Refactoring for Functional Programs

Simon Thompson, University of Kent

What have we learned about tool building?

Simon Thompson, University of Kent

- y
|4 -
-/
| — 1 2
= J!!'.\ Lk

Tf;omas A|:s

4 N
Daniel Horpacsi Judit KGszegi Nik Sultana

Scott Owens Reuben Rowe Hugo Feree Chris Brown

Andreas Reuleaux

Claus Reinke

Pablo Lamela

Gyorgy Orosz Melinda Toth Stephen Adams @ Jane Street

Science
Engineering

Human factors

Science Usability & Trust

Engineering Automation

Human factors Languages

What do you mean by “refactoring’’?

3 EEm src/EqSolve.hs View v

33 @@ -187,11 +187,12 @@ splitOrConvert (m, r, c) sol =

Nothing -> Nothing

solvelLEIntAux :: Eq a => Eq b => [([[Rational]], [a], [b])] -> Maybe [(b, Integer)]
196 +solveLEIntAux [] = Nothing
solveLEIntAux (h:t) =
case splitOrConvert h rSol of
Just (Left nh) -> solveLEIntAux (nub (t ++ nh))
Just (Right s) -> Just s
194 - Nothing -> Nothing
195 &+ Nothing -> solveLEIntAux t
where

rSol = solvelLE h

static_assert

functional/overloaded_function I

any functional/hash timer
tti
utility/result_of B
functional
ratio
locale
functional/forward N chrono function_types -
N flyweight
AN ptr_container local_function
interprocess
lockfree system
utility/identity_type conversion
gil pool larnbda unordered
. ignals2
icl frove s'gnals numeric/ublas
date_time
wave scope_exit
asio thread
statechart atomic property_tree polygon
functional/factory intrusive
coroutine
typeof log)
preprocessor variant
| math/common_factor IL multiprecision
— circular_buffer function
type_traits . phoenix multi_index
exception assign
program_options integer
X geometry
config mpl
utilit ’ spirit ibili
! container tuple ° serialization compatibility
context
call_traits
math graph
) bimap
filesystemn iterator
mpi python
range
) smart_ptr
operators multi_array —P o
bind lexical_cast) property_map
— fusion
algorithm/string
optional i
regex P parameter signals
. . disjoint_sets
compressed_pair nurmeric/conversion |
J test
units
Xpressive
algorithm random proto
utility/swap tri
iostreams numeric/odeint
logic/tribool
foreach array
msm
heap format dynamic_bitset
ref
uuid
numeric/interval
accumulators
type_erasure
cre
math/octonion
math/special_functions
utility/enable_if
math/quaternion
algorithm/minmax
concept_check
rational
tokenizer

bind/mem_fn

visit meetingcpp.com for updates

>0

-~

S
»

:
. \ { ' I | » Sheda Terry/Sclence Phota Library

What does “refactoring” mean?

Minor edits or wholesale changes
Something local or of global scope
Just a general change in the software ...

... or something that changes its
structure, but not its functionality?

Something chosen by a programmer ...

... or chosen by an algorithm!?

Expression-level refactorings

HLINT MANUAL

by Neil Mitchell

HLint is a tool for suggesting possible improvements to Haskell code. These suggestions include ideas such as using alternative functions, simplifying code
and spotting redundancies. This document is structured as follows:

1. Installing and running HLint
2. FAQ
3. Customizing the hints

Acknowledgements

This program has only been made possible by the presence of the haskell-src-exts package, and many improvements have been made by Niklas Broberg
in response to feature requests. Additionally, many people have provided help and patches, including Lennart Augustsson, Malcolm Wallace, Henk-Jan van
Tuyl, Gwern Branwen, Alex Ott, Andy Stewart, Roman Leshchinskiy and others.

Cleaning up Erlang Code is a Dirty Job
but Somebody’s Gotta Do It

Thanassis Avgerinos Konstantinos Sagonas
School of Electrical and Computer Engineering, School of Electrical and Computer Engineering,
National Technical University of Athens, Greece National Technical University of Athens, Greece

ethan@softlab.ntua.gr kostis@cs.ntua.gr

Expression-level refactorings

HLINT MANUAL

by Neil Mitchell

HLint is a tool for suggesting possible improvements to Haskell code. These suggestions include ideas such as using alternative functions, simplifying code
and spotting redundancies. This document is structured as follows:

1. Installing and running HLint
2. FAQ
3. Customizing the hints

Acknowledgements
This program has only been made possible by the presence of the haskell-src-exts package, and many improvements have been made by Niklas Broberg

in response to feature requests. Additionally, many people have provided help and patches, including Lennart Augustsson, Malcolm Wallace, Henk-Jan van
Tuyl, Gwern Branwen, Alex Ott, Andy Stewart, Roman Leshchinskiy and others.

Sample.hs:5:7: Warning: Use and
Found
foldrl (&&)

Why not
and

Note: removes error on []

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.
Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, ...

Generalising a function ... extracting a definition.

Function extraction

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, 0} -> loop_a(Q);
{msg, Msg, N} ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},
loop_a()
end.

in Erlang

Function extraction

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, 0} -> loop_a(Q);
{msg, Msg, N} ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},
loop_a()
end.

in Erlang

Let’s turn this into a function

Function extraction in Erlang

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, @} -> loop_aQ);
{msg, Msg, N} ->
body(Msg,N),

loop_a()
end.

body(Msg,N) ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1},

Function extraction in Erlang

Extension and reuse

loop_a() ->
receilve
stop -> ok;
{msg, _Msg, @} -> loop_aQ);
{msg, Msg, N} ->
body(Msg,N),

loop_a()
end.

body(Msg,N) ->
10:format("ping!~n"),
timer:sleep(500),
b ! {msg, Msg, N - 1}.

What sort of refactoring interests us?

Changing a type representation.
Changing a library API.

Module restructuring: e.g. removing inclusion loops.

Refactoring tools

Refactoring

Transformation

Refactoring

Transformation

Refactoring

Transformation + Pre-condition

How to refactor?

By hand ... using an editor

Flexible ... but error-prone.

Infeasible in the large.
Tool-supported

Handles transformation and analysis.
Scalable to large-code bases: module-aware.

Integrated with tests, macros, ...

-module(foo).
—-export([foo/1,f00/01).

foo() —> spawn(foo,foq, [fool).

foo(X) —> io:format(X).

-module(foo).
—-export([foo/1,f00/0]).

foo() —> spawn(foo,foq, [fool).

foo(X) —> io:format(X).

text

AST

-module(foo).
—-export([foo/1,f00/0]).

foo() —> spawn(foo,foq, [fool).

foo(X) —> io:format(X).

text

AST

Analyse

AAST

text

AST

Analyse

AAST

Transform

AAST

-module(foo).
—-export([foo/1,f00/0]).

foo() —> spawn(foo,foq, [fool).

foo(X) —> io:format(X).

Analyse

Transform

—-module(foo).
—-export([foo/1,f00/01).

foo() —> spawn(foo,foq, [fool).

foo(X) —> io:format(X).

text

AST

AAST

AAST

text

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.
Separation of concerns

Point-wise operation ...

... and tree traversal

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

Haskell Erlang

Strongly typed Weakly typed
Lazy Strict
Pure + Monads Some side-effects

Complex type system Concurrency
Layout sensitive Macros and idioms

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed

Lazy

Pure + Monads
Complex type system
Layout sensitive

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module,

API|, DSL, context.
Naive strategic prog

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed
Lazy
Pure + Monads

Complex type system

Layout sensitive

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, ...
Strategic prog

Erlang

Weakly typed
Strict

Some side-effects
Concurrency
Macros and idioms

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module,

API|, DSL, context.
Naive strategic prog

OCaml

Strongly typed

Strict

Refs etc and i/o.
Modules + interfaces
Scoping/modules

ROTOR

(O)Caml

OCaml compiler

So far: renaming &
dependency theory.
Derived visitors

Wrangler in a nutshell

Automate the simple things,and ...

... provide decision support tools otherwise.
Embed in common IDEs: emacs, eclipse, ...
Handle full language, multiple modules, tests, ...
Faithful to layout and comments.

Build in Erlang and apply the tool to itself.

Wrangler

Basic refactorings: structural, macro,

process and test-framework related

Wrangler

c
o=
O >
o O
o E
o Y
Q

c 2
0O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

API: define new
refactorings

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

DSL for composite
refactorings

API: define new
refactorings

and removal
Module structure
Improvement

C
O
)
@)
O,
)
)
O
)
C
O
@,

Basic refactorings: structural, macro,
process and test-framework related

® Aquamacs File Edit Options Tools m Erlang Window Help

G e 3D

e 00 Refactor >
New Open Recent Save Print — . Inspector >
[) *scratch* © test_camel_case.erl
N . Undo AC AW

-module(test_camel_case). -

Similar Code Detection >
-export([thisIsAFunction/2, Module Structure B

thisIsAnotherFunction/
Skeletons >

Customize Wrangler

thisIsAFunction(X, Y) ->
this_is_a_function(X, Y).

Version

this_is_a_function(X, Y) ->
thisIsAnotherFunction(X, Y).

thisIsAnotherFunction(X, Y) ->
X+Y.

-:--- test_camel_case.erl All(13,0) (Erlang EXT Flymake)

Rename Variable Name ACAWRYV
Rename Function Name ACAWRF
Rename Module Name ACAWRM
Generalise Function Definition AC AG

Move Function to Another Module ACAWM
Function Extraction ACAWNF
Introduce New Variable ACAWNYV
Inline Variable AC AW |

Fold Expression Against Function ACAWFF
Tuple Function Arguments ACAWT
Unfold Function Application ACAWU
Introduce a Macro ACAWNM
Fold Against Macro Definition ACAWFM
Refactorings for QuickCheck >
Process Refactorings (Beta) >

Normalise Record Expression
Partition Exported Functions
gen_fsm State Data to Record

gen_refac Refacs >

gen_composite_refac Refacs

My gen_refac Refacs
My gen_composite_refac Refacs

vy

Apply Adhoc Refactoring
Apply Composite Refactoring

Add/Remove Menu Items

Wrangler started.

£ DO WS TA P WG

-t L%

> .
l.‘.ﬁfﬁ

BN |~

@ = = 4« &EF0:15 0932 = Q
E‘ Macintosh HD

igital Theses.doc
(TEPerrataihtml
opLS
nreadscope.pdf

deas March 2012:rtt

vorking Togethercall:
ydf

LVMDesignipdt

| N Review 2011

P7 2013 ICT draft.
vorkprogipdf

| K ReF)
ISTPROWESS CA [s 101035
Swap Function Arguments
Specialise A Function
Remove An Import Attribute
Remove An Argument
Keysearch To Keyfind
Apply To Remote Call
Add To Export

Add An Import Attribute

;FBIB

ummer

S OISO T - ik

Analyses needed ...

Static semantics
Types
Modules

Side-effects

Analyses needed ...

Static semantics Atoms
Types Process structure
Modules Macros

Side-effects Conventions and frameworks

Feasible

Desirable Viable

dschool.stanford.edu

Feasible

Desirable Sustainable

A

- e

/“’;.‘

n
R
'/"'l',- r/_ ,.\ B
oS A T
'_.,}.-_K.v.

Renaming

What is in a name?

Resolving names requires not just the static structure ...
... but also types (polymorphism, overloading) and modules.
Beyond the wits of regexps.

Leverage other infrastructure or the compiler.

Types sneak in ...

f x = (xxx + 42) + (x + 42)

f xy=(xxx +vy) + (x +y)

Types sneak in ...

f x = (xxx + 42) + (x + 42)

f xy=(xxx +vy) + (x +y)

funny = length ([[Truell]l ++ []) +
length ([Truel ++ [1)

funny xs = length ([[Truel] ++ xs) +
length ([True]l ++ xs)

... as do different sorts of atoms

—-module(foo).
—export([foo/1,foo/0]).

foo() —> spawn(foo, foo, [foo]).

foo(X) — io:format("~w", [X]).

And some peculiarities

f1(P) —>
recelive
{ok, X} -> P!thanks;
{error,_} — Pl!grr
end,
P!{value, X}.

And some peculiarities

f1(P) —
recelve
{ok, X} -> P!thanks;
{error, _} —> Pl!grr
end,
P!{value, X}.

f2(P) —>
recelive
{ok, X} —> P!thanks;
{error,X} —> P!grr
end,
P!{value, X}.

Abandon any idea

’) N :
1
NI e
N .
=

M

OCaml’s module system

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =
(X.to_string x) ~ " " * (Y.to_string y)
end

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =
(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

OCaml modules

module type Stringable = sig

type t
val to_string : t -> string
end

module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end
module P = Pair(Int)(Pair(String) (Int)) ;;
print_endline (P.to_string (0, ("!'=", 1))) ;;

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end
module P = Pair(Int)(Pair(String) (Int)) ;;
print_endline (P.to_string (0, ("!'=", 1))) ;;

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end
module P = Pair(Int)(Pair(String) (Int)) ;;
print_endline (P.to_string (0, ("!'=", 1))) ;;

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

module P = Pair(Int) |[Pair(String) (Int)) ;;
print_endline (P.to_string (0, ="""1))) ;;

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

module P = Pair(Int) |[Pair(String) (Int)) ;;
print_endline (P.to_string (0, ="""1))) ;;

OCaml modules

module type Stringable = sig
type t
val to_string : t -> string
end
module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

module P = Pair(Int) |[Pair(String) (Int)) ;;
print_endline (P.to_string (0, ="""1))) ;;

OCaml modules

module type Stringable = sig

type t
val to_string : t -> string
end

module Pair(X : Stringable)(Y : Stringable) = struct
type t = X.t * Y.t
let to_string (x, y) =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

module P =|Pair(Int) (Pair(String) (Int))| ;;

print_endline (P.to_string (0, '="1))) 55

OCaml modules

module type Stringable = sig
type t
val to_string 4 t -> string

end
module Pair(X : Stringable)(Y : Stringable))= struct
type t = X.t * Y.t

let to_string vy =

(X.to_string x) ~ " " * (Y.to_string y)
end
module Int = struct
type t = int
let to_string 1 = int_to_string 1
end

module String = struct
type t = string
let to_string s = s
end

module P = Pair(Int) (Pair(String)(Int))| ;;

print_endline (P.to_string (0, '="1))) 55

PLDI 2019

Theory of naming dependency:
value extensions.

Characterise renamings by
value extension kernels.

Abstract renaming semantics,
proved adequate:

“Iwo equal abstractions have
equal concrete versions”

Formalised using Coaq.

Characterising Renaming within OCaml’s Module
System: Theory and Implementation

Reuben

N. S. Rowe

Hugo Férée

Simon]J.

Thompson

Scott Owens
School of Computing, University of Kent, Canterbury, UK
{r.n.s.rowe,h.feree,s.j.thompson,s.a.owens}@kent.ac.uk

Abstract

We present an abstract, set-theoretic denotational semantics
for a significant subset of OCaml and its module system,
allowing to reason about the correctness of renaming value
bindings. Our semantics captures information about the bind-
ing structure of programs, as well as about which declara-
tions are related by the use of different language constructs
(e.g. functors, module types and module constraints). Correct
renamings are precisely those that preserve this structure.
We show that our abstract semantics is sound with respect to
a (domain-theoretic) denotational model of the operational
behaviour of programs, and that it allows us to prove vari-
ous high-level, intuitive properties of renamings. This formal
framework has been implemented in a prototype refactoring
tool for OCaml that performs renaming.

CCS Concepts « Theory of computation — Abstrac-
tion; Denotational semantics; Program constructs; Func-
tional constructs; « Software and its engineering — Soft-
ware maintenance tools.

Keywords Adequacy, dependencies, modules, module types,
OCaml, refactoring, renaming, semantics.

ACM Reference Format:

Reuben N. S. Rowe, Hugo Férée, Simon]J. Thompson, and Scott
Owens. 2019. Characterising Renaming within OCaml’s Module
System: Theory and Implementation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’19), June 22-26, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3314221.
3314600

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22-26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. .. $15.00
https://doi.org/10.1145/3314221.3314600

1 Introduction

Refactoring is the process of changing how a program works
without changing what it does, and is a necessary and on-
going process in both the development and maintenance of
any codebase [12]. Whilst individual refactoring steps are
often conceptually very simple, applying them in practice
can be complex, involving many repeated but subtly varying
changes across the entire codebase. Moreover refactorings
are, by and large, context sensitive, meaning that carrying
them out by hand can be error-prone and the use of general-
purpose utilities (even powerful ones such as grep and sed)
is only effective up to a point.

This immediately poses a challenge, but also presents an
opportunity. The challenge is how to ensure, or check, a
proposed refactoring does not change the behaviour of the
program (or does so only in very specific ways). The opportu-
nity is that since refactoring is fundamentally a mechanistic
process it is possible to automate it. Indeed, this is desirable
in order to avoid human-introduced errors. Our aim in this
paper is to outline how we might begin to provide a solution
to the dual problem of specifying and verifying the correct-
ness of refactorings and building correct-by-construction
automated refactoring tools for OCaml [22, 31].

Renaming is a quintessential refactoring, and so it is on
this that we focus as a first step. Specifically, we look at re-
naming the bindings of values in modules. One might very
well be tempted to claim that, since we are in a functional
setting, this is simply a-conversion (as in A-calculus) and
thus trivial. This is emphatically not the case. OCaml utilises
language constructs, particularly in its module system, that
behave in fundamentally different ways to traditional vari-
able binders. Thus, to carry out renaming in OCaml correctly,
one must take the meaning of these constructs into account.

Some of the issues are illustrated by the example program
in fig. 1 below. This program defines a functor Pair tak-
ing two modules as arguments, which must conform to the
Stringable module type. It also defines two structures Int
and String. It then uses these as arguments in applications
of Pair, the result of which is bound as the module P. To
rename the to_string function in the module Int correctly,
we must take the following into account.

950

Clone detection

Duplicate code considered harmful

It's a bad smell ...
increases chance of bug propagation,
increases size of the code,
increases compile time, and,
increases the cost of maintenance.

But ... it's not always a problem.

What is similar code?

(X+3)+4 4+ (5-(3*X))

What is similar code?

X+Y

v W,

~ AN

(X+3)+4 44 (5-(3*X))

What is similar code?

X+Y
(X+3)+4 44 (5-(3*X))

The anti-unification gives the (most specific)

common generalisation.

What is similar code?

X+Y
(X+3)+4 44 (5-(3*X))

£f(Z2,W) -> X+Y.

The anti-unification gives the (most specific)

common generalisation.

What is similar code?

X+Y
£(X+3,4) £(4,5-(3*X))

£f(Z2,W) -> X+Y.

The anti-unification gives the (most specific)

common generalisation.

What makes a clone (in Erlang)?

Thresholds
Number of expressions
Number of tokens
Number of variables introduced

Similarity = min;=|_n(size(Gen)/size(Ei))

What makes a clone (in Erlang)?

Thresholds ... and their defaults
Number of expressions = 5
Number of tokens = 20
Number of variables introduced < 4

Similarity = min;i=|.n(size(Gen)/size(E;)) = 0.8

Clone detection and removal

Find a clone, name it and its parameters, and eliminate.

What could go wrong!?

What could go wrong!

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down!

Widows and orphans, sub-clones, premature generalisation, ...

What could go wrong!

new_fun(FilterName, Newvar_1l) -> _
Filterkey = ?SMM_CREATE_FILTER_CHECK(F1ilterName),
%%Add rulests to filter

RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

... 16 Tines which handle the rules sets are elided ...
%%BREMOVE rulesets
Newvar_1l,

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

Widows and orphans, sub-clones, premature generalisation, ...

new_fun(FilterName, Filterkey) ->
%%Add rulests to filter
RuleSetNameA "a"

RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

... 16 1ines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

What could go wrong!

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down!

Widows and orphans, sub-clones, premature generalisation, ...

Bring in the experts

With a domain expert ...
can choose in the right order,
name the clones and their parameters, ...
And the domain expert can learn in the process ...

e.g. test code example from Ericsson.

Desirable

Obstacles Incentives

Observations

Observations

User data

Refactoring Wrangler = LambdaStream
Fold against macro]

Fold expression against function 84 17
Generalisation 46 8
Inline variable 3 3
Introduce new variable 22 4
Move function between modules 229 14
Function extraction 119 87
Introduce new macro |

Rename function 236 19
Rename module 52

Rename variable 425 6
Introduce tuple 13

Unfold function application 12

Modularity mspection 3

User observations

Comprehension exercise on student coursework.
Clone detection exercise with Ericsson staff.
Workflow integration at LambdaStream.
Developing and using DSL with Quvig.

Sitting-in with OCaml group at Jane Street.

Why not?

We can do things it would take too long to do without a tool.
We can be less risk-averse: e.g. in doing generalisation.
Exploratory: try and undo if we wish.

95% > 0%: hit most cases ... fix the last 5% “by hand”.

Concrete incentives

Quyvi ane Street
q

Routine task of removing Compliance overhead
code instrumentation

before shipping. Reduce the cost of code

review for refactorings
Estimated | person-month like renamings ...

of savings per annum. . .
... if a tool is trusted.

The ecosystem

Editor integration ... but which are the most popular?
LSP support.
Build and test tools, pre-processors.

Dependencies ... and Windows.

Layout

Appearance must be right

my_funny_list() ->
[foo
,bar
,baz
,wombat

]

Appearance must be right

{vl,v2,v3}

my_funny_list() ->
[foo
,bar
,baz
,wombat

]

Appearance must be right

{vl,v2,v3}
my_funny_list() ->
[foo
,bar
,baz fF$gxy
,wombat

]

Appearance must be right

{vl,v2,v3}
my_funny_list() -> data HerType T EZ?
- e | Baz
,bar
,baz f%$gxy
,wombat

]

Preserving appearance

Preserve precisely parts not touched.

Pretty print ... or use lexical details.

Preserving appearance isn’t built in

Compilers throw away some / all layout info, comments, ...
Need to build infrastructure to hide layout manipulations.
Learn layout for synthesised code from existing codebase?

Scrap Your Reprinter by Orchard et al

all giffgaff 4G 17:36 3 65%)

Home Vi

Yaron Minsky @yminsky - 3h

" Just flipped a big codebase over to

¥ doing automatic formatting
(indentation, line-breaking, whether to
put ::'s after a toplevel declaration, etc).
There are some regressions in
readability, but there is something
freeing about it. Nothing like not
needing to make choices...

Qa4 [% ¥ 40 J

Don Stewart @donsbot - 3h

We have data showing how much faster
code review is when format is removed
from the equation. It's a clear win at
scale.

Qs Q4 ¥ 26 g,

| have types ... | don’t need a tool

How We Refactor, and How We Know It

Emerson Murphy-Hill Chris Parnin Andrew P. Black
Portland State University Georgia Institute of Technology Portland State University
emerson@cs.pdx.edu chris.parnin@gatech.edu black@cs.pdx.edu

Abstract

Much of what we know about how programmers refactor in

the wild is based on studies o '

projects. Researchers have U 9 O Cy f
these studies in other coni P to o O
tions on which they are bc

search on a sound scientifi d b h d
ing four data sets spannin o n e y a n
240 000 tool-assisted refactorings, ,

and 3400 version control commits. Using these data, we
cast doubt on several previously stated assumptions about
how programmers refactor, while validating others. For ex-
ample, we find that programmers frequently do not indicate
refactoring activity in commit logs, which contradicts as-
sumptions made by several previous researchers. In con-
trast, we were able to confirm the assumption that program-
mers do frequently intersperse refactoring with other pro-
gram changes. By confirming assumptions and replicating
studies made by other researchers, we can have greater con-
fidence that those researchers’ conclusions are generaliz-
able.

|CSE 2009'

a single research method: WeiBlgerber and Diehl’s study of
3 open source projects [18]. Their research method was to

apply a tool to the version history of each project to de-
fomt Lial Teeend mnfiosbntn o ek -~ RENAME METHOD and

refa Cto rl N g S vel refactorings, such

EXTRACT METHOD,
ode changes. One of
on which refactoring
ges also took place.
ds on the relative fre-
quency of high-level and mid-to-low-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-

ings are common, then we cannot draw this inference from
WeiBgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm —and cast doubt on — several conclusions
that have been published in the refactoring literature.

fetchRawlnputs runlInfo
preprocesslinputs

- SOFTWARE-PROJECT MAINTENANCE IS WHERE HASKELL

eportId, runld)
connectToDatabase rsaConfig .db.dbHost
runDbAction mongoPipe hand leErr getRunKeys runld
runDbAction mongoPipe getRawlnputs reportld keys

P
OFl1pe Posted by - 31 December, 2016

https://www.fpcomplete.com/blog/2016/|2/software-project-maintenance-is-where-haskell-shines

alan_zimm 17 points

As someone unfamiliar with the codebase I wanted to make major changes to the GHC abstract syntax tree, to
support API Annotations.

GHC is a big codebase.

I found that it was a straightforward process to change the data type and then fix the compilation errors. Even in the
dark bowels of the beast, such as the typechecker.

I think the style of the codebase helps a lot in this case, with lots of explicit pattern matching so that it is immediately
obvious when something needs to be changed.

https://www.reddit.com/r/haskell/comments/65d510/experience_reports_on_refactoring haskell code/

But is it really as simple as that ... ?

Changes in bindings — e.g. name capture — can give code that
compiles and type checks, but gives different results.

Are you really prepared to fix 1,000 type error messages!?

Maybe just be risk averse ...

lan Jeffries @light_industry - Jan 28 v
Very bad Haskell code can be worse than bad Python code (if it does pretty
much everything in 10 and uses very general types like HashMap Text Text
everywhere), but this hopefully isn't super common.

Q 3 () Q s &

Andreas Kallberg @Anka213 - Jan 29 v
Haskell is also very easy and safe to refactor. So even if you have a very bad
code-base, you could fairly mechanically and safely transform it until you have
better code.

For example, you could newtype a specific case and then update functions until
it typechecks.

QO 2 (] Q ™

Alex Nedelcu @alexelcu - Jan 29 v
| don't think marketing Haskell as "very easy/safe to refactor" is smart b/c as a
matter of fact there are code bases for which this isn't easy or safe. | hope there
are b/c otherwise it means Haskell isn't used for real world projects and AFAIK
that ain't true.

QO 1 [Q 2 ™

From Monad to Applicative

moduleDef :: LParser Module

moduleDef = do
reserved "module"
modName <- identifier

reserved "where"
imports <— layout importDef (return ()) decls <- layout decl (return ())

cnames <— get
return $ Module modName imports decls cnames

From Monad to Applicative

moduleDef :: LParser Module

moduleDef = do
reserved "module"
modName <- identifier

reserved "where"
imports <— layout importDef (return ()) decls <- layout decl (return ())

cnames <— get
return $ Module modName imports decls cnames

modu leDef :: LParser Module

moduleDef = Module
<$> (reserved "module" x> identifier <x reserved "where")

<x> layout importDef (return ())
<x> layout decl (return ())
<x> get

From List to Vector

map +: (a —> b) —> [a] —> [b]
app :: [a] —> [a] —> [al
filter :: (a —> Bool) —> [a] —> [a]

take :: Int — [a] — [a&]

From List to Vector

map
app

filter ::

take

vmap
vapp

viilter ::

vtake
vtake

+ (a —> b) —> [a] — [Db]

[a] —> [a] —> [a]
(a —> Bool) —> [a] —> [a]

:: Int — [a] — [a&]

:: (a => b) —> (Vec n a) —> (Vec n b)
:: (Vec n a) —> (Vec m a) —> (Vec n+m a)

(a —> Bool) —> (Vec n a) —> (Vecs n a)

r: (n 1
:: (n ::

Int) —> (Vec m a) —> (Vec (min n m) a)
Int) —> (Vec m a) —> (Vecs n a)

Types vs refactorings?

The more precise the typings, the more fragile the structure.

Difficulty of getting it right first time: Vec vs Vecs vs ...

vmap :: (a —> b) —> (Vec n a) —> (Vec n b)

vapp :: (Vec n a) —> (Vec m a) —> (Vec n+m a)
vfilter :: (a —> Bool) —> (Vec n a) —> (Vecs n a)

vtake r+ (n :: Int) —> (Vec m a) —> (Vec (min n m) a)

vtake c: (n :: Int) > (Vec m a) —> (Vecs n a)

Observations

Why should | trust your
refactoring tool on my code!

POINT

Refactoring Tools Are
Trustworthy Enough

John Brant

Refactoring tools don't have to guarantee correctness to be
useful. Sometimes imperfect tools can be particularly helpful.

80 IEEE SOFTWARE

A COMMON DEFINITION of refactor-
ing is “a behavior-preserving transfor-
mation that improves the overall code
quality.” Code quality is subjective, and
a particular refactoring in a sequence
of refactorings often might temporar-
ily make the code worse. So, the code-
quality-improvement part of the defi-
nition is often omitted, which leaves
that refactorings are simply behavior-
preserving transformations.

From that definition, the most impor-
tant part of tool-supported refactorings
appears to be correctness in behavior
preservation. However, from a develop-
er’s viewpoint, the most important part
is the refactoring’s usefulness: can it help
developers get their job done better and
faster? Although absolute correctness is a
great feature to have, it’s neither a neces-
sary nor sufficient condition for develop-
ers to use an automated refactoring tool.

Consider an imperfect refactoring
tool. If a developer needs to perform a
refactoring that the tool provides, he or
she has two options. The developer can
either use the tool and fix the bugs it in-
troduced or perform manual refactor-
ing and fix the bugs the manual changes
introduced. If the time spent using the
tool and fixing the bugs is less than the
time doing it manually, the tool is use-
ful. Furthermore, if the tool supports
preview and undo, it can be more use-

PUBLISHED BY THE IEEE COMPUTER SOCIETY

ful. With previewing, the developer can
double-check that the changes look cor-
rect before they’re saved; with undo, the
developer can quickly revert the changes
if they introduced any bugs.

Often, even a buggy refactoring tool
is more useful than an automated refac-
toring tool that never introduces bugs.
For example, automated tools often can’t
check all the preconditions for a refactor-
ing. The preconditions might be undecid-
able, or no efficient algorithm exists for
checking them. In this case, the buggy
tool might check as much as it can and
proceed with the refactoring, whereas
the correct version sees that it can’t
check everything it needs and aborts
the refactoring, leaving the developer to
perform it manually. Depending on the
buggy tool’s defect rate and the develop-
er’s abilities, the buggy tool might intro-
duce fewer errors than the correct tool
paired with manual refactoring.

Even when a refactoring can be im-
plemented without bugs, it can be ben-
eficial to relax some preconditions to
allow non-behavior-preserving transfor-
mations. For example, after implement-
ing Extract Method in the Smalltalk
Refactoring Browser, my colleagues and
I received an email requesting that we
allow the extracted method to override

continued on page 82

0740-7459/156/$31.00 © 20156 IEEE

Trust Must Be Earned

Friedrich Steimann

COUNTERPOINT

Creating bug-free refactoring tools is a real challenge.
However, tool developers will have to meet this
challenge for their tools to be truly accepted.

WHEN I ASK people about the progress
of their programming projects, I often
get answers like “I got it to work—now
I need to do some refactoring!” What
they mean is that they managed to tweak
their code so that it appears to do what
it’s supposed to do, but knowing the pro-
cess, they realize all too well that its re-
sult won’t pass even the lightest code re-
view. In the following refactoring phase,
whether it’s manual or tool supported,
minor or even larger behavior changes go
unnoticed, are tolerated, or are even wel-
comed (because refactoring the code has
revealed logical errors). I assume that this
conception of refactoring is by far the
most common, and I have no objections
to it (other than, perhaps, that I would
question such a software process per se).

Now imagine a scenario in which
code has undergone extensive (and ex-
pensive) certification. If this code is
touched in multiple locations, chances
are that the entire certification must be
repeated. Pervasive changes typically
become necessary if the functional re-
quirements change and the code’s cur-
rent design can’t accommodate the new
requirements in a form that would al-
low isolated certification of the changed
code. If, however, we had refactoring
tools that have been certified to preserve
behavior, we might be able to refactor
the code so that the necessary functional

changes remain local and don’t require
global recertification of the software.
Unfortunately, we don’t have such tools.

There’s also a third perspective—
the one I care about most. As an engi-
neer, and even more so as a researcher,
I want to do things that are state-of-the-
art. Where the state-of-the-art leaves
something to be desired, I want to push
it further. If that’s impossible, I want
to know why, and I want people to un-
derstand why so that they can adjust
their expectations. Refactoring-tool us-
ers will more easily accept limitations if
these limitations are inherent in the na-
ture of the matter and aren’t engineering
shortcomings.

What we have today is the common
sentiment that “if only the tool people
had enough resources, they would fix
the refactoring bugs,” suggesting that
no fundamental obstacles to fixing them
exist. This of course has the corollary
that the bugs aren’t troubling enough to
be fixed (because otherwise, the neces-
sary resources would be made available).
For this corollary, two explanations are
common: “Hardly anyone uses refactor-
ing tools anyway, so who cares about
the bugs?” and “The bugs aren’t a real
problem; my compiler and test suite will
catch them as I go.” I reject both expla-

continued on page 82

NOVEMBER/DECEMBER 2015

IEEE SOFTWARE

81

I[EEE Software, Nov/Dec 2015

FOCUS: REFACTORING

Challenges to
and Solutions
for Refactoring
Adoption

An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

Several practical challenges must be overcome to
facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges.

INDUSTRIAL SOFTWARE systems A key approach to managing
typically have complex, evolving technical debt is refactoring. Wil-
code bases that must be maintained liam Opdyke defined refactoring
for many years. It’s important to en- as “behavior-preserving program
sure that such systems’ design and transformation.” Martin Fowler’s
code don’t decay or accumulate tech- seminal work increased refactoring’s
nical debt.! Software suffering from popularity and extended its acade-
technical debt requires significant ef- mic and industrial reach.’* Modern
fort to maintain and extend. software development methods such

44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

as Extreme Programming (“refactor
mercilessly”)* have adopted refactor-
ing as an essential element.
However, our experience assess-
ing industrial software design® and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefly describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey findings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

0740-7459/15/%3 0 © 2015 IEEE

I[EEE Software, Nov/Dec 2015

Breaking code

Cannot justify the time spent

Unpredictable impact
Difficult to review

Inadequate tools

FOCUS: REFACTORING

Challenges to
and Solutions
for Refactoring
Adoption

An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

Several practical challenges must be overcome to
facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges.

INDUSTRIAL SOFTWARE systems A key approach to managing
typically have complex, evolving technical debt is refactoring. Wil-
code bases that must be maintained liam Opdyke defined refactoring
for many years. It’s important to en- as “behavior-preserving program
sure that such systems’ design and transformation.” Martin Fowler’s
code don’t decay or accumulate tech- seminal work increased refactoring’s
nical debt.! Software suffering from popularity and extended its acade-
technical debt requires significant ef- mic and industrial reach.’* Modern
fort to maintain and extend. software development methods such

44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY

as Extreme Programming (“refactor
mercilessly”)* have adopted refactor-
ing as an essential element.
However, our experience assess-
ing industrial software design® and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefly describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey findings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

I[EEE Software, Nov/Dec 2015

Breaking code

Difficult to review

Preserving meaning

Do these two programs mean the same thing?

Difficult to examine and compare the meanings directly ...

... so we look at other ways of trying to answer this.

Different scopes

main module

“all” modules

“all” functions

Different contexts

All tests for the project.

Refactorings need to be test-framework aware
Naming conventions: foo and foo_test ...
Macro use, etc.

The makefile for the project.

Using these versions of these libraries ... which we don’t control.

Assuring meaning preservation

test verify

instances of
the refactoring

the refactoring
itself

Assuring meaning preservation

test verify
instances of Rename foo to bar in
the refactoring this project.

the refactoring
itself

Assuring meaning preservation

test verify
instances of Rename foo to bar in
the refactoring this project.
the refactoring Renaming for all names,
itself functions and projects.

test verify

instances of J J
the refactoring

the refactoring
el vV | Y

Testing

test verify

instances of J
the refactoring

the refactoring
itself

Testing new vs old (with Huiqing Li)
Compare the results of and function| (unmodified) ...
... using existing unit tests, and randomly-generated inputs

... could compare ASTs as well as behaviour (in former case).

module?2 module?2
4 4
function | function|
C C
function?2 function?
C C
\ _

test verify

instances of
the refactoring

the refactoring
itself J

Fully random

Generate random modules,
... generate random refactoring commands,

... and check = with random inputs. (w/ Drienyovszky, Horpacsi).

moduleR moduleR
4)
function | function |
C) C)
function?2 function?
C) C)

Verification

test verify

instances of
the refactoring

the refactoring
itself J

Tool verification (with Nik Sultana)
Vp. (@p) — (T'p) ~p

Deep embeddings of small languages:
... potentially name-capturing A-calculus
... PCF with unit and sum types.
Isabelle/HOL: LCF-style secure proof checking.

Formalisation of meta-theory: variable binding, free / bound
variables, capture, fresh variables, typing rules, etc ...

... principally to support pre-conditions.

Shallow embedding

test verify

instances of J
the refactoring

the refactoring
itself

Automatically verify instances of refactorings

Prove the equivalence of the particular pair of functions / systems
using an SMT solver ...

... SMT solvers linked to Haskell by Data.SBV (Levent Erkok).

Manifestly clear what is being checked.

The approach delegates trust to the SMT solver ...

... can choose other solvers, and examine counter-examples.

DEMUR work with Colin Runciman

h :: Integer->Integer->Integer h' :: Integer->Integer->Integer
hxy=gy+f (gy) h" xy=ky+ f (ky)
where where
g z = z*z g z = z*z
g .. Integer->Integer k :: Integer->Integer
g X =3*% +f x kK x = 3*x + f X

f = uninterpret "f"

prove $ \(x::SInteger) -> g x .== k x
prove $ \(x::SInteger) (y::SInteger) -> h xy .==h' xvy

propertyk
propertyh

h :: Integer->Integer->Integer

hxy=gy+f(y)
where

gz = z*z
g ::. Integer->Integer

g x=3*+f x

h' :: Integer->Integer->Integer
h"xy=ky+ f (ky)

where

gz = 2z*z

k :: Integer->Integer

k X = 3* + f x

f = uninterpret "f"
propertyk = prove $ \(x::SInteger) -> g X
propertyh =

prove $ \(x::SInteger) (y::SInteger) -> h x vy

== K X
== h" XYy

Q.E.D.

s@ =0 ::
sl =-1 ::

*RefacZ2> propertyk

*RefacZ2> propertyh
Falsifiable. Counter-example:
SInteger
SInteger

test verify

instances of J J
the refactoring

the refactoring
el vV | Y

Trustisa

Sustainable

dschool.stanford.edu

Re-use don’t reinvent

Compiler front ends are available ...
... even if they don’t quite support all we need,

... such as layout preservation, types, ...

Keeping up with language evolution, hopefully.

But libraries aren’t necessarily maintained: e.g. Strafunski.

Open Source

Increases trust.

Invites contributors: a shout out to
... Alan Zimmermann, who ported Hare to GHC API,
... Richard Carlsson, who adapted and extended Wrangler,

... and a number of others.

Editor integration: Language Server Protocol will help.

System openness

Open Source ... confidence in the code ... other committers.

Openness of the system ...
... You can check the changes that a refactoring makes,

... and for the DSL can see which refactorings performed

Extensibility

API: templates and rules ... in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

API: templates and rules ... in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

rule({M,F,A}, N) ->
?RULEC?T("F@(Args@@) ™),
begin
NewArgs@@=delete(N, Args@@),
?TO_AST("F@(NewArgs@@)")
end,
refac_api:fun_define_info(F@) == {M,F,A}).

delete(N, List) -> .. delete Nth elem of List ..

Clone removal

€9 emacs@HL-LT =N Ech <=

File Edit Options Buffers Tools Help

DEEx BB Y B REXY

loop_a() ->
receive
stop -> ok;
{msg, Msg,0} -> loop a():
{msg, M=g,N} ->
io:format ("ping!~n"),
timer:sleep (500),
b!{msg,M=g,N+1}[]
1oop al()

end.

loop b() ->
receive
stop -> ok;
{msg, Msg,0} -> loop b(): i
{msg, M=g,N} ->
io:format ("pong'!~n"),
timer:sleep (500),
a!{msqg,M=sg,N+1},
loop b()

m

--\--- pingpong.erl Bot L46 T o e O B e e e e el

c:/cygwin/home/hl/demo/pingpong.exl:44.13-46.27:
c:/cygwin/home/hl/demo/pingpong.ex1:55.13-57.27:
The generalised expression would be:

new_fun(Msg, N, NewVar 1, NewVar 2) ->
io:format (NewVar_1),
timer:sleep (500),
NewvVar 2 ! {msg,Msg, N + 1}.

m

-1**- +*erl-output* 40% L11 D B T e -

Clone removal

@ emacs@HL-LT

File Edit Options Buffers Tools Help

Lo O |3

loop_al) >
receive
stop -> ok;
{msg, Msg,0} -> loop _a():
{msg,M=g,N} ->
io:format ("ping!~n"),
timer:sleep (500),
b!{msg,Msg, N+1}[]
1oop_a()
end.
loop b() ->
receive
stop -> ok;
{msg, Msg,0} -> loop b():
{msg,M=g,N} ->
io:formact ("pong!~n"),
timer:sleep (500),
a!{msqg,M=sg,N+1},
loop b ()
end.
—--\-—— pingpong.erl Bot L46 Git:

c:/cygwin/home/hl/demo/pingpong.exrl:
c:/cygwin/home/hl/demo/pingpong.erl:
The generalised expression would be:

DeEExBE s DB RE XD

Rename function
Rename variables
Reorder variables

Add to export list

m

Fold* against the def.

master (Exrlang EXT)

44.13-46.27:
55.13-57.27:

new_ fun (Msg, N, NewVar_ 1, NewVar 2) -> =
io:format (NewVar_1),
timer:sleep (500),
NewVar 2 ! {msg,Msg,N + 1}.

-1**— +*erl-output* 40% L11 R] P B N ittt —— -

Clone removal in the DSL

Transaction as a whole ... non-transactional components OK.

Not just an APl: 7transaction etc. modify interpretation of what
they enclose ...

?transaction(
[?1nteractive(RENAME FUNCTION)
?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)
repeat_interactive(SWAP ARGUMENTS)
?1f_then(EXPORT IF NOT ALREADY)
’non_transaction(FOLD INSTANCES OF THE CLONE)

D.

. It’s better to

What is the ideal language
supporting refactoring!?

What'’s the ideal language for refactoring?

Changes are first class.

No layout choice: you have to
conform to layout rules.

No macros, reflection, ...
Compiler stability

Integration with a semantically-
aware change management tool.

Theory of patches, ...

Feasible

Desirable Sustainable

Obstacles Incentives

Observations

https://github.com/alanz/HaRe
https://www.cs.kent.ac.uk/projects/wrangler

https://gitlab.com/trustworthy-refactoring/
refactorer

