
Regular Expressions and Automata
using Haskell

Simon Thompson
Computing Laboratory

University of Kent at Canterbury

January 2000

Contents
1 Introduction 2

2 Regular Expressions 2

3 Matching regular expressions 4

4 Sets 6

5 Non-deterministic Finite Automata 12

6 Simulating an NFA 14

7 Implementing an example 17

8 Building NFAs from regular expressions 18

9 Deterministic machines 20

10 Transforming NFAs to DFAs 23

11 Minimising a DFA 26

12 Regular definitions 27

1



1 Introduction
In these notes Haskell is used as a vehicle to introduce regular expressions, pattern
matching, and their implementations by means of non-deterministic and determin-
istic automata.

As part of the material, we give an implementation of the ideas, contained in a
set of files. References to this material are scattered through the text. The files can
be obtained by following the instructions in

This material is based on the treatment of the subject in [Aho et. al.], but provides
full implementations rather than their pseudo-code versions of the algorithms.

The material gives an illustration of many of the features of Haskell, includ-
ing polymorphism (the states of an NFA can be represented by objects of any
type); type classes (in practice the states need to have equality and an ordering
defined on them); modularisation (the system is split across a number of modules);
higher-order functions (used in finding limits of processes, for example) and other
features. A tutorial introduction to Haskell can be found in [Thompson].

The paper begins with definitions of regular expressions, and how strings are
matched to them; this also gives our first Haskell treatment also. After describing
the abstract data type of sets we define non-deterministic finite automata, and their
implementation in Haskell. We then show how to build an NFA corresponding
to each regular expression, and how such a machine can be optimised, first by
transforming it into a deterministic machine, and then by minimising the state space
of the DFA. We conclude with a discussion of regular definitions, and show how
recognisers for strings matching regular definitions can be built.

2 Regular Expressions
Regular expressions are patterns which can be used to describe sets of strings of
characters of various kinds, such as

the identifiers of a programming language – strings of alphanumeric charac-
ters which begin with an alphabetic character;

the numbers – integer or real – given in a programming language; and so on.

There are five sorts of pattern, or regular expression:

2



This is the Greek character epsilon, which matches the empty string.
is any character. This matches the character itself.
and are regular expressions.
and are regular expressions.
is a regular expression.

Examples of regular expressions include , and .
In order to give a more readable version of these, it is assumed that binds more

tightly than juxtaposition (i.e. ), and that juxtaposition binds more tightly
than . This means that will mean , not , and
that will mean , not .

A Haskell algebraic type representing regular expressions is given by

The statement at the end of the definition ensures that the type
is made to belong to the type class ; in other words the equality function is
defined over .

This definition and those which follow can be found in the file ;
this file contains the module , which will be included in other modules in
the system. The Haskell representations of and are

respectively. In order to shorten these definitions we will usually define constant
literals such as

so that the expressions above become

If we use the infix forms of and , and , they read

3



Functions over the type of regular expressions are defined by recursion over the
structure of the expression. Examples include

which prints a list of the literals appearing in a regular expression, and

which gives a printable form of a regular expression. Note that is used to
represent epsilon in ASCII. The type can be made to belong to the class
thus:

or indeed an instance could be derived automatically (like earlier).

Exercises

1. Write a more readable form of the expression .

2. What is the unabbreviated form of ?

3 Matching regular expressions
Regular expressions are patterns. We should ask which strings match each regular
expression.

4



The empty string matches epsilon.

The character matches the pattern , for any character .

The string will match if matches either or (or
both).

The string will match if can be split into two sub-
strings and , , so that matches and

matches .

The string will match if can be split into zero or more
substrings, , each of which matches
. The zero case implies that the empty string will match for
any regular expression .

This can be implemented in Haskell, in the module . The first three cases
are a simple transliteration of the definitions above.

In the case of juxtaposition, we need an auxiliary function which gives the list
containing all the possible ways of splitting up a list.

For example, is . A
string will match if at least one of the splits gives strings which
match and .

The final case is that of . We can explain as either or as followed
by . We can use this to implement the check for the match, but it is problematic

5



when can be matched by . When this happens, the match is tested recursively on
the same string, giving an infinite loop. This is avoided by disallowing an epsilon
match on – the first match on has to be non-trivial.

is defined like but so as to exclude the split .

Exercises

3. Argue that the string matches and that the string matches
.

4. Why does the string not match ?

5. Give informal descriptions of the sets of strings matching the following regular
expressions.

6. Give regular expressions describing the following sets of strings

All strings of s and s containing at most two s.

All strings of s and s containing exactly two s.

All strings of s and s of length at most three.

All strings of s and s which contain no repeated adjacent characters, that
is no substring of the form or .

4 Sets
A set is a collection of elements of a particular type, which is both like and unlike
a list. Lists are familiar from Haskell, and examples include

6



Figure 1: The functions in the set abstract data type

Each of these lists is different – not only do the elements of a list matter, but also
the order in which they occur, and their multiplicity (the number of times each
element occurs).

In many situations, order and multiplicity are irrelevant. If we want to talk
about the collection of people coming to our birthday party, we just want the names
– we cannot invite someone more than once, so multiplicity is not important; the
order we might list them in is also of no interest. In other words, all we want to
know is the set of people coming. In the example above, this is the set containing

, and .
Sets can be implemented in a number of ways in Haskell, and the precise form

is not important for the user. It is sensible to declare the type as an abstract data
type, so that its implementation is hidden from the user. This is done by failing to
export the constructor of the type which implements sets. Details of this mecha-
nism are given in Chapter 16 of [Thompson], which also discusses the particular
implementation given here in rather more detail. The definition is given in the
module which is defined in the file . The heading of the module is
illustrated in Figure 1.

7



The implementation we have given represents a set as an ordered list of ele-
ments without repetitions, wrapped up by the constructor . For instance, the
set of birthday party attendees will be given by

The implementation of the type is hidden because the constructor for
this type is not exported from the module.

Since the lists are ordered we expect to have an ordering over the type of set
elements; it is this requirement that gives rise to the constraint in many of
the set-manipulating functions. The individual functions are described and imple-
mented as follows.

The set is the empty list

and is the singleton set, consisting of the single element

Figure 2 defines the functions which give the union, intersec-
tion and difference of two sets. The union consists of the elements occurring in
either set (or both), the intersection of those elements in both sets and the differ-
ence of those elements in the first but not the second set. (Note also that
here is a redefinition of the function with the same name from the .)

These definitions each follow the same pattern: a function like implements
the operation over lists, and the top-level function lifts this to operate over
the lists ‘wrapped’ by the constructor .

The operation tests whether is a member of the set . Note
that this is an optimisation of the function over lists; since the list is ordered,
we need look no further once we have found an element greater than the one we
seek.

tests whether is a subset of ; that is whether every element of
is an element of .

8



Figure 2: Set operations

9



tests whether two sets are equal.

and an instance declaration for over makes into over .
The functions , and behave like , and
except that they operate over sets. is a synonym for .

The operation turns a list into a set

gives a printable version of a set, one item per line, using the function
to give a printable version of each element.

10



gives the number of elements in a set,

turns a set into an ordered list of the elements of the set

Obviously this breaks the abstraction barrier, but it is necessary in some situations
to do this.

The function gives the ‘limit’ of the sequence

that is the first element in the sequence whose successor is equal, as a set, to the el-
ement itself. In other words, keep applying until a fixed point or limit is reached.

Exercises
7. Define the function which
returns the set of all subsets of a set. What context information is required on the
type ?

8. How would you define the functions

which return the union and intersection of a set of sets? What contexts are required
on the types?

9. Can infinite sets (of numbers, for instance) be adequately represented by ordered
lists? Can you tell if two infinite lists are equal, for instance?

10. The abstract data type can be represented in a number of different ways.
Alternatives include: arbitrary lists (rather than ordered lists without repetitions),
and boolean valued functions, that is elements of the type . Give im-
plementations of the type using these two representations.

11



5 Non-deterministic Finite Automata
A Non-deterministic Finite Automaton or NFA is a simple machine which can be
used to recognise regular expressions. It consists of four components

A finite set of states, .

A finite set of moves.

A start state (in ).

A set of terminal or final states (a subset of ).

In the Haskell module this is written

This has been represented by an algebraic type rather than a 4-tuple simply for
readability. The type of states can be different in different applications, and indeed
in the following we use both numbers and sets of numbers as states.

A move is between two states, and is either given by a character, or an .

The first example of an NFA, called , follows.

The states are , with the start state indicated by an incoming arrow, and
the final states indicated by shaded circles. In this case there is a single final state,
. The moves are indicated by the arrows, marked with characters and in this
case. From state there are two possible moves on symbol , to and to remain at
. This is one source of the non-determinism in the machine.
The Haskell representation of the machine is

12



A second example, called , is illustrated below.

The Haskell representation of this machine is

This machine contains two kinds of non-determinism. The first is at state , from
which it is possible to move to either or on reading . The second occurs at
state : it is possible to move ‘invisibly’ from state to state on the epsilon move,

.
The Haskell code for these machines together with a function to

print an nfa whose states are numbered can be found in the module .
How do these machines recognise strings? A move can be made from one state

to another either if the machine contains or if the next symbol to

13



be read is, say, and the machine contains a move . A string will
be accepted by a machine if there is a sequence of moves through states of the
machine starting at the start state and terminating at one of the terminal states –
this is called an accepting path. For instance, the path

is an accepting path through for the string . This means that the machine
accepts this string. Note that other paths through the machine are possible for this
string, an example being

All that is needed for the machine to accept is one accepting path; it does not affect
acceptance if there are other non-accepting (or indeed accepting) paths. More than
one accepting path can exist. Machine accepts the string by both

and

A machine will reject a string only when there is no accepting path. Machine
rejects the string , since the two paths through the machine labelled by fail to
terminate in a final state:

Machine rejects the string since there is no path through the machine labelled
by : after reading the machine can be in state , or , from none of these can
an move be made.

6 Simulating an NFA
As was explained in the last section, a string is accepted by a machine when
there is at least one accepting path labelled by through , and is rejected by
when no such path exists.

The key to implementation is to explore simultaneously all possible paths
through the machine labelled by a particular string. Take as an informal exam-
ple the string and the machine . After reading no input, the machine can only
be in state . On reading an there are moves to states and ; however this is not
the whole story. From state it is possible to make an -move to state , so after
reading the machine can be in any of the states .

14



On reading a , we have to look for all the possible moves from each of the
states . From we can move to , from to and from to – no
-moves are possible from the states , and so the states accessible after
reading the string are . Is this string to be accepted by ? We accept it
exactly if the set contains a final state – it contains both and , so it is accepted.
Note that the states accessible after reading are ; this set contains no
final state, and so the machine rejects the string .

There is a general pattern to this process, which consists of a repetition of

Take a set of states, such as , and find the set of states accessible by
a move on a particular symbol, e.g. . In this case it is the set . This
is called in the module .

Take a set of states, like , and find the set of states accessible from the
states by zero or more -moves. In this example, it is the set . This
is the -closure of the original set, and is called in .

The functions and are composed in the function ,
and this function is iterated along the string by the function of the module

.

Implementation in Haskell

We discuss the development of the function

top-down. Iteration along a string is given by

The first argument, , is the step function, taking a set and a character to the states
accessible from the set on the character. The second argument, , is the starting
state, and the final argument is the string along which to iterate.

How does the function operate? If given an empty string, the start state is the
result. If given a string , the function is called again, with the tail of the
string, , and with a new starting state, , which is the result of applying
the step function to the starting set of states and the first character of the string.
Now to develop .

15



is derived from simply by suppling its machine argument ,
similarly is derived from the machine , using the functions
and . All these functions are defined in the module. We dis-
cuss their definitions now.

Next, we examine ,

The essential idea here is to run through the elements of the set and the set of
moves, looking for all -moves originating at . For each of these, the result
of the move, , goes into the resulting set.

The definition uses list comprehensions, so it is necessary first to the
sets and into lists, and then to convert the list comprehension into a set by
means of .

16



The essence of is to take the limit of the function which adds to a set of
states all those states which are accessible by a single -move; in the limit we get a
set to which no further states can be added by -transitions. Adding the states got
by single -moves is accomplished by the function and the auxiliary definition

which resembles the construction of .

7 Implementing an example
The machine is illustrated by

Exercise

11. Give the Haskell definition of the machine .

The -closure of the set is the set . Looking at the definition of
above, the first application of the function to gives the set ;

applying to this gives . Applying to this set gives the same set,
hence this is the value of here. The set of states with which we start the
simulation is therefore . Suppose the first input is ; applying
reveals only one move, from to . Taking the closure of the set gives the set

. A move from here is only from to ; closing under -moves
gives . An move from here is possible in two ways: from to
and from to ; closing up gives . Is the string

therefore accepted by ? Yes, because is a member of . This
sequence can be illustrated thus

17



Exercise

12. Show that the string is not accepted by the machine .

8 Building NFAs from regular expressions
For each regular expression it is possible to build an NFA which accepts exactly
those strings matching the expression. The machines are illustrated in Figure 3.

The construction is by induction over the structure of the regular expression:
the machines for an character and for are given outright, and for complex ex-
pressions, the machines are built from the machines representing the parts. It is
straightforward to justify the construction.

Any path through must be either a path through or a path
through (with at the start and end.

Any path through will be a path through followed by a path
through .

Paths through are of two sorts; the first is simply an , others begin
with a path through , and continue with a path through . In other
words, paths through go through zero or more times.

The machine for the pattern is given by

18



Figure 3: Building NFAs for regular expressions

19



The Haskell description of the construction is given in BuildNfa. At the top level
the function

does the recursion. For the base case,

The definition of is similar. In the other cases we define

in which the functions and so on build the machines from their components
as illustrated in Figure 3.

We make certain assumptions about the NFAs we build. We take it that the
states are numbered from , with the final state having the highest number. Putting
the machines together will involve adding various new states and transitions, and
renumbering the states and moves in the constituent machines. The definition of

is given in Figure 4, and the other functions are defined in a similar way. The
function renumbers states and renumbers moves.

9 Deterministic machines
A deterministic finite automaton is an NFA which

contains no -moves, and

has at most one arrow labelled with a particular symbol leaving any given
state.

The effect of this is to make operation of the machine deterministic – at any stage
there is at most one possible move to make, and so after reading a sequence of
characters, the machine can be in one state at most.

20



Figure 4: The definition of the function

21



Implementing a machine of this sort is much simpler than for an general NFA:
we only have to keep track of a single position. Is there a general mechanism
for finding a DFA corresponding to a regular expression? In fact, there is a general
technique for transforming an arbitrary NFA into a DFA, and this we examine now.

The conversion of an NFA into a DFA is based on the implementation given in
Section 6. The main idea there is to keep track of a set of states, representing all
the possible positions after reading a certain amount of input. This set itself can be
thought of as a state of another machine, which will be deterministic: the moves
from one set to another are completely deterministic.

We show how the conversion works with the machine . The start state of the
machine will be the closure of the set , that is

Now, the construction proceeds by finding the sets accessible from by moves on
and on – all the characters in the alphabet of the machine . These sets are

states of the new machine; we then repeat the construction with these new states,
until no more states are produced by the construction.

From on the symbol we can move to from . Closing under -moves we
have the set , which we call

In a similar way, from on we have

Our new machine so far looks like

We now have to see what is accessible from and . First .

which is another new state. The process of generating new states must stop, as there
is only a finite number of sets of states to choose from .
What happens with a move from ?

22



This gives the partial machine

Similarly,

which completes the construction of the DFA

Which of the new states is final? One of these sets represents an accepting state
exactly when it contains a final state of the original machine. For this is , which
is contained in the set only. In general there can be more than one accepting state
for a machine. (This need not be true for NFAs, since we can always add a new
final state to which each of the originals is linked by an -move.)

10 Transforming NFAs to DFAs
The Haskell code to covert an NFA to a DFA is found in the module ,
and the main function is

23



A deterministic version of an NFA with numeric states is defined in two stages,
using

does the conversion to the deterministic automaton with sets of num-
bers as states, replaces sets of numbers by numbers (rather than capital
letters, as was done above). States are replaced by their position in a list of states –
see the file for more details.

The function is a special case of the function

The process of adding state sets is repeated until no more sets are added. This is a
version of taking a limit, given by the function, which acts as the usual
limit function, except that it checks for equality of NFAs as collections of sets.

The start machine, , consists of a single state, the -closure of the start
state of the original machine. takes a partially built DFA
and adds the state sets of accessible by a single move on any of the characters
in , the alphabet of .

24



This involves iterating over the state sets in the partially built DFA, which is done
using . will add to all the moves
from state set over the alphabet .

In turn, iterates along the alphabet, using .
will add to the moves from state set on character .

The new state set added by is defined using the function first
defined in the simulation of the NFA.

25



11 Minimising a DFA
In building a DFA, we have produced a machine which cam be implemented more
efficiently. We might, however, have more states in the DFA than necessary. This
section shows how we can optimise a DFA so that it contains the minimum number
of states to perform its function of recognising the strings matching a particular
regular expression.

Two states and in a DFA are distinguishable if we can find a string
which reaches an accepting state from but not from (or vice versa). Otherwise,
they can be treated as the same, because no string makes them behave differently
— putting it a different way, no experiment makes the two different.

How can we tell when two states are different? We start by dividing the states
into two partitions: one contains the accepting states, and the other the remainder,
or non-accepting states. For our example, we get the partition

Now, for each set in the partition, we check whether the elements in the set can be
further divided. We look at how each of the states in the set behaves relative to the
previous partition. In pictures,

This means that we can re-partition thus:

We now repeat the process, and examine the only set which might be further sub-
divided, giving

26



This shows that we don’t have to re-partition any further, and so that we can stop
now, and collapse the two states and into one, thus:

The Haskell implementation of this process is in the module .

Exercises

13. For the regular expression , find the corresponding NFA.

14. For the NFA of question 1, find the corresponding (non-optimised) DFA.

15. For the DFA of question 2, find the optimised DFA.

12 Regular definitions
A regular definition consists of a number of named regular expressions. We are
allowed to use the defined names on the right-hand sides of definitions after the
definition of the name. For example,

27



Because of the stipulation that a definition precedes the use of a name, we can
expand each right-hand side to a regular expression involving no names.

We can build machines to recognise strings from a number of regular expres-
sions. Suppose we have the patterns

We can build the three NFAs thus:

and then they can be joined into a single machine, thus

In using the machine we look for the longest match against any of the patterns:

28



In the example, the segment of matches the pattern .

Exercises

16. Fully expand the names and given above.

17. Build a Haskell program to recognise strings according to a set of regular
definitions, as outlined in this section.

Bibliography
[Aho et. al.] Aho, A.V., Sethi, R. and Ullman, J.D., Compilers: Principles, Tech-
niques and Tools, Addison-Wesley, Reading, MA, USA, 1986.

[Thompson] Thompson, S., Haskell: The Craft of Functional Programming, sec-
ond edition, Addison-Wesley, 1999.

29


