Turing's Legacy and Al Two perspectives

Barry Richards 17th April 2012

b.richards85@btinternet.com © 2012 Barry Richards

1

"Nondeterminism is a central concept in complexity theory because of its affinity not so much with computation itself, but with the *applications of computation*, most notably logic, combinatorial optimization, and artificial intelligence."

Christos Papadimitriou, Computational Complexity, Addison - Wesley, 1994

Two persisting questions

- 1. Can the *typical* performance of a *heuristic search algorithm* for an NP-complete problem be predicted?
 - o Can an instance of such a problem be identified as easy or hard to solve?

2. Is *intelligent search* characteristic of human problem solving?

- o Turing's approach
- The approach of Al-as-symbolic-computation

Turing's legacy and AI: One perspective

- Turing's question: Can computers think?
 - o Is this question just semantic or philosophical?
- Turing's response: A question-answer game (Turing Test)
 - o Aim
 - To turn a semantic / philosophical question into a scientific hypothesis.
 - o Hypothesis
 - A computer can play the game so well that one cannot (typically) distinguish its behaviour from that of a human.
 - Assumption
 - Showing that computers can think and behave as humans typically do is a *scientific* quest.
 - o Research agenda
 - To develop a program that *simulates* typical human behaviour
- Will Turing's quest yield a model of *intelligent search*?

Turing's legacy and AI: A second perspective

Al-as-symbolic-computation

- o Problem solving
 - A major driver of AI research
 - A paradigm example of thinking
- o Research agenda
 - Design "effective" problem-solving programs
- Do problem-solving programs "embody" models of *intelligent search*?

Problem solving: A synoptic view

Assumption

- Problem solving is essentially a *search* process.
 - Programs driven by search
- Problems are typically NP-complete.
 - Search space grows exponentially in the size of the problem.

Search process

- o Must resort to *heuristic strategies*
- o Two kinds of heuristic strategy
 - Intelligent processes
 - Stochastic processes

Conjecture

• Some Intelligent-search heuristics reflect human intelligence.

An example: 3-SAT problems

Definition

o 3-SAT formula

- A propositional formula in conjunctive normal form where each conjunct has exactly 3 literals (either a propositional variable or its negation)
- o Task
 - Given a 3-SAT formula $\sigma,\,$ determine whether there is an assignment to the variables such that σ is true?
 - This is an NP-complete problem (exponential worst-case complexity).
- Relevance of worst-cast complexity: Two claims
 - a. "... most randomly generated SAT instances are actually surprisingly easy to solve ... with the hardest instances only occurring in a rather small range of parameter settings ... "
 - b. "... many satisfiable instances in the hard region could still be solved quite efficiently solved ... based on local search techniques."
 - Carla P. Gomes, et al.: "Satisfiability Solvers", in F. Van Harmelen, et al., editors, *Handbook of Knowledge Representation*, Elsevier, 2008.

3-SAT problems: Complete systematic search

Davis-Putnam-Logemann-Loveland (DPLL)

- o Backtrack search over partial assignments
 - Given a 3-SAT formula σ and the empty partial assignment, extend the partial assignment successively by selecting an unassigned literal (branching step) and seeking an assignment to that literal that yields an assignment satisfying σ .
- DPLL remains the favoured basic procedure for <u>complete</u> search.
- Some heuristic enhancements
 - o Variable / value selection
 - Clause learning (learning no-goods)
 - o Conflict-directed backjumping
 - \circ Etc.

Search behaviour

Search behaviour of DPLL+heuristics

- Varies greatly,
 - depending on variable selection and the order of value selection.
- Unpredictable on problem instances, where the effectiveness of different heuristics may diverge greatly.

Questions

- Can the *behaviour* of heuristic search algorithms be studied "scientifically"?
- What do the *heuristics* contribute to an understanding of intelligent search?

3-SAT problems: Incomplete search methods

- Stochastic local search
 - Favoured basic procedure for incomplete 3-SAT search
- Examples

GSAT

- i. Start with randomly generated total assignment.
- ii. Change the assignment to a variable that minimizes the number of unsatisfied clauses.
- iii. Continue up to a fixed maximum of changes.
- iv. Repeat the process up to a fixed number of repeats.
- * C. Papadimitriou and K. Steiglitz: *Combinatorial Optimization.* Prentice-Hall Inc., 1982.
- * B. Selman, et.al.: "A new method for solving hard satisability problems". In 10th AAAI, 440.446, San Jose, 1992.

Walksat and weight (variants of GSAT)

- Start with randomly generated total assignment.
- Change the assignment to a variable that is selected according to certain CONDITIONS.
- As above in GSAT.
- * B. Selman, et al.: "Local search strategies for satisability testing", in D. S. Johnson and M. A. Trick, editors, *Cliques, Coloring, and Satisability: the Second DIMACS Implementation Challenge,* DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1996.

Search behaviour

- Exploring the behaviour / performance of 3-SAT algorithms
 - o Random problem generator G
 - Generate random 3-SAT formulas with *k* clauses on *n* variables as follows.
 - □ For each clause randomly select 3 distinct variables from the *n* variables and negate each variable with a probability 0.5.
 - Let Σ be the set of such formulas generated with variables k and n.
- Two observations arising from generator G
 - a) 3-SAT instances with few solutions typically coincide with a *peak* in search effort.
 - These are thought to be among the most difficult.
 - b) The search-peak typically coincides with a certain *clause / variable ratio*.
 - Search effort peaks at ratio 4.26.
 - That ratio appears to be same for all algorithms (though the height of the peak varies).

learn-SAT: A 3-SAT algorithm

Iearn-SAT

- A complete, non-systematic local search algorithm
 - Learning no-goods
 - Learning-by-merging
- Heuristics include,
 - Forward checking
 - Binary ordering
 - 3rd order learning

* Richards, E.Thomas and Barry Richards: "Nonsystematic search and no-good learning", *Journal of Automated Reasoning*, 24: 483-533, 2000.

Exploring the search behaviour of *learn-SAT*

o Three types of randomly generated problems

- i. Problems with a **single** solution (AIM problems)
 - * Asahiro, Y. et al.: "Random generation of test instances with controlled attributes", in D. S. Johnson and M. A. Trick, editors, *Cliques, Coloring, and Satisability: the Second DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science*, 1996.

ii. Unsolvable problems

- * Bayardo, R. J. and Schrag, R.: "Using look-back techniques to solve exceptionally hard SAT instances", in *Plroceedings of CP-96.*
- iii. Large-scale problems with many solutions
 - * DIMACS 1998 benchmarks (Center for Discrete Mathematics & Theoretical Computer Science), Rutgers University.

learn-SAT: Search comparison

- Two observations arising from generator G (recalled)
 - a) 3-SAT instances with few solutions typically coincide with a peak in search effort.
 - b) The search-peak typically coincides with a fixed *clause / variable ratio*.
 - Search effort peaks at ratio 4.26.
 - That ratio is the same for all algorithms (though the height of peak varies).

<u>Single-solution</u> problems

learn-SAT compared to *weight* (best *GSAT* variant then)

- Results are exceptions to (a).
 - <u>Some</u> single-solution problems (AIM)) are solved with relatively little search.
 - <u>Others</u> are solved only after a lot of search.
 - Algorithms vary widely.
- Results are exceptions to (b).
 - Hardest instances for *weight* (best version of GSAT) lie at clause/variable ratio 2.6.
 - Hardest instances of *learn-SAT* lie at clause/variable ratio 3.4.

learn-SAT: Search comparison (cont.)

- More "observations" arising from generator G
 - c) The search effort to resolve <u>unsolvable</u> 3-SAT problems typically peaks at ratio 4.26.
 - d) The search effort becomes progressively less at lower or higher ratios.
- <u>Unsolvable</u> problems

learn-SAT compared to *relsat* (complete search - see reference above)

- Results are exceptions to (c) and (d).
 - Hardest instances for *relsat* typically lie at clause/variable ratio 4, though sometimes at 3.
 - Hardest instances of *learn-SAT* lie sometimes at clause/variable 5, sometimes at 7.

Folklore of NP-complete problems

Two beliefs

- e) Non-systematic local search algorithms are,
 - 1. poorly suited to large-scale problems with few solutions,
 - 2. either inefficient or inapplicable to **unsolvable** problems.
- f) Complete backtrack-search techniques are <u>always</u> much more efficient than complete local search algorithms for,
 - unsolvable problems.

learn-SAT performance-comparisons

- Results challenge (e1) and (e2).
- Results challenge (f) at some clause/variable ratios.

Hypothesis and observations

On deriving insight search behaviour

- A. Hypothesis: Understanding search behaviour requires knowing at least 3 things.
 - 1. Some *characteristic parameters* of the problem,
 - E.g. constraint density (clause / variable ratio)
 - 2. Something about the *solution space*,
 - E.g. number and distribution of solutions
 - 3. Some measure that *connects* (1) and (2) to performance,
 - E.g. constraint checks
- B. Observations: For most problems, except perhaps for 3-SAT,
 - Little is known about (1) and (2).
 - Nothing is known about (3),
- On developing effective search programs
 - Observations
 - Programs are currently developed on a case-by-case, trial-and-error basis.
 - The cumulative experience has yielded only a programming "cookbook".

More observations

- Heuristic search is the "mechanism" of problem solving.
 - Problem solving is quintessentially
 - An intelligent activity
 - An expression of thinking.
- DPLL+heuristics and learn-SAT
 - o Both implement **search** that is,
 - Rational
 - Consistent
 - Relatively efficient
 - Both arguably **act intelligently** in solving 3-SAT problems.
 - Both are **far better** than any human at solving 3-SAT problems.
 - Challenge any attempt to abstract a model of how humans actually solve such problems.
- Question
 - What do these observations say about algorithms (programs) and *human intelligence*?

Two questions: Revisited

1. Can the *typical* performance of a *heuristic search algorithm* for an NP-complete problem be predicted?

• Not very likely, except perhaps with one exception

2. Is *intelligent search* characteristic of human problem solving?

- o Turing's approach
 - Intelligent searching is whatever **people** actually do when problem solving.
 - What people actually do is a matter for **empirical** investigation.
- The approach of AI-as-symbolic-computation
 - Intelligent searching is what **programs** ought to do to act intelligently in problem solving.
 - What a program ought to do to act intelligently seems a **philosophical** matter.