A⇒ {e}(q) ↓ ∧ {e}(q) ‖−B)
e ‖− ∀x.A iff ∀x.({e}(x) ↓ ∧ {e}(x) ‖−B)
e ‖− ∃x.A iff first e ‖−A(second e)
e ‖−A ∧B iff first e ‖−A ∧ second e ‖−B
e ‖−A ∨B iff (first e = 0⇒ second e ‖−A) ∧

(first e 6= 0⇒ second e ‖−B)

Finally, any number realizes a true atomic formula.

We can think of the interpretation as giving a model of the logical sys-
tem, with the valid formulas those φ for which some e‖−φ. The important
point about realizability is the theorem

Theorem 8.10 (Soundness) If HA proves φ then there is some natural
number e which realizes φ, that is e ‖− φ.

Proof: Is by induction over the size of the proof of φ. A detailed proof is
given in [Bee85], section VII.1. 2

This can be read as saying that for any theorem φ, we have a term which
gives the formula a computational interpretation, as is seen by examining
a formula like

∀x.∃y.P (x, y)
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where P is atomic.

e ‖− ∀x.∃y.P (x, y)
iff ∀x.({e}(x) ↓ ∧{e}(x) ‖− ∃y.P (x, y))
iff ∀x.({e}(x) ↓ ∧first {e}(x) ‖− P (x , second {e}(x)))

which means in particular that there is a recursive function g such that

∀x.P (x, g x)

There are a number of notable aspects of realizability. First observe
that the right-hand sides of the definitions 8.9 are themselves expressions
of arithmetic. This is crucial to the earlier result that type theory gives a
conservative extension of HA. Because of this identification, we can study
the relation between a formula and the formal expression of its realizability:
it transpires that for r-realizability the formulas φ which are equivalent to
the statement of their own realizability ∃e.(e ‖− φ) are those which have
no existential import: those with no computational significance, in other
words.

Secondly we should note how general the definition is: all we need to
give a different notion of realizability is a different collection of realizing
functions, or a slightly different right-hand clause. Given a soundness the-
orem, we can extract some computational information from a proof of a
formula. This applies equally well to target theories: the definition above
is for first-order arithmetic, but in general we might look at other theories,
such as higher-order versions of arithmetic.

Given this, our theory TT0 begins to look like a particular version of re-
alizability for a higher-order type system. Might some disadvantages accrue
from too intimate a link between the logic and the notion of realizability
which can be used to give computational content to the theorems of the sys-
tem? One area which we looked at in section 7.1.2 is that of ‘computational
relevance’, where we saw that in certain circumstances our proof objects
contained information which was unnecessary from a computational point
of view. A decoupling of the logical rules from the function extraction
mechanism could well result in more efficient extracted objects, without
modification of the logic itself.

The major advantage of such an approach is that the logic in which
proofs are written can remain fixed whilst different proof extraction tech-
niques (i.e. notions of realizability) are applied to the proofs. This contrasts
with the complications introduced by the augmented versions of TT in the
previous chapter.

This decoupling lies at the heart of investigations into the system TK
by Henson and Turner, to which we turn in the following chapter.
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8.1.3 Existential Elimination

We observed earlier, in section 5.3.3, that the rule (∃E′) was weaker than
the rule (∃E) or the equivalent pair (∃E′

1) and (∃E′
2). These rules are

investigated in depth in the thesis [Swa89], where it is shown that the use
of (∃E) in the proof of the axiom of choice is essential:

Theorem 8.11 The strong rule (∃E) is equivalent to the weak rule, to-
gether with the axiom of choice.

Moreover, conservation results analogous to those above apply to this
theory.

Theorem 8.12 TTw
0 , that is TT0 with the weakened rule of existential

elimination, is conservative over HAω.

The system TTw
0 is discussed in its own right in [Dil80].

8.2 Model Theory

Model theory attempts to give a meaning to formal systems like TT0 and
TT . In order to avoid circularity and the attendant problems of ambigu-
ity or incoherence, the semantics should explain the system using notions
outside the system itself.
Why is a semantics important?

• The simplest reason is that a completely uninterpreted system is of no
interest to anyone. Every system has an informal semantics, investing
its symbols with deeper meaning than simply marks on paper.

• A semantics can show that a system is consistent, or more strictly,
consistent relative to the theory in which its semantics lies. This is
not of idle interest, as it is quite possible to write down intuitively
plausible systems, like Martin-Löf’s earliest version of type theory, or
the formal theory

HAω + ACFT + Ext + (∀F : (N ⇒ N)⇒ N) . Cont(F )

which subsequently turn out to be inconsistent. A semantics gives the
assurance that this does not happen (assuming that a more primitive
system is itself consistent). Moreover, a semantics may prove other
meta-theoretical results, such as the Church-Rosser property.
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• A semantics can delimit the proof-theoretic strength of a system, thus
showing that the system will prove some theorems and not others.

• A semantics can not only establish that particular additions to the
system maintain consistency but also it can suggest that certain strength-
enings of the system (extending it by certain operations in the seman-
tics, say) are also legitimate.

What forms can the semantics of TT0 take? We look at the explanations
given by Martin-Löf, Smith, Beeson and Allen in turn. First we should
mention an important reference [ML75a] which examines the general notion
of a constructive model for an intuitionistic theory, which fits those models
introduced by Martin-Löf himself, Smith and Beeson.

8.2.1 Term Models

The most direct explanation is that given in [ML75b], which is given a
gloss in both [ML85] and [NPS90]. The model is one of a class called term
models. These models depend upon the notions of reduction and normal
form, ideas external to the system itself.

The interpretation of a closed expression a : A is as a canonical form
a′ in A′, the canonical form of the type A. For the theories TT0 and TT
we interpret ‘canonical form’ as ‘normal form’, and section 5.6 contains
a proof that the collections of closed normal terms form a model of the
theory. Whilst making plain the meaning of closed expressions, we should
say exactly how an expression b(x) : B(x) is given a meaning. b(x) is a
canonical term of type B(x) if for all canonical a, b(a) reduces to a canonical
term in B(a).

Term models form the canonical(!) model of type theory: the distinct
nature of the normal forms attests to its non-triviality, and an informal
explanation of the term model forms the basic intuitive semantics of the
system, according to [ML85]. By examining the model we were able to
show a number of additional properties of the system, including the Church-
Rosser theorem and the decidability of judgements.

Because a term model is bound so tightly to the syntactic form of the
system, it is difficult to use it to derive results such as conservation results,
or to justify extensions to a theory: in this case a new term model formed
from a wider class of expressions has to be shown to exist.

8.2.2 Type-free interpretations

It can be argued that one of the complications of the systems TT0, TT is
in their complex type systems, with a simpler theory being provided by
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a type-free system. This can be said of the simple λ-calculus as against
the typed λ-calculus, and for type theory, a type-free theory of logic and
computation as given in [Smi84] or by the Frege structures of [Acz80] are
suitable candidates.

Smith gives such an interpretation in [Smi84], and he characterises this
interpretation on page 730 as

The interpretation we will give . . . is based on the semantical
explanation of type theory given in [ML85]. Indeed it may be
viewed as a metamathematical version of the semantical expla-
nation, formalized in the logical theory.

It also has relationships with realizability, and in particular the model M of
[Bee85], section XI.20; Smith uses type-free λ-terms as realizing functions
whilst Beeson uses numbers, and of course Smith’s theory is formalised.

As we saw above, one advantage of realizability models is that they can
be used in characterising the proof-theoretic strength of a theory. Beeson
used the model M in showing that TT0 is conservative over HA.

The models of Aczel, Beeson and Smith are all general: a number of
differing notions of realizability exist, and it can be shown that every model
of the type-free λ-calculus can be extended to a Frege Structure, which in
turn can provide a model of type theory.

8.2.3 An Inductive Definition

An alternative approach to the semantics of the system is described in
[All87a, All87b] and is summarised in [CS87, Section 2.2]. Allen examines
the definition of the system [ML85], aiming to give an inductive definition
of the types as equivalence classes of sets of (untyped) expressions. That
two expressions t and t′ denote equivalent objects at type T is denoted

t = t′ ∈ T

and t ∈ T is shorthand for t = t ∈ T . An important clause is that for
membership of the type (∀x :A) . B. t is in this type if (∀x :A) . B is a type
and

∃u, b. t → λu . b ∧
∀a, a′(a = a′ ∈ A ⇒ b[a/u] = b[a′/u] ∈ B) (8.1)

A general reference on inductive definitions is [Mos74], where we can dis-
cover that not all inductive definitions have least solutions (or indeed so-
lutions at all). There is always a least solution of a monotone inductive
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definition, and a sufficient condition for monotonicity is for the defining
formula (8.1) to be positive in the relation

. . . = . . . ∈ . . .

This is not the case, as the relation appears in the hypothesis of an impli-
cation. This failure means that the definition cannot be given simply as an
inductive definition in this form.

Instead, Allen defines his system in a more complicated way, specifying
a definition of an operator M, which can be thought of as a monotone
operator on type theories. In turn, a type theory is seen as a two place
relation T where

T A∼A

holds if and only if A is a type, carrying the equality relation ∼A in the type
theory T . Since the operatorM is monotone, a semantics is then given by
the least fixed point of the operator.

In both [All87a] and [All87b] it is argued that this approach is close to
that of Beeson, with Allen’s more faithful to the lazy evaluation in Martin-
Löf’s informal semantics of the system.

An advantage of an inductive definition is that it can readily be extended
to augmented systems. In [CS87] it is shown how to extend the semantics to
the partial types of that paper. Allen himself argues that it can be used in
justification of some of the ‘direct computation rules’ of Nuprl, which allow
the reduction of terms under fewer hypotheses than would be permitted in
TT .

8.3 A General Framework for Logics

Our introduction to the theories TT0 and TT has been somewhat infor-
mal as far as syntax is concerned, and in this section we review how the
presentation can be formalised.

The operations which form types and elements have a definite metathe-
oretical type. For example, ⇒ is of meta-type

Type→ Type→ Type

where we write ‘→’ for the function space constructor at the meta-level, and
Type is the meta-type of types. Similarly, the injection inl can be given
the meta-type

(Πt :Type).(Πs :Type).( El(s)→ El(s ∨ t) )
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where ‘Π’ is the dependent function space constructor in the meta-language,
and El is a constant of meta-type

(Πt :Type).Elem

which associates with a type expression the collection of elements it is
intended to denote. These two examples suggest that as a meta-theory we
can use a typed λ-calculus with dependent product types, with rules
of β- and η-conversion.

All the operations of the system TT , including those such as λ which
bind variables, can be presented as constants in the meta-theory, taking
advantage of the binding in the meta-language. The operator λ over the
non-dependent types can be described by

λ :: (Πt :Type).(Πs :Type).( (El(t)→ El(s))→ El(t⇒ s) )

where ‘e :: α’ means ‘e has meta-type α’. The application operator is a
constant of type

app :: (Πt :Type).(Πs :Type).( El(t⇒ s)→ El(t)→ El(s) )

The computation rule for the function space is, of course, β-reduction.
Using the subscripted form appt,s for the application of the operator app
to the types t, s, this is described by the equation between terms

appt,s (λt,s f) a = f a

Since f is a meta-function, i.e. an element of type

El(t)→ El(s)

substitution in the object language is thus described by β-reduction in
the meta-language. A similar approach is equally effective with the other
variable-binding operations.

The origins of this approach seem to lie in Martin-Löf’s theory of ar-
ities, [ML85] and his work on categories of the philosophical and not the
mathematical sort, reported in [ML83]. Explicit discussions of the presen-
tation of type theory in this form are to be found in [Dyb88] and in Part
III of [NPS90].

This approach has been used in the Edinburgh Logical Framework,
which provides a machine environment for general logical reasoning, [HHP87],
and has shown itself capable of expressing a variety of different logics
[AHM87]. A consequence of descriptions of this sort is that the complexity
of logics like Hoare’s logic for imperative languages like Pascal is greater
than might at first be thought; the effect is similar to the complexity of
languages revealed by their complete denotational semantic definition.
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8.4 The Inversion Principle

When describing a type in TT we give four kinds of rule. First we give the
formation rule which introduces the new type expression, building a new
type from constituent parts. An example is

A is a formula B is a formula

(A ∨B) is a formula
(∨F )

The elements of the type are then described by a number of introduction
rules, such as

q : A

inl q : (A ∨B)
(∨I1)

r : B

inr r : (A ∨B)
(∨I2)

Now, the elimination and computation rules are needed to characterise the
fact that the elements of the type are only those given by the introduction
rules. These are the closure or induction rules. It appears that no more
information about the type need be supplied to characterise these rules, as
the elements exhausting the type have already been specified, so the closure
rules should be definable by inversion.

This idea, which can be traced back to Gentzen and [Pra65], has been
pursued by a number of investigators. The first of these is Schroeder-Heister
who investigated the problem of generating the elimination rules from the
introduction rules in first-order intuitionistic logic; see [SH83a, SH83b].

Concentrating for the present on the example of ‘∨’, how do we sum-
marise the fact that a proof of A ∨ B is either a proof of A or a proof of
B? We do it thus: given hypothetical proofs of C from A and from B, we
can deduce C from A ∨B. This means that any proof of A ∨B must have
been a proof either of A or of B. This gives us the logical rule

(A ∨B)

[A]
...
C

[B]
...
C

C
(∨E′)

How do we lift this to type theory, in which we have explicit proof objects
which inhabit the propositions?

p : (A ∨B)

[x :A]
...

u :C

[y :B]
...

v :C
vcases′x,y p u v : C

(∨E′)
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Given proof objects, p, u, v, of the appropriate type we form the new proof
object

vcases′x,y p u v

binding the variables x and y in u and v respectively, since the logical rule
discharges these assumptions. This is a new expression form, but we can
see how it may be simplified. A proof of A ∨ B is either inl a or inr b. In
the former case, we can get a proof of C by substituting a for x in u; in the
latter we substitute b for y in v, giving the familiar computation rules

vcases′x,y (inl a) u v → u[a/x]
vcases′x,y (inr b) u v → v[b/y]

We can generalise this inversion thus: If the n introduction rules for the
connective θ take the form

Hi,1 . . . Hi,mi

θ A1 . . . Ak
(θIi)

for i = 1, . . . , n then there are n and only n different ways of introducing
the formula θ A1 . . . Ak (which we shall write as φ). If we can deduce a
formula C from each of the sets of hypotheses

Hi,1 . . . Hi,mi

then this exhausts all the ways in which we could have introduced φ and
so we can deduce C from φ itself. This is written as a rule

φ

[H1,1 . . . H1,m1 ]
...
C . . .

[Hn,1 . . . Hn,mn
]

...
C

C
(θE)

If we now look at the situation in type-theory, each of the introduction rules
introduces a constructor Ki for elements of the type φ, depending upon the
appropriate elements of the hypothesis types,

yi,1 :Hi,1 . . . yi,mi
:Hi,mi

Ki yi,1 . . . yi,mi : φ
(θIi)

We define a new elimination object θ−elim, which will bind the variables
yi,j in the hypothetical proofs pi:

p :φ . . .

[yi,1 :Hi,1 . . . yi,mi
:Hi,mi

]
...

pi :C . . .

θ−elim p p1 . . . pn : C
(θE)
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Given a proof Ki a1 . . . ami
of φ, we can simplify the proof of C given by

(θE) by substituting the objects aj for the hypotheses yi,j , thus,

θ−elim (Ki a1 . . . ami) p1 . . . pn → pi[a1/yi,1 , . . . , ami/yi,mi ]

Let us now consider an example of another connective, conjunction. The
introduction rule is

a :A b :B
(a, b) :A ∧B

(∧I)

As we have a single introduction rule, the above scheme gives the elimina-
tion rule

p :A ∧B

[x :A, y :B]
...

c :C
∧−elimx,y p c : C

(∧E′)

where we give the subscript in ∧−elimx,y to make plain which variables are
bound in c by the conjunction elimination. The computation rule reads

∧−elimx,y (a, b) c → c[a/x, b/y]

How does this rule relate to the usual ones? If we take c :C to be x :A, we
have

∧−elimx,y (a, b) x → a : A

so that fst is recovered as λp . (∧−elimx,y p x); snd is recovered in a
similar way. The rule (∧E′) is no stronger than the usual rules, as given
c :C depending upon x :A, y :B, and the element p :A∧B, we can build the
object

c[fst p/x, snd p/y] : C

which behaves exactly like the object ∧−elimx,y p c when p is a pair.
The inversion principle applies to the rules for the existential quantifier,

and also to the rules for finite types, Nn, the natural numbers and all well-
founded types like lists and trees. It does not, however, apply to the näıve
rule (SetE) for subset elimination.

There is a difficulty in inverting the rules for implication and universal
quantification, because the introduction rules for these constructs discharge
a hypothesis. Taking the example of implication,

[A]
...
B

A⇒ B
(⇒ I)



8.4. THE INVERSION PRINCIPLE 329

To perform our inversion successfully, we need to introduce hypothetical
hypotheses, which we first saw in section 7.7.2 above. These are introduced
in [SH83a] and [Bac86], which seems to have been developed independently
of the earlier paper.

We add to our system terms of the form

{ Γ � J } (8.2)

where Γ is a context and J is a judgement. This is intended to mean that
the statement (8.2) is introduced by giving a derivation of the judgement
J in the context Γ, that is

[Γ]
...
J

{ Γ � J }
(�I)

To eliminate such a hypothetical hypothesis we have the rule

{ Γ � J } Γ[t1/x1, . . . , tn/xn]
J [t1/x1, . . . , tn/xn]

(�E)

where a derivation of an instance of a context is taken to be a collection of
derivations of the instances of the constituent judgements. How do we use
these hypothetical hypotheses in the inversion of the rule for implication?
Following the inversion procedure, we have

A⇒ B

[{A � B }]
...
C

C
(⇒ E′)

which gives the rule of modus ponens thus:

A⇒ B
[{A � B }] A

B
(�E)

B
(⇒ E′)

In order to state correctly the rule for ⇒-elimination in this form, we need
to be careful about how variables are bound in expressions. The most
perspicacious statement can be made if we assume a binding operation Λ
in the meta-language, with the object language λ acting as a constant as
we explained above. Under this discipline the informal abstraction λx . e
will be written λ(Λx.x).
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If we denote meta-theoretic application by an infix ‘·’, we have

f :A⇒ B

[{ x :A � (e · x) :B }]
...

(c · e) : C

expand f c : C
(⇒ E′)

with the associated computation rule

expand (λ g) c → c · g

Backhouse gave a number of principles for the inversion, but there are
difficulties of deciding when his method produces a consistent system, es-
pecially when recursive types are involved. In [Dyb89] a more general in-
version principle is presented, which is based on the observation that all
the types of type theory, apart from the universes, can be seen as arising
from systems of inductive definitions in the appropriate logical framework.
He shows that the type forming operations may be parametrised, and can
also permit simultaneous definition of types.

Such a system also has semantic implications: if a proposed type can
be presented as a positive inductive definition then consistent rules for
its elimination and computation can be deduced automatically. It would
appear that this sanctions additions such as [Dyc85], though not the subset
or quotient constructions.

A final remark is in order. It is well known that in classical logic,
various sets of connectives such as ¬,⇒ and ¬,∧ are complete, in being
able to express all possible propositional functions; what is the situation
for intuitionistic logic? It is shown in [SH83b] that the set ∧, ∨, ⇒, ¬, ∃,
∀ is sufficient to define all the connectives defined by the standard forms
of introduction and elimination rules, where by this is meant rules which
abide by the inversion principle described above.

Exercises

8.1. Show that the inversion principle fails to apply to the rule (SetE)
introduced in the previous chapter.
8.2. Check that the inversion principle applies to the rules for the finite

types, the natural numbers and to the rules for the type of finite lists.
8.3. Does the inversion principle apply to the rules for the inductive and

co-inductive types of sections 7.10 and 7.11? Does it apply to the definitions
of general recursion given in the previous chapter?



Chapter 9

Conclusions

This chapter gives a survey of a number of approaches related to some de-
gree to constructive type theory; we have tried to stress the major points of
difference between these systems and type theory itself, but to do complete
justice to them would require another book of this size.

9.1 Related Work

This section examines various systems, implemented or theoretical, which
are related to Martin-Löf’s Type Theory. Rather than give exhaustive
descriptions, the chapter contains brief introductions to the systems, bib-
liographic references and finally a discussion of points of similarity and
difference between the systems. Throughout our exposition we have con-
centrated on the intensional version of type theory, [ML75b]; we have dis-
cussed differences between this and the extensional version as we have gone
along.

9.1.1 The Nurpl System

For the past fifteen years there has been an active research group in the
Computer Science Department of Cornell, lead by Constable and Bates, in-
terested in the implementation of logics. In particular interest has focussed
upon logics for the formalisation of mathematics and program development,
and this research has culminated in the development of the Nuprl system,
described in the book [C+86a]. Nuprl consists of an implementation of a
type theory related to the extensional version of TT , [ML85], but modified
and augmented in a number of ways, which we discuss presently. Con-
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stable’s book provides the comprehensive reference on the system, shorter
accounts of the underlying ideas can be found in [BC85, CKB84].

More importantly, the orientation of the system is different from our
treatment of type theory in this book, which we have viewed principally
as a functional programming system. The emphasis of Nuprl is logical,
in that it is designed to support the top-down construction of derivations
of propositions in a natural deduction system. The proof objects of type
theory are called ‘extract terms’, the idea being that these are extracted
post hoc from derivations in which they appear only implicitly.

Proofs are constructed in a top-down way, using the tactics and tacticals
much in the same way as the LCF system, [Pau87]. Indeed the logic is
embedded in the ML metalanguage, exactly as LCF.

We mentioned earlier that the system differed somewhat from [ML85].
In particular it features the strong elimination rules of section 7.7.2, as
well as the liberal notion of direct computation rules, [C+86a], Appendix
C, which allow the rewriting of terms without demanding the usual atten-
dant proofs of well-formedness, which are necessitated by the interlinking
of syntax and derivation in type theoretic systems.

It is also augmented in a number of ways, including as it does subsets
(see section 7.2), quotient types (section 7.5), partial function types (section
7.12) and so forth. It should be said that many of the additional constructs
are introduced with the aim of eliminating computationally irrelevant in-
formation from the objects extracted, as we discussed in section 7.1.2. This
is in part due to the implicit nature of the proof objects in many of the
derivations.

9.1.2 TK: A theory of types and kinds

The system TK is introduced in the paper [HT88] which contains a useful
comparison between TT and TK; the topic of program development in TK
is discussed in [Hen89]. TK is a theory of constructive sets ‘designed with
program development as the major desideratum’.

The principle of complete presentation together with the identification
of types and propositions are central to type theory as we have introduced
it here, and Henson and Turner argue that they leads to a number of its
shortcomings, including the unsatisfactory treatment of subsets and general
recursion. They propose instead that the system TK should separate the
two, with a simpler collection of types (or sets) and a separate collection
of logical assertions. The principal set formation operations are separation
and induction. Separation allows definitions like

{x|Φ(x)}
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which contains precisely those x which have the property Φ. Inductive
constructions are performed along lines similar to section 7.10 above. To
increase expressibility, a hierarchy of universes or kinds are also added to
the set theory – hence the name TK.

Another difference betweem TK and TT is that terms in the former
theory can be partial or undefined, whereas in TT they are, of course,
total. The merits of the two approaches can be argued; note that since the
logic and the types are no longer identified the presence of partial objects
does not make the logic inconsistent.

Reasoning about the sets is performed in a rich logical language, and
since the logic is constructive, there are realisability models for it. Using
the techniques outlined in section 8.1.2 programs can be extracted from
constructive proofs, and it is this technique for program development which
the authors stress, especially in [Hen89]. The realizability approach allows
a lot of flexibility in the choice of realizing operations: for example, a
conditional assertion can be added to the language and its realizers can be
made quite distinct from those of its usual logical definition, for example.

Another advantage of the realizability approach is that computationally
irrelevant parts of functions need not appear, a topic we discussed earlier
and which is examined in [Hen91].

On the other hand, we have seen that in TT both the options of program
extraction and explicit functional programming are available and can be
combined within a single development – whether they can be combined so
well in TK is not clear.

Work on the theoretical foundations of TK and on an implementation
both proceed, and it seems certain that our understanding of TT will be
enriched by these. It remains to be seen which, if either, of the two systems
is the superior for practical program development purposes.

9.1.3 PX: A Computational Logic

It is not only from a type theory that proofs can be extracted; realizability
models of intuitionistic formal systems allow the extraction of computations
from the system. A markedly different system, called PX, has been built at
the Research Institute of Mathematical Sciences at Kyoto University, and
is introduced in [Hay90] and described in detail in the monograph [HN88].

PX is a logic for a type-free theory of computations, based on Fefer-
man’s T0, [Fef79], from which LISP programs are extracted by a notion of
realizability called px-realizability. Hayashi argues the requirement that a
theory like TT be total is too restrictive for practical program development,
in justification of his logic being based around a system of possibly non-
terminating computations. Because of this possibility he incorporates two
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sorts of variable in the system, one kind ranging over terminating objects,
the other over all objects, together with a definedness predicate, E, much
as in [Sco79].

Crucial to the logic is the principle of CIG (for Conditional Inductive
Generation). This is the means by which sub-classes of the domain are
defined, by which recursions proceed and by which inductive proofs, in-
cluding proofs of termination over a domain, are given. In this respect it
is analogous to the recursive definitions given by well-founded recursion in
section 7.9, as well as the inductive types of section 7.10.

Hayashi defines a subset of the language consisting of the formulas which
contain no ∨ or ∃ and which are said to be of Rank 0 . No realising terms
are needed for rank zero formulas, as they have no computational content.
An example of a formula of rank zero is the inclusion A ⊆ B; an instance of
such a formula might be an assertion of termination: the set A is contained
in the domain of definition, B, of the function f . It is shown that such
formulas can be proved using classical logic without risking the consistency
or computational interpretation of the system, manifesting the flexibility
we discussed in the previous section.

9.1.4 AUTOMATH

The AUTOMATH project was begun at Eindhoven University under the
direction of Nicolaas de Bruijn in 1966, with the aim

to develop a system of writing entire mathematical theories in
such a precise fashion that verification of the correctness can be
carried out by formal operations on the text.

The quotation comes from [dB80] which gives a survey of the project; exam-
ples of the style of presentation of mathematics in the system can be found
in [dB73]. A pinnacle in the achievements of the group is the complete
formalization of Landau’s Grundlagen, a text on analysis.

The system itself uses a form of type theory, based on the notion of
propositions as types, to represent logics of either classical or constructive
mathematics. Amongst its technical innovations are a discussion of the
irrelevance of proofs when working in a classical context, which is one
of the reasons advanced by de Bruijn for the separation between the no-
tions of type and prop in the system, an idea anticipating by some years
discussions in the computing science community, reported in section 7.1.2.

In the course of implementing the system, the problem of identifying
λ-expressions which agree up to a change of bound variable names (α-
conversion) was found to be a considerable overhead. [dB72] introduces
a most useful method of circumventing the problem. Variable names are
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replaced by numerical indexes; an occurrence of a variable x is replaced by
the number of λ’s which lie between the occurrence and the λx binding it,
so that for example the λ expression

λa . λb . λc . (ac)(bc)

is replaced by

λ.λ.λ.(20)(10)

This technique has found application in the implementation of functional
programming languages as well as logics, see [Hue90a], Part I.

9.1.5 Type Theories

The systems TT0 and TT can be seen as extensions of the simply typed λ-
calculus, as explored in chapter 2. Other extensions exist, and we examine
the two most important here. The first is the second-order or polymorphic
λ-calculus, invented independently by [Rey74] and [Gir72], the latter calling
the calculus System F. A short yet comprehensive introduction is provided
by [Rey90].

The calculus extends the first-order lambda calculus by allowing type
variables α, β, . . . so that a function like

K ≡df λx . λy . x

can be given the type α ⇒ β ⇒ α, just as is possible in polymorphic lan-
guages like SML and Miranda. The variables in the expression above can be
thought of as being implicitly universally quantified, the function K having
the type α⇒ β ⇒ α for all instances of α and β. This implicit quantifica-
tion is made explicit in the second-order λ-calculus with the introduction
of the type abstraction operator Λ and the type forming Π. Given

Kα,β ≡df λxα . λyβ . x : α⇒ β ⇒ α

we can form

K ≡df Λα. Λβ. λxα . λyβ . x : Πα. Πβ. (α⇒ β ⇒ α)

In general, if

e : t

then the expression Λα. e is parametrised over the type variable α, giving
it the type Πα. t. Type abstractions are applied just as ordinary ones, and

(Λα. e) ξ : t[ξ/α]
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where ξ is an arbitrary type expression. The system is stronger than the
Milner type system, as types can contain embedded universal quantifiers,
such as

(Πα.(α⇒ α))⇒ (Πα.(α⇒ α))

but here lies a twist: this type is in the domain of the Πα . . . quantification,
so that there is a circularity in the definition of the type. Contrast this with
the TT type

((∀α :U0) . (α⇒ α))⇒ ((∀α :U0) . (α⇒ α))

whose definition is not circular — the type lies in U1 and not U0 and so is
outside the range of the quantifier (∀α :U0) . . . ..

We are used to circularities in definitions of recursive functions and
types, so we should not abandon hope about the system. Indeed, it can
shown consistent and strongly normalizing, having the proof theoretic strength
of second-order arithmetic, thus making it more expressive than TT0. These
results can be found in [GLT89], and a number of papers on the semantics
of the second-order λ-calculus can be found in [Hue90a], Part II.

The Curry Howard isomorphism extends to this situation, with quan-
tification over types having the equivalent of quantifying over all propo-
sitions. This has the interesting corollary that we can define many of the
propositional connectives from Π. For instance, recalling the simple rule
for disjunction elimination, we have

(A ∨B) (A⇒ C) (B ⇒ C)
C

(∨E)

From A∨B we can infer (A⇒ C)⇒ (B ⇒ C)⇒ C for all propositions C,
so that in the terminology of the second-order λ-calculus, we have

ΠC. ( (A⇒ C)⇒ (B ⇒ C)⇒ C )

Given an element a :A we can form an object of this type,

ΛC. λf . λg . (f a)

and of course we can do the same with b : B. Are all elements of the
type of this form? This question revolves around quite subtle issues in the
semantics of the calculus, discussed in [Hue90a], Part II.

The second-order calculus provides no means of defining the type trans-
formation

A,B 7→ ΠC. ( (A⇒ C)⇒ (B ⇒ C)⇒ C )
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as an operation of the calculus itself. This extension of the system is pro-
vided by the Calculus of Constructions of Coquand and Huet, to which
we turn now. The system was introduced in [CH85], and is discussed in the
context of other type theories in [Hue90b], and it allows direct definition
of such operators. One means of so doing is the addition of a new type
Prop of propositions, but we have seen earlier that this leads to logical
inconsistency, [Gir72]. Without allowing this, the theory of constructions
allows the definition of these type operators, and thus a large portion of
mathematics is developed in a very simple foundational theory. One point
to note is the apparent undefinability of a strong existential type in the
language, the definition which embodies the equivalence between

(∀x :A) . ( C(x)⇒ B ) and ( (∃x :A) . C(x) )⇒ B

(when x is not free in B) defines a weak equality. The difficulty is the way
in which the proof objects and types are mingled in the elimination rule for
the strong existential type.

A realizability semantics for the Calculus of Constructions is discussed
in [Hue90a], Part III.

9.2 Concluding Remarks

It can be seen from the contents of the last two chapters that research into
type theory is still in flux; despite this, the core of the system has been
shown to be a sound and elegant combination of logic and functional pro-
gramming, and I hope that the reader can share my enthusiasm for the
subject. One of the keenest intellectual pleasures is to see connections in
the hitherto unconnected, and I can still remember the thrill on discovering
that the proof of the deduction theorem for a Hilbert-style logic, learned
as a beginning graduate student in logic, is exactly the same as the bracket
abstraction algorithm in the λ-calculus, a result used in the implementa-
tion of functional programming languages, and which I came upon in a
computing context, years later.

Reflecting on the material in chapter 7, one negative conclusion seems
inescapable: additions to the system are quite possible, but each of them
seems to extract a price, either by increasing the complexity of the sys-
tem or by changing some of its metamathematical properties. We should
therefore be quite certain that we need to add a feature before doing so.
This conclusion is obvious to anyone familiar with the majority of program-
ming languages, in which a jumble of features co-exist in a most precarious
fashion; perhaps it is something we have to learn for ourselves.
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Nonetheless, the plight of imperative programming seems to get ever
more hopeless. Although it is in theory quite possible to develop proofs for
programs written in Pascal and C, it simply doesn’t happen. Functional
languages offer a much brighter prospect, as their clean semantics makes
proofs shorter and higher level. The next step seems to be to move to a
system like type theory, which can provide a single foundation for activities
of program development, transformation and verification, just as a LISP
Machine supports integrated debugging, profiling and the like. There is
still much to be done in making type theory a usable and attractive system
which supports programming in the large, but I am certain that languages
based on type theory will be as popular in a few years years time as con-
temporary functional languages like Miranda and ML based on the simply
typed λ-calculus.
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[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples,
1984. Based on a set of notes taken by Giovanni Sambin of a
series of lectures given in Padova, June 1980.
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Theoretical Computer Science, 51, 1987.

[Tur85] David A. Turner. Miranda: a non-strict functional language
with polymorphic types. In J. P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture. Springer-
Verlag, 1985.

[Tur89] David A. Turner. A new formulation of constructive type theory.
In Peter Dybjer et al., editors, Proceedings of the Workshop on
Programming Logic. Programming Methodology Group, Univer-
sity of Goteborg and Chalmers University of Technology, 1989.
Technical Report, number 54.



BIBLIOGRAPHY 351

[Tur90] David A. Turner. Research Topics in Functional Programming.
Addison Wesley, 1990.

[TvD88] Anne S. Troelstra and D. van Dalen. Constructivism in Mathe-
matics, An Introduction, volume I and II. North-Holland, 1988.

[WB89] Philip Wadler and Stephen Blott. Making ad hoc polymorphism
less ad hoc. In Proceedings of the 16th ACM Symposium on
Principles of Programming Languages. ACM Press, 1989.
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Fst , see existential quantifier
Snd , see product type
Xif , see co-inductive types
∀, see universal quantifier
∧, see conjunction
⇔, see bi-implication
⊥, see absurdity
↔↔ , see convertibility
≡df , see definitional equality
↓, see well-founded recursion, realiz-

ability
[ ], see list type
∃, see existential quantifier
fst , see product type
⇒, see implication
inl , see sum type
inr , see product type
¬, see negation
∨, see disjunction
++, see list type
→ , see reduction
‖−, see realizability
≡, see definitional equality
', see extensional equality
snd , see product type
→→, see reduction
>, see true proposition
xif , see co-inductive types

abstract type, 176, 221, 308
and type classes, 223
proof information in, 223
versions of, 221

absurdity, 14
elimination rule, 76

propositional, 14
formation rule, 76

Ackermann function, 104
algebraic type, 31, 186, 274
arithmetic

intuitionistic, finite-type, 146, 314
intuitionistic, first-order, 314

arity, 16
assumptions, 9, 10, 126–130, 190

consistency between, 128
contexts, 129

consistency between, 129
dependencies between, 127
discharge of, 11, 72, 74, 133

labelled, 11
labelled, 11
order of discharge, 128
rule, 9, 77

Automath, 332
axiom of choice, 139, 255

β-reduction, 34
restricted form, 145

bi-implication, 14, 70
bool, see boolean type
boolean type, 96

computation rules, 97
conditional expression, 96
elements unequal, 175
elimination rule, 97
equality, 113

352



INDEX 353

False, 96
formation rule, 97
introduction rules, 97
True, 96

bracket abstraction, 335

Calculus of Constructions, 335
examples, 249

canonical value, see printable value
category theory, 65
Church Rosser theorem

TT c
0 , 160

failure for TT ∗
0 , 147

untyped λ-calculus, 37
closure

of term, 172
co-inductive types, 301–306

computation rule, 304
elimination rule, 304
formation rule, 303
infinite lists, 301
introduction rule, 303

combinator, 148
combinator abstraction, 149

example, 150
commutation rule, 192
complete presentation, principle of,

63
computation, 143–145
computation rule, 52, 73
computational irrelevance, 256–258,

262, 277, 318
syntactic criteria, 258

conjunction, 9
computation rules, 74
elimination rules, 74

propositional, 9
formation rule, 73
introduction rule, 73

propositional, 9
connective, propositional, 8
conservative extension, 315

constructive mathematics, 59–65
formalization, 64

continuity, 315
convertibility, 40, 118, 163, 169
correctness, problem of, 1
course-of-values recursion, 197, 287
Curry Howard isomorphism, 4, 78

and assumptions, 190
difficulties with, 190

de Morgan laws, 87
decidibility

convertibility for TT c
0 , 161

derivability for TT c
0 , 161

deduction rule, 8, 71
hypothetical form, 282
side condition, 22

deduction theorem, 335
definitional equality, 131, 163
definitions, 130–132

injection functions, 131
pattern matching, 131
recursion, 132

dependent function space, see uni-
versal quantifier

dependent sum type, see existential
quantifier

dependent types, 114, 212–224
examples, 217

derivability, 139
of typehood, 140

extra premisses required, 140
uniqueness of types, 142

derivation, 72
a general property of, 139
abbreviation of, 132

disjoint union type, see disjunction
disjunction, 12

cases operator, 81
computation rules, 76

alternative (vcases′), 134
elimination rule, 76
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alternative (∨E′), 134
equivalent versions, 134
general (∨E′′), 135
motivation for generalisation,

135
propositional, 13

formation rule, 75
introduction rule

propositional, 12
introduction rules, 75

double negation, rule, 15

efficiency, 211, 242, 267
and lazy evaluation, 258

elimination rule, 9, 10, 74
major premiss, 76
minor premiss, 76
strong, 279–281

embedding, 314
empty type, see absurdity
equality, 270

characterisations, 166
extensional, 63, 169, 237, 273

in TT0, 170
in functional programming, 167
purpose of, 167
rule for extensional, 169

equality function, 165
existence of, 166

equality operation, see equality func-
tion

equality proposition, 109–116
computation rule, 111
elimination rule, 111
elimination rule (extensional), 169
equality over, 116
formation rule, 110
introduction rule, 110

general version, 119
equivalence rule, 52, 192
error values, 200
η-reduction, 39

evaluation, 35, 55
lazy, 31, 39, 257
normal order, 257
results of, see printable value
strict, 31, 39, 257
termination of, 36

ex falso quodlibet, see absurdity elim-
ination

examples
basic, 83–87, 92–95
functions over N , 195
implementing logic, 215
in the literature, 247–249
infinite lists, 301
list functions, 200–204
maximum segment sum, 241
Polish National Flag, 232, 268
quicksort, 205
rationals, 272
real numbers, 275
streams, 306
successor is one-one, 122
vectors, 226

excluded middle, law of, 15
existence

constructive view of, 60
witness, 61, 63, 88

existential quantifier
and universes, 221–224
computation rule

Cases, 137
projection version, 91

elimination rule, 23
alternate form (∃E), 137
projection version, 91
relations between versions, 137,

318
weaker version (∃E′), 136

examples, 214
formation rule, 90
interpretation as type, 91
introduction rule, 23, 91
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expressibility, 188
expression equivalence, convention,

34
extensional equality in TT0, 171
extensional relation, 40
extensionality, 184, 226, 262

false proposition, see absurdity
finite types

Cn, subtypes of N , 224
computation rules, 99
elimination rule, 98
formation rule, 98
introduction rules, 98

fixed point, 37, 41
formalization, reasons for, 7
formation rule, 73

modification for universes, 174
free subexpression, 117, 151
function

curried, 35, 95
provably total, 189
representation of, 188, 189

function definition
parameters of, 149

function space, see implication
functional programming, 30–31

general recursion, 55, 307

head normal form, 36
hypothesis, hypothetical, 282, 326

I type, see equality proposition
idealism, 60
identity, 164
imperative programming, 245
implementation, 126
implication, 10

computation rule, 75
elimination rule, 75

propositional, 11

formation rule, 74
introduction rule, 74

propositional, 11
transitivity of, 14

inconsistency, logical, 174, 307, 316
indirect proof, principle of, 3
induction over types, 45
inductive definitions, in set theory,

296
least fixed point, 297
monotonic, 297

inductive types, 296–301
and algebraic types, 300
computation rule, 300
elimination rule, 300
formation rule, 299
type equality rule, 300

integers, 136
intensionality, 56, 161
intermediate value theorem, 65
interpretation, 315
introduction rule, 9
inversion principle, 260, 265, 323–

328
and inductive types, 328

judgement, 71

λ-calculus, second-order, 333
λ-abstraction

notation for, 80
laws (in Miranda), 275
Leibnitz’s law, 110
list, see list type
list type

head, tail functions, 200
map and fold functions, 237
computation rules, 179
elimination rule, 179
formation rule, 179
indexing, 203
introduction rules, 179
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membership function, 208
primitive recursion, 179

lists, nonempty, 198
map and ++ over, 239

logic
classical, 15, 276
framework for, 322
intuitionistic, 15

mathematical objects, contrasting views
of, 62

maximal free expression, 151
membership relation, as proposition,

295
model theory, 317, 319–322

importance of, 319
inductive definition, 321
term models, 320
type-free interpretations, 320

modelling, 308–311
monomorphism

of type theory, 162

Nn, see finite types
naming of expressions, see definitions
natural numbers, 100–104

addition, 103
computation rules, 101
elimination rule

general case, 101
special case, 100

equality, 113, 121
equality of functions, 119
formation rule, 100
introduction rules, 100
iteration, 104
mathematical induction, 100
multiplication, 103
ordering, 199
primitive recursion, 100
representation in λ-calculus, 41

negation, 14, 70

elimination rule
propositional, 14

introduction rule
propositional, 14

node
of well-founded type, 180

normal form, 36
normalisation theorem

TT c
0 , 155
corollaries, 159

formalised in PA, 188
notational conventions, 80
Nuprl, 271, 281, 307, 329

examples, 249

object-oriented programming, 223
omniscience,limited principle of, 61
one element type, see true proposi-

tion

partial equivalence relation, 171
partial objects, type of, 306–308

in Nuprl, 307
näıve proposal, 307

partial order, 285
accessible part, 286

pattern matching, see definitions
polymorphic types (à la Backhouse),

282
head function, 283
disadvantage of, 283

polymorphism, 30, 218
explicit vs. implicit, 162
non parametric, 219
of type theory, 162
parametric, 177, 219
universes and, 176

predecessor
immediate, 288
in well-founded type, 180

predicate
formally decidable, 165
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representable, 165
predicate logic, 15–27

formulas, 16
atomic, 16
propositional combinations, 17
quantified, 17

predicate symbol, 16
terms, 16

composite, 16
constants, 16
variables, 16

printable value, 56, 145
product type, see conjunction

pair, 79
projections, 79

program development, 234, 255
program extraction, 5, 228, 234
program transformation, 236–244
proof

normal form of, 191
top-down, 229

proof by contradiction, rule, 15
proof conditions, 61, 69
proof extraction, 228–232
proof theory, 313–319
proposition

as distinct from type, 263
definition by recursion, 198
extensional, 173
representable, 213

propositional logic, 8–15
formula, 8

compound, 8
proof, 8
variable, 8

PX, a computational logic, 331

quantifier, 17, 88–95
duality, 23

quicksort, see sorting
quotient type, 270–273

congruence type, comparison, 274

elimination rule, 272
equality rule, 272
formation rule, 271
introduction rule, 271

real numbers, 62–65, 275–279
addition, 277
Cauchy reals, 276
equality, 64, 278
quotient type, 278
regular sequences, 276
separated, 64

realizability, 316–318
∀∃ formula, 318

recursion
inverse image of, 211
structural, 284

redex, 34, 117
leftmost outermost, 38
visibility, 149, 152
within a lambda, 145

reducibility method, 45
reduct, 35, 117
reduction, 73, 118

restricted version (TT ∗
0 ), 146

relation, transitive closure of, 288
representation theorem for TT0, 189

semigroup, 308
as abstract type, 308
rules for, 310

separation of computation and proof,
233, 266

Skolemizing, 268
sorting, 205–212

polymorphic, 219
quicksort, correctness of, 209

specification, 5, 234, 254–256, 267–
270

and naming, 255, 268
sorting, 208

squash types, 263
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strong normalisation theorem, 54
TT ∗

0 , 146
typed λ-calculus, 43

proof, 45–50
strong type system, 30
structural induction

over λ-expressions, 37
over trees, 106

subset theory, 264–266
subset type, 214, 259–270, 277

and extensional theory, 262
elimination rule, 260
formation rule, 259
introduction rule, 259
necessary?, 266–270
stronger rules, see subset theory
weakness of rules, 261

substitution
extensional, 173
in λ expressions, 34
in formulas, 20
in terms, 20
notation, 21

substitution rules, 118
sum type, see disjunction
supercombinator abstraction, 151

tail recursion, 245
and primitive recursion, 246

term
extensional, 172
parametric, 155
stable, 154

TK, theory of types and kinds, 330
tree, see tree type
tree type, 105

computation rules, 108
elimination rule, 108
formation rule, 107
introduction rules, 107
primitive recursion, 106

true proposition

computation rule, 99
elimination rule, 99
formation rule, 99
introduction rule, 99

TT , 174
TT+, 186
TTS

0 , 260
relation with TT , 260

TT0, 139
and intuitionistic arithmetic, 315–

316
and realizability, 318

TT c
0 , 152

TT c
0 , TT0 relation between, 152

type
extensionally isomorphic, 185
ground, 56
order of, 56

type classes, 222
type constructors, definitions, 219
type context, 44

consistency, 44
type family

definition of, 175, 198
extensional, 171

type of all types, 174
type theory, modes of application,

193
typed λ-calculus, 42–57

alternative syntax, 44
expressions

abstractions, 43
applications, 43
s-instance, 48
stable, 46
strongly normalising (SN), 46
variables, 43

natural numbers, 53
primitive recursor, 53

product type, 50
simple types, 42
with dependent products, 323
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uniqueness of types, see derivability
universal quantifier

and universes, 218–220
computation rule, 90
elimination rule, 22, 90
examples, 215
formation rule, 89
interpretation as type, 90
introduction rule, 22, 89

combinator form (∀Ic), 150
universes, 173–178

closure axioms, 177
formation rule, 175
quantification over, 176
transfinite, 178

untyped λ-calculus, 32–41
expressions

abstractions, 32
applications, 32
closed, 33
open, 33
variables, 32

syntactic conventions, 32

variable
applied occurrence, 33
binding occurrence, 33
bound, 19, 33
free, 19, 33

variable binding operators, 133
variable capture, 19
variables, modes of use, 21

weak head normal form, 36
well-founded ordering, 286

and W types, 293
characterisation in TT , 290
examples, 288
examples in TT , 291
inverse image, 289, 291

well-founded recursion, 284–296
in set theory, 284–289

in type theory, 290–296
Accessible elements, 293
comparing approaches, 296

well-founded types, 178–187
computation rule, 184
elimination rule, 184
formation rule, 182
introduction rule, 182
ordinals, 186



360 RULE TABLES

Formation, Introduction and Elimination Rules

A is a type B is a type
(A ∧B) is a type

(∧F )
p : A q : B

(p, q) : (A ∧B) (∧I)

r : (A ∧B)
fst r : A

(∧E1)
r : (A ∧B)
snd r : B

(∧E2)

A is a type B is a type
(A⇒ B) is a type

(⇒ F )

[x :A]
...

e : B
(λx :A) . e : (A⇒ B) (⇒ I)

q : (A⇒ B) a : A
(q a) : B

(⇒ E)

A is a type B is a type
(A ∨B) is a type

(∨F )

q : A
inl q : (A ∨B) (∨I1) r : B

inr r : (A ∨B) (∨I2)

p : (A ∨B) f : (A⇒ C) g : (B ⇒ C)
cases p f g : C

(∨E)

p : (A ∨B)

[x :A]
...

u :C

[y :B]
...

v :C
vcases′x,y p u v : C

(∨E′)

p : (A ∨B)

[x :A]
...

u :C[inl x/z]

[y :B]
...

v :C[inr y/z]
vcases′′x,y p u v : C[p/z]

(∨E′′)

p : (A ∨B) q : (∀x :A) . C[inl x/z] r : (∀y :B) . C[inr y/z]

cases† p q r : C[p/z]
(∨E†)
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⊥ is a type
(⊥F ) p : ⊥

abortA p : A
(⊥E)

A is a type
x :A (AS)

A is a type

[x :A]
...

P is a type
(∀x :A) . P is a type

(∀F )

[x : A]
...

p : P
(λx :A) . p : (∀x :A) . P

(∀I)

a : A f : (∀x :A) . P
f a : P [a/x] (∀E)

A is a type

[x :A]
...

P is a type
(∃x :A) . P is a type

(∃F )
a : A p : P [a/x]

(a, p) : (∃x :A) . P
(∃I)

p : (∃x :A) . P
Fst p : A (∃E′

1)
p : (∃x :A) . P

Snd p : P [Fst p/x] (∃E
′
2)

p : (∃x :A) . B

[x :A; y :B]
...

c :C
Casesx,y p c : C (∃E′)

p : (∃x :A) . B

[x :A; y :B]
...

c :C[(x, y)/z]
Casesx,y p c : C[p/z] (∃E)

a ↔↔ b B(a) is a type
B(b) is a type

(S1)
a ↔↔ b p(a) :B(a)

p(b) :B(b) (S2)

A ↔↔ B A is a type
B is a type (S3)

A ↔↔ B p :A
p :B (S4)

a :A

[x :A]
...

B is a type
B[a/x] is a type

(S5)
a :A

[x :A]
...

b :B
b[a/x] :B[a/x] (S6)
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bool is a type
(bool F )

True : bool
(bool I1) False : bool

(bool I2)

tr : bool l : C[True/x] d : C[False/x]
if tr then l else d : C[tr/x] (bool E)

Nn is a type (NnF ) 1n : Nn
(NnI) . . . nn : Nn

(NnI)

e :Nn l1 :C[c1/x] . . . ln :C[cn/x]
casesn e c1 . . . cn : C[e/x] (NnE)

> is a type
(>F )

Triv : > (>I)

x :> l :C(Triv)
case x c : C(x) (>E)

N is a type (NF ) 0 : N (NI1) n : N
(succ n) : N

(NI2)

n : N l : C[0/x] f : (∀n :N) . (C[n/x]⇒ C[succ n/x])
prim n c f : C[n/x] (NE)

tree is a type (tree F )
Null : tree

(tree I1)

n :N u : tree v : tree
(Bnode n u v) : tree (tree I2)

t : tree
l :C[Null/x]
f : (∀n :N) . (∀u : tree) . (∀v : tree) . (C[u/x]⇒ C[v/x]⇒ C[(Bnode n u v)/x])

trec t c f : C[t/x] (tree E)

A is a type a :A b :A
I(A, a, b) is a type

(IF ) a :A
r(a) : I(A, a, a) (II)

a ↔↔ b a :A b :A
r(a) :I(A, a, b) (II ′)

l : I(A, a, b) d : C(a, a, r(a))
J(c, d) : C(a, b, c) (IE)
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A is a type
[A] is a type

(list F )

[ ] : [A] (list I1)
a :A l : [A]
(a :: l) : [A] (list I2)

l : [A]
s :C[ [ ] /x]
f : (∀a :A) . (∀l : [A]) . (C[l/x]⇒ C[(a :: l)/x])

lrec l s f : C[l/x] (list E)

A is a type

[x : A]
...

B(x) is a type
(W x :A) . B(x) is a type

(WF )

a : A f : (B(a)⇒ (W x :A) . B(x))
node a f : (W x :A) . B(x) (WI)

w : (W x :A) . B(x) R :Ind(A,B,C)
(Rec w R) : C(w) (WE)

A is a type

[x :A]
...

B is a type
{ x :A | B } is a type

(SetF )
a :A p :B[a/x]
a : { x :A | B } (SetI)

a :{ x :A | B }

[x :A; y :B]
...

c(x) :C(x)
c(a) : C(a)

(SetE)

A is a type
x :A , y :A ` E is a type
x :A ` r : E[x/x, x/y]
x :A , y :A , r :E ` s :E[y/x, x/y]
x :A , y :A , z :A ,

r :E , s :E[y/x, z/y] ` t :E[x/x, z/y]
A//Ex,y is a type

(QF )

a :A
a :A//Ex,y

(QI)



364 RULE TABLES

a :A//Ex,y

[x :A]
...

c(x) :C(x)

[x :A , y :A , p :E]
...

t :I(C(x), c(x), c(y))
c(a) : C(a)

(QE)

a :A b :A p :E[a/x, b/y]
r(a) : I(A//Ex,y, a, b)

(Q=)

A is a type

[x :A, y :A]
...

(x ≺ y) is a type

Acc(A,≺) is a type
(AccF )

a :A

[y :A, y ≺ a]
...

y :Acc(A,≺)
a :Acc(A,≺)

(AccI)

p : Acc(A,≺)

[
x :Acc(A,≺)
z :A, z ≺ x � (f z) :C(z)

]
...

(e x f) :C(x)
rec e p : C(p)

(AccE)

Θ monotonic
Fix Θ is a type

(IndF )

[ T ⊆ Fix Θ ]
...

g : (∀x :T ) . C ⇒ (∀y :Θ T ) . C[y/x]
fix g : (∀z :Fix Θ) . C[z/x]

(IndE)

Ψ monotonic
(Xif Ψ) is a type

(CoinF )

d : D

[y :D , z :D ⇒ T ]
...

b : Ψ T

xify,z b d : Xif Ψ
(CoinI)
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Computation Rules

fst (p, q) → p

snd (p, q) → q

((λx :A) . p) a → p[a/x]
cases (inl q) f g → f q

cases (inr r) f g → g r

vcasesx,y (inl a) u v → u[a/x]
vcasesx,y (inr b) u v → v[b/y]

Fst (p, q) → p

Snd (p, q) → q

Casesx,y (a, b) c → c[a/x, b/y]
if True then c else d → c

if False then c else d → d

casesn 1n c1 . . . cn → c1

casesn 2n c1 . . . cn → c2

. . .

casesn nn c1 . . . cn → cn

case x c → c

prim 0 c f → c

prim (succ n) c f → f n (prim n c f)
trec Null c f → c

trec (Bnode n u v) c f → f n u v (trec u c f) (trec v c f)
J(r(a), d) → d

lrec [ ] s f → s

lrec (a :: l) s f → f a l (lrec l s f)
Rec (node a f) R → R a f (λx .Rec (f x) R)

rec e p → e p (rec e)
Fix Θ → Θ (Fix Θ)
fix g → g (fix g)

xify,z b d → b[d/y , λw . (xify,z b w)/z]


