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Depends what a "computer" is 
• What inputs can it process? 
• What actions are 

permitted? 
• How are actions scheduled? 
• How do you define the 

output? 
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initialise : Config 

step : Config  Config 

run : Time  Config 

run 0  =  initialise 
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Still need to define 
• Config,  Time 
• initialise,  step 
• run t for arbitrary t : Time 
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Config = String x State 

Time = N 

initialise = (inputString, initialState) 

run (t + 1) = step (run t) 

String = N  Symbol 
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Config = Tape x Z x State 

Time = N 

initialise = (inputTape, 0, initialState) 

run (t + 1) = step (run t) 

Tape = Z  Symbol 
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World = Space  Symbol 

Config = World x Space x State 

initialise = (initWorld, initFocus, initState) 

shared 
structure 
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World = Space  Symbol 

Config = World x Space x State 

Space = N 

World = string 
Focus = head of string 
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World = Space  Symbol 

Config = World x Space x State 

Space = Z 

World = current tape 
Focus = head position 



initialise : Config 

step : Config  Config 

run : Time  Config 
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World = Space  Symbol 

Config = World x Space x State 

next : Time  Time 
run (next t) = step (run t) 

Terms in red 
still need to be 

defined 
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extract : [Config]  Output 

• Initialise the machine 
• Run the program 
• The output may depend on one 

or more of the configurations 
generated during execution 

output = extract [ run t  |  t : Time ] 



It depends on how we define various types and functions 
and whether they can be implemented 
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Space    Time    Symbol    Output 
 
World = Space  Symbol 
Config = World x Space x State 
 
step : Config  Config 
extract : [Config]  Output 
run : Time -> Config 

In particular, can 
we implement the 
structures Space 
and Time ? 
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Can we implement the structures Space and Time ? 

This cannot be answered in 
absolute terms, because we don't 
know enough about the universe. 

We can only discuss semantics 
relative to some particular 
theory of the physical universe 
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FSM:    Space = N         Time = N 

TM:      Space = Z           Time = N 

The Universe is continuous and 
infinite in space and time, so we 
can easily represent a Z-shaped 

collection of boxes and an N-

shaped sequence of clock ticks. 

BEWARE 
we cannot guarantee the result of any program 
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FSM:    Space = N         Time = N 

TM:      Space = Z           Time = N 

The Universe need not be infinite. 

Not a problem if we can embed N 
(and Z) in the representations of 

time and distance, eg if we model 
spacetime as a real manifold. 

Question: Can we sometimes guarantee correctness? 
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FSM:    Space = N         Time = N 

TM:      Space = Z           Time = N 

The Universe may or may not be 
infinite in space and time, and it 
may or may not be possible to 
embed N (or Z). 
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For TMs to be implemented, it 
must be possible to embed N 

and Z. 

 
Newtonian physics allows this, 
other versions may not, so is 
Newtonian TM-computation the 
best we can do? 
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extract : [Config]  Output 

• Initialise the machine 
• Run the program 
• The output may depend on one 

or more of the configurations 
generated during execution 

output = extract [ run t  |  t : Time ] 
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extract : [Config]  Output 

extract cfgs 
 is defined only when 

cfgs is eventually constant 
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extract : [Config]  Output 

can extract cfgs  be implemented 
when cfgs isn't eventually 

constant? 

If we could compute [run t | t : Time] in finite 
physical time, we could compute eg  

output = limt : Time  (extract [run s | s < t]) 
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run : Time -> Config calls 
step : Config -> Config where 
Config = World x Space x State 

• The effect of executing run depends on where the 
machine is in Space and Time 

extract : [Config] -> Output 

• Extract is defined on completed sequences. It doesn't 
depend on where or when it is computed. 

COMPUTER 

OBSERVER 



 Can we separate the observer O from the 
machine M? 

 Can it be done so that O sees the whole of M's 
configuration sequence? 

21 

QUITE POSSIBLY YES!  
 

See eg papers by Mark Hogarth 
for a discussion of computation 

in Malament-Hogarth spaces 



 Use a massive 
slowly-rotating 
black hole 
[Németi et al] 
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Image source: NASA / ESA / SSM-Newton 

 NB. If the TM can 
be implemented, 
so can this! 
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Even if next: Time -> Time is defined, it doesn't 
follow that time is ordered. It could be cyclic. 

• Consider embedding a finite 
sequence along a CTC [closed 
timelike curve]. 

• Assume that whenever a system 
returns to a point in the CTC, it 
is in the same configuration 
each time. 

NB. CTCs may not exist! 
 
Stannett (2011) [arXiv:1103.1127v1] 



 Computation typically loses information (eg we 
can't usually deduce x and y if we only know their 
product) 

 The information must be stored somewhere so that 
the initial state can be reconstructed 

 It is presumably stored in the CTC itself 
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Launch a TM along a CTC of length n. After n statements are 
executed, the machine is back in the initial state. 



 Suppose the TM is loaded with the program 
       x = 0; while (true) {x = 1} 

 This doesn't re-initialise after n steps but does halt 
 This program cannot be run on the machine, but the 

program would be runnable if the CTC were big enough 
to hold both the program and the biggest resulting tape 

 Therefore: the CTC isn't big enough to store both this 
program and its resulting tapes 
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Launch a TM along a CTC of length n. After n statements are 
executed, the machine is back in the initial state. 



 Suppose we use a first-order 
theory of physical spacetime 

 Even if we intend using R as 

the underlying number field, 
we can't be sure about it 

 There are other ordered fields 
for which the set of first-order 
theorems is identical to those 
over R 
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 Some of these ordered 
fields contain infinitesimals 

 They are necessarily of 
characteristic zero (since 
ordered), so we can define 
"integers" (n = 1 + … + 1) 

 Convergence doesn't 
always work as expected, 
eg 1 𝑛 → 0 can fail 
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 Suppose observed 
values always to belong 
to a field D… 

 … but the underlying 
field of the physical 
model is actually F 
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Example. We think of spacetime as a real 
manifold, but all measurements seem to be in Q 

• How are D and F 
related? 

• How does this 
affect the validity 
of measured 
outputs? 



 Computation is a physical process 
 What can be computed depends on the 

underlying model of physics 
 Some (entirely reasonable) models of physics 

seem to have the property that "if Turing 
computation is feasible, so is super-Turing 
computation" 

 Thinking about computation can suggest 
results concerning cosmology 

 Logical choices also matter 
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Feel free to email me for details of papers, etc 
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m.stannett@dcs.shef.ac.uk 

 


