
The Church-Turing thesis in a quantum
world

Ashley Montanaro

Centre for Quantum Information and Foundations,
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge

April 17, 2012

Introduction

Quantum complexity theory [Bernstein and Vazirani ’97]

Just as the theory of computability has its foundations in the
Church-Turing thesis, computational complexity rests on a
modern strengthening of this thesis, which asserts that any
“reasonable” model of computation can be efficiently
simulated on a probabilistic Turing machine...

However, the Turing Machine fails to capture all physically
realizable computing devices for a fundamental reason: the
Turing Machine is based on a classical physics model of the
Universe, whereas current physical theory asserts that the
Universe is quantum physical.

What does this imply for the Church-Turing thesis?

Introduction

Quantum complexity theory [Bernstein and Vazirani ’97]

Just as the theory of computability has its foundations in the
Church-Turing thesis, computational complexity rests on a
modern strengthening of this thesis, which asserts that any
“reasonable” model of computation can be efficiently
simulated on a probabilistic Turing machine...

However, the Turing Machine fails to capture all physically
realizable computing devices for a fundamental reason: the
Turing Machine is based on a classical physics model of the
Universe, whereas current physical theory asserts that the
Universe is quantum physical.

What does this imply for the Church-Turing thesis?

Introduction

Quantum complexity theory [Bernstein and Vazirani ’97]

Just as the theory of computability has its foundations in the
Church-Turing thesis, computational complexity rests on a
modern strengthening of this thesis, which asserts that any
“reasonable” model of computation can be efficiently
simulated on a probabilistic Turing machine...

However, the Turing Machine fails to capture all physically
realizable computing devices for a fundamental reason: the
Turing Machine is based on a classical physics model of the
Universe, whereas current physical theory asserts that the
Universe is quantum physical.

What does this imply for the Church-Turing thesis?

Introduction
Quantum computers can be simulated by classical computers
(with exponential slowdown).

In fact, in terms of complexity theory, we even have
BQP⊆PSPACE: quantum computers can be simulated
space-efficiently by classical computers.
So the “original” (aka weak) Church-Turing thesis is not
affected by quantum computation.

However, there are certain quantum computations which we
don’t know how to simulate classically without exponential
slowdown.

The canonical example is factoring: Shor’s quantum
algorithm factorises an n-digit integer in time poly(n), but
the best known classical algorithm takes time
super-polynomial in n.
So quantum computers pose a significant challenge to the
strong Church-Turing thesis.

Introduction
Quantum computers can be simulated by classical computers
(with exponential slowdown).

In fact, in terms of complexity theory, we even have
BQP⊆PSPACE: quantum computers can be simulated
space-efficiently by classical computers.
So the “original” (aka weak) Church-Turing thesis is not
affected by quantum computation.

However, there are certain quantum computations which we
don’t know how to simulate classically without exponential
slowdown.

The canonical example is factoring: Shor’s quantum
algorithm factorises an n-digit integer in time poly(n), but
the best known classical algorithm takes time
super-polynomial in n.
So quantum computers pose a significant challenge to the
strong Church-Turing thesis.

This talk

I will briefly discuss several aspects of this challenge:

The ability of quantum computers to simulate physical
systems which we don’t know how to simulate efficiently
classically;

Models of computation where quantum computers
provably outperform classical computers;

How quantum computation helps us understand classical
complexity theory.

This talk

I will briefly discuss several aspects of this challenge:

The ability of quantum computers to simulate physical
systems which we don’t know how to simulate efficiently
classically;

Models of computation where quantum computers
provably outperform classical computers;

How quantum computation helps us understand classical
complexity theory.

This talk

I will briefly discuss several aspects of this challenge:

The ability of quantum computers to simulate physical
systems which we don’t know how to simulate efficiently
classically;

Models of computation where quantum computers
provably outperform classical computers;

How quantum computation helps us understand classical
complexity theory.

This talk

I will briefly discuss several aspects of this challenge:

The ability of quantum computers to simulate physical
systems which we don’t know how to simulate efficiently
classically;

Models of computation where quantum computers
provably outperform classical computers;

How quantum computation helps us understand classical
complexity theory.

Simulating physical systems

There are quantum systems for which no efficient classical
simulation is known, but which we can simulate on a
universal quantum computer.

What does it mean to “simulate” a physical system?

According to the OED, simulation is “the technique of
imitating the behaviour of some situation or process
(whether economic, military, mechanical, etc.) by means
of a suitably analogous situation or apparatus”.

What we will take simulation to mean here is
approximating the dynamics of a physical system.

We are given a description of a system, and would like to
determine something about its state at time t.

Simulating physical systems

There are quantum systems for which no efficient classical
simulation is known, but which we can simulate on a
universal quantum computer.

What does it mean to “simulate” a physical system?

According to the OED, simulation is “the technique of
imitating the behaviour of some situation or process
(whether economic, military, mechanical, etc.) by means
of a suitably analogous situation or apparatus”.

What we will take simulation to mean here is
approximating the dynamics of a physical system.

We are given a description of a system, and would like to
determine something about its state at time t.

Simulating physical systems

There are quantum systems for which no efficient classical
simulation is known, but which we can simulate on a
universal quantum computer.

What does it mean to “simulate” a physical system?

According to the OED, simulation is “the technique of
imitating the behaviour of some situation or process
(whether economic, military, mechanical, etc.) by means
of a suitably analogous situation or apparatus”.

What we will take simulation to mean here is
approximating the dynamics of a physical system.

We are given a description of a system, and would like to
determine something about its state at time t.

Simulating physical systems

There are quantum systems for which no efficient classical
simulation is known, but which we can simulate on a
universal quantum computer.

What does it mean to “simulate” a physical system?

According to the OED, simulation is “the technique of
imitating the behaviour of some situation or process
(whether economic, military, mechanical, etc.) by means
of a suitably analogous situation or apparatus”.

What we will take simulation to mean here is
approximating the dynamics of a physical system.

We are given a description of a system, and would like to
determine something about its state at time t.

Simulating physical systems

According to the laws of quantum mechanics, time
evolution of the state |ψ〉 of a quantum system is governed
by Schrödinger’s equation,

i h
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is a linear operator known as the Hamiltonian
of the system and h is a constant (which we will absorb
into H(t)).

In the time-independent setting where H(t) = H,

|ψ(t)〉 = e−iHt|ψ(0)〉.

Given H specifying a physical system, we would like to
approximate the operator

U(t) = e−iHt.

Simulating physical systems

According to the laws of quantum mechanics, time
evolution of the state |ψ〉 of a quantum system is governed
by Schrödinger’s equation,

i h
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is a linear operator known as the Hamiltonian
of the system and h is a constant (which we will absorb
into H(t)).
In the time-independent setting where H(t) = H,

|ψ(t)〉 = e−iHt|ψ(0)〉.

Given H specifying a physical system, we would like to
approximate the operator

U(t) = e−iHt.

Simulating physical systems

According to the laws of quantum mechanics, time
evolution of the state |ψ〉 of a quantum system is governed
by Schrödinger’s equation,

i h
d
dt
|ψ(t)〉 = H(t)|ψ(t)〉,

where H(t) is a linear operator known as the Hamiltonian
of the system and h is a constant (which we will absorb
into H(t)).
In the time-independent setting where H(t) = H,

|ψ(t)〉 = e−iHt|ψ(0)〉.

Given H specifying a physical system, we would like to
approximate the operator

U(t) = e−iHt.

Simulating physical systems

Why can’t we do this classically just by calculating U(t)?

In general, H is too big to write down explicitly. If H
describes a system of n particles (atoms, photons, . . .), it
has dimension exponential in n.

However, with a quantum computer we can approximate
U(t) for the physically meaningful class of k-local
Hamiltonians.

These are Hamiltonians which are given by a sum of
terms describing interactions between at most k = O(1)
particles. So H is described by a set of O(1)-dimensional
matrices.

Simulating physical systems

Why can’t we do this classically just by calculating U(t)?

In general, H is too big to write down explicitly. If H
describes a system of n particles (atoms, photons, . . .), it
has dimension exponential in n.

However, with a quantum computer we can approximate
U(t) for the physically meaningful class of k-local
Hamiltonians.

These are Hamiltonians which are given by a sum of
terms describing interactions between at most k = O(1)
particles. So H is described by a set of O(1)-dimensional
matrices.

Simulating physical systems

Why can’t we do this classically just by calculating U(t)?

In general, H is too big to write down explicitly. If H
describes a system of n particles (atoms, photons, . . .), it
has dimension exponential in n.

However, with a quantum computer we can approximate
U(t) for the physically meaningful class of k-local
Hamiltonians.

These are Hamiltonians which are given by a sum of
terms describing interactions between at most k = O(1)
particles. So H is described by a set of O(1)-dimensional
matrices.

The quantum simulation algorithm (sketch)

Assume we would like to simulate a Hamiltonian H =
∑

j Hj.

1 Prepare the desired initial state |ψ〉.

2 Write
e−iHt ≈

∏
j

e−iHjt

(accurate for small enough t). As each Hj only acts
non-trivially on O(1) particles, e−iHjt can be implemented
efficiently on a quantum computer.

3 Concatenate the approximations to produce a state

|ψ̃(t)〉 ≈ e−iHt|ψ〉.

4 Perform a measurement to extract information from |ψ̃(t)〉.

The quantum simulation algorithm (sketch)

Assume we would like to simulate a Hamiltonian H =
∑

j Hj.

1 Prepare the desired initial state |ψ〉.

2 Write
e−iHt ≈

∏
j

e−iHjt

(accurate for small enough t). As each Hj only acts
non-trivially on O(1) particles, e−iHjt can be implemented
efficiently on a quantum computer.

3 Concatenate the approximations to produce a state

|ψ̃(t)〉 ≈ e−iHt|ψ〉.

4 Perform a measurement to extract information from |ψ̃(t)〉.

The quantum simulation algorithm (sketch)

Assume we would like to simulate a Hamiltonian H =
∑

j Hj.

1 Prepare the desired initial state |ψ〉.

2 Write
e−iHt ≈

∏
j

e−iHjt

(accurate for small enough t). As each Hj only acts
non-trivially on O(1) particles, e−iHjt can be implemented
efficiently on a quantum computer.

3 Concatenate the approximations to produce a state

|ψ̃(t)〉 ≈ e−iHt|ψ〉.

4 Perform a measurement to extract information from |ψ̃(t)〉.

The quantum simulation algorithm (sketch)

Assume we would like to simulate a Hamiltonian H =
∑

j Hj.

1 Prepare the desired initial state |ψ〉.

2 Write
e−iHt ≈

∏
j

e−iHjt

(accurate for small enough t). As each Hj only acts
non-trivially on O(1) particles, e−iHjt can be implemented
efficiently on a quantum computer.

3 Concatenate the approximations to produce a state

|ψ̃(t)〉 ≈ e−iHt|ψ〉.

4 Perform a measurement to extract information from |ψ̃(t)〉.

Provable separations

In the setting of time complexity, we conjecture that
quantum computers are more powerful than classical
computers, but have no proof.

One model in which separations are provable is the model
of query complexity.

In this model, we want to compute a known function f (x)
using the smallest possible worst-case number of queries
to the unknown input x ∈ {0, 1}n.

We have access to x via an oracle which, given input i,
returns the bit xi. We allow the use of randomness and
some probability of failure (e.g. up to 1/3).

For some functions f , clever strategies can allow us to
compute f (x) using far fewer than n queries.

Provable separations

In the setting of time complexity, we conjecture that
quantum computers are more powerful than classical
computers, but have no proof.

One model in which separations are provable is the model
of query complexity.

In this model, we want to compute a known function f (x)
using the smallest possible worst-case number of queries
to the unknown input x ∈ {0, 1}n.

We have access to x via an oracle which, given input i,
returns the bit xi. We allow the use of randomness and
some probability of failure (e.g. up to 1/3).

For some functions f , clever strategies can allow us to
compute f (x) using far fewer than n queries.

Provable separations

In the setting of time complexity, we conjecture that
quantum computers are more powerful than classical
computers, but have no proof.

One model in which separations are provable is the model
of query complexity.

In this model, we want to compute a known function f (x)
using the smallest possible worst-case number of queries
to the unknown input x ∈ {0, 1}n.

We have access to x via an oracle which, given input i,
returns the bit xi. We allow the use of randomness and
some probability of failure (e.g. up to 1/3).

For some functions f , clever strategies can allow us to
compute f (x) using far fewer than n queries.

Provable separations

In the setting of time complexity, we conjecture that
quantum computers are more powerful than classical
computers, but have no proof.

One model in which separations are provable is the model
of query complexity.

In this model, we want to compute a known function f (x)
using the smallest possible worst-case number of queries
to the unknown input x ∈ {0, 1}n.

We have access to x via an oracle which, given input i,
returns the bit xi. We allow the use of randomness and
some probability of failure (e.g. up to 1/3).

For some functions f , clever strategies can allow us to
compute f (x) using far fewer than n queries.

Query complexity

In the quantum version of the model, we can query the
bits of x in superposition (i.e. in some sense we can query
more than one bit at once).

For many functions f , this allows f (x) to be computed
more quickly than is possible classically.

For example, the OR function (f (x) = 1⇔ x 6= 0) can be
computed using O(

√
n) quantum queries using Grover’s

algorithm [Grover ’97].

However, it is easy to see that any classical algorithm
requires Ω(n) queries.

Query complexity

In the quantum version of the model, we can query the
bits of x in superposition (i.e. in some sense we can query
more than one bit at once).

For many functions f , this allows f (x) to be computed
more quickly than is possible classically.

For example, the OR function (f (x) = 1⇔ x 6= 0) can be
computed using O(

√
n) quantum queries using Grover’s

algorithm [Grover ’97].

However, it is easy to see that any classical algorithm
requires Ω(n) queries.

Query complexity

In the quantum version of the model, we can query the
bits of x in superposition (i.e. in some sense we can query
more than one bit at once).

For many functions f , this allows f (x) to be computed
more quickly than is possible classically.

For example, the OR function (f (x) = 1⇔ x 6= 0) can be
computed using O(

√
n) quantum queries using Grover’s

algorithm [Grover ’97].

However, it is easy to see that any classical algorithm
requires Ω(n) queries.

Query complexity

In the quantum version of the model, we can query the
bits of x in superposition (i.e. in some sense we can query
more than one bit at once).

For many functions f , this allows f (x) to be computed
more quickly than is possible classically.

For example, the OR function (f (x) = 1⇔ x 6= 0) can be
computed using O(

√
n) quantum queries using Grover’s

algorithm [Grover ’97].

However, it is easy to see that any classical algorithm
requires Ω(n) queries.

Knowns and unknowns
We know that:

If f is a partial function (i.e. the algorithm is allowed to
fail on certain inputs x), quantum query complexity can
be exponentially smaller than classical query complexity
(e.g. [Simon ’94]).

If f is a total function, there can only be at most a
polynomial (6th power) separation [Beals et al ’01].

But there are still many open questions, such as:

Can we achieve better than a quadratic separation for total
functions?

If the algorithm must succeed with certainty on all inputs,
can we achieve better than a constant factor separation?
(see [AM, Jozsa and Mitchison ’11] for some examples of such
separations).

Knowns and unknowns
We know that:

If f is a partial function (i.e. the algorithm is allowed to
fail on certain inputs x), quantum query complexity can
be exponentially smaller than classical query complexity
(e.g. [Simon ’94]).

If f is a total function, there can only be at most a
polynomial (6th power) separation [Beals et al ’01].

But there are still many open questions, such as:

Can we achieve better than a quadratic separation for total
functions?

If the algorithm must succeed with certainty on all inputs,
can we achieve better than a constant factor separation?
(see [AM, Jozsa and Mitchison ’11] for some examples of such
separations).

Knowns and unknowns
We know that:

If f is a partial function (i.e. the algorithm is allowed to
fail on certain inputs x), quantum query complexity can
be exponentially smaller than classical query complexity
(e.g. [Simon ’94]).

If f is a total function, there can only be at most a
polynomial (6th power) separation [Beals et al ’01].

But there are still many open questions, such as:

Can we achieve better than a quadratic separation for total
functions?

If the algorithm must succeed with certainty on all inputs,
can we achieve better than a constant factor separation?
(see [AM, Jozsa and Mitchison ’11] for some examples of such
separations).

Knowns and unknowns
We know that:

If f is a partial function (i.e. the algorithm is allowed to
fail on certain inputs x), quantum query complexity can
be exponentially smaller than classical query complexity
(e.g. [Simon ’94]).

If f is a total function, there can only be at most a
polynomial (6th power) separation [Beals et al ’01].

But there are still many open questions, such as:

Can we achieve better than a quadratic separation for total
functions?

If the algorithm must succeed with certainty on all inputs,
can we achieve better than a constant factor separation?
(see [AM, Jozsa and Mitchison ’11] for some examples of such
separations).

A world without quantum computers?

Small-scale quantum computers
already exist in the lab.

But what if we never manage to
build large-scale quantum
computers?

Or what if quantum computers turn
out to be easy to simulate
classically?

Studying quantum computing
nevertheless has implications for
the rest of computer science.

A computational hardness result

Let T be a 3-index tensor, i.e. a d× d× d array of complex
numbers, such that

∑
i,j,k |Tijk|

2 = 1.
The injective tensor norm of T is defined as

‖T‖inj := max
x,y,z,

‖x‖=‖y‖=‖z‖=1

∣∣∣∣∣∣
d∑

i,j,k=1

Tijkxiyjzk

∣∣∣∣∣∣ .

Theorem [Harrow & AM ’11]

Assume that the (NP-complete) problem 3-SAT on n clauses
can’t be solved in time subexponential in n. Then there are
universal constants 0 < s < c < 1 such that distinguishing
between ‖T‖inj 6 s and ‖T‖inj > c can’t be done in time poly(d).

Many other problems in tensor optimisation reduce to
computing injective tensor norms.

A computational hardness result

Let T be a 3-index tensor, i.e. a d× d× d array of complex
numbers, such that

∑
i,j,k |Tijk|

2 = 1.
The injective tensor norm of T is defined as

‖T‖inj := max
x,y,z,

‖x‖=‖y‖=‖z‖=1

∣∣∣∣∣∣
d∑

i,j,k=1

Tijkxiyjzk

∣∣∣∣∣∣ .
Theorem [Harrow & AM ’11]

Assume that the (NP-complete) problem 3-SAT on n clauses
can’t be solved in time subexponential in n. Then there are
universal constants 0 < s < c < 1 such that distinguishing
between ‖T‖inj 6 s and ‖T‖inj > c can’t be done in time poly(d).

Many other problems in tensor optimisation reduce to
computing injective tensor norms.

The proof strategy
Surprisingly, the proof is based on quantum computing –
specifically, the framework of quantum Merlin-Arthur games.

Merlin1 Merlin2

Arthur

|ψ1〉 |ψ2〉

Arthur has a hard decision problem to solve and has
access to two separate provers (“Merlins”), who are
all-powerful but cannot be trusted.
The Merlins want to convince Arthur that the answer to
the problem is “yes”. Each of them sends Arthur a
quantum state (“proof”). He then runs a quantum
algorithm to check the proofs.

The proof strategy
Surprisingly, the proof is based on quantum computing –
specifically, the framework of quantum Merlin-Arthur games.

Merlin1 Merlin2

Arthur

|ψ1〉 |ψ2〉

Arthur has a hard decision problem to solve and has
access to two separate provers (“Merlins”), who are
all-powerful but cannot be trusted.
The Merlins want to convince Arthur that the answer to
the problem is “yes”. Each of them sends Arthur a
quantum state (“proof”). He then runs a quantum
algorithm to check the proofs.

The proof strategy

Unlike the situation classically, two Merlins may be more
powerful than one: the lack of entanglement helps Arthur
tell when the Merlins are cheating.

Indeed, 3-SAT on n clauses can be solved by a 2-prover
protocol with constant probability of error using proofs of
length O(

√
n polylog(n)) qubits [Harrow and AM ’11].

And it turns out that the maximal probability with which
the Merlins can convince Arthur to output “yes” is given
by the injective tensor norm of a tensor T.

So, if we could compute ‖T‖inj up to an additive constant
in time poly(d), we would have a subexponential-time
algorithm for 3-SAT!

The proof strategy

Unlike the situation classically, two Merlins may be more
powerful than one: the lack of entanglement helps Arthur
tell when the Merlins are cheating.

Indeed, 3-SAT on n clauses can be solved by a 2-prover
protocol with constant probability of error using proofs of
length O(

√
n polylog(n)) qubits [Harrow and AM ’11].

And it turns out that the maximal probability with which
the Merlins can convince Arthur to output “yes” is given
by the injective tensor norm of a tensor T.

So, if we could compute ‖T‖inj up to an additive constant
in time poly(d), we would have a subexponential-time
algorithm for 3-SAT!

The proof strategy

Unlike the situation classically, two Merlins may be more
powerful than one: the lack of entanglement helps Arthur
tell when the Merlins are cheating.

Indeed, 3-SAT on n clauses can be solved by a 2-prover
protocol with constant probability of error using proofs of
length O(

√
n polylog(n)) qubits [Harrow and AM ’11].

And it turns out that the maximal probability with which
the Merlins can convince Arthur to output “yes” is given
by the injective tensor norm of a tensor T.

So, if we could compute ‖T‖inj up to an additive constant
in time poly(d), we would have a subexponential-time
algorithm for 3-SAT!

The proof strategy

Unlike the situation classically, two Merlins may be more
powerful than one: the lack of entanglement helps Arthur
tell when the Merlins are cheating.

Indeed, 3-SAT on n clauses can be solved by a 2-prover
protocol with constant probability of error using proofs of
length O(

√
n polylog(n)) qubits [Harrow and AM ’11].

And it turns out that the maximal probability with which
the Merlins can convince Arthur to output “yes” is given
by the injective tensor norm of a tensor T.

So, if we could compute ‖T‖inj up to an additive constant
in time poly(d), we would have a subexponential-time
algorithm for 3-SAT!

Other classical results with quantum proofs

Some other purely classical problems have quantum solutions.

Classical communication complexity of the inner product
function
Lower bounds on locally decodable codes
Rigidity of Hadamard matrices
Finding low-degree approximating polynomials
Closure properties of complexity classes
. . .

For many more, see the survey “Quantum proofs for classical
theorems” [Drucker and de Wolf ’09].

Conclusions

Efficiently simulating the physical world around us
appears to require us to use quantum computers.

There are (arguably unrealistic?) models of computation
in which quantum computers provably outperform
classical computers.

The quantum model can be used to obtain new results in
complexity theory without needing to actually build
quantum computers.

Thanks!

Conclusions

Efficiently simulating the physical world around us
appears to require us to use quantum computers.

There are (arguably unrealistic?) models of computation
in which quantum computers provably outperform
classical computers.

The quantum model can be used to obtain new results in
complexity theory without needing to actually build
quantum computers.

Thanks!

Conclusions

Efficiently simulating the physical world around us
appears to require us to use quantum computers.

There are (arguably unrealistic?) models of computation
in which quantum computers provably outperform
classical computers.

The quantum model can be used to obtain new results in
complexity theory without needing to actually build
quantum computers.

Thanks!

Conclusions

Efficiently simulating the physical world around us
appears to require us to use quantum computers.

There are (arguably unrealistic?) models of computation
in which quantum computers provably outperform
classical computers.

The quantum model can be used to obtain new results in
complexity theory without needing to actually build
quantum computers.

Thanks!

