
Refactoring for Functional Programs

Simon Thompson, University of Kent

What have we learned about tool building?

Simon Thompson, University of Kent

Thomas ArtsHuiqing Li Colin Runciman

Nik SultanaJudit KőszegiDániel Horpácsi

Hugo FéréeReuben RoweScott Owens

Claus Reinke

György Orosz Melinda Tóth

Andreas Reuleaux

Chris Brown

Stephen Adams

Pablo Lamela

Science

Engineering

Human factors

Usability & Trust

Science

Engineering

Human factors

Automation

Languages

What do you mean by “refactoring”?

What does “refactoring” mean?

Minor edits or wholesale changes

Something local or of global scope

Just a general change in the software …

 … or something that changes its  
structure, but not its functionality?

Something chosen by a programmer …

 … or chosen by an algorithm?

Expression-level refactorings

Expression-level refactorings

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, …

Generalising a function … extracting a definition.

Extension and reuse

 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 loop_a()
 end.

Function extraction in Erlang

Extension and reuse

 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 loop_a()
 end.

Let’s turn this into a function

Function extraction in Erlang

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},
 loop_a()

 end.
 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},

Function extraction in Erlang

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 loop_a()
 end.

 body(Msg,N),

body(Msg,N) ->

Extension and reuse

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},
 loop_a()

 end.
 io:format("ping!~n"),
 timer:sleep(500),
 b ! {msg, Msg, N - 1},

Function extraction in Erlang

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

 loop_a()
 end.

 body(Msg,N),

body(Msg,N) ->

.

Extension and reuse

What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, …

Generalising a function … extracting a definition.

Changing a type representation.

Changing a library API.

Module restructuring: e.g. removing inclusion loops.

Refactoring tools

Refactoring
=

Transformation

Refactoring
=

Transformation

Refactoring
=

Transformation + Pre-condition

How to refactor?

By hand … using an editor

Flexible … but error-prone.

Infeasible in the large.

Tool-supported

Handles transformation and analysis.

Scalable to large-code bases: module-aware.

Integrated with tests, macros, ...

Parse

text

AST

Parse

text

AST

Analyse
AAST

Parse

text

AST

Analyse
AAST

Transform
AAST

Parse

text

AST

Analyse
AAST

Transform
AAST

Output
text

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.

Separation of concerns

Point-wise operation …

… and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.

Separation of concerns

Point-wise operation …

… and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.

Separation of concerns

Point-wise operation …

… and tree traversal

Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation.

Separation of concerns

Point-wise operation …

… and tree traversal

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed
Strict
Refs etc and i/o.
Modules + interfaces
Scoping/modules

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed
Strict
Refs etc and i/o.
Modules + interfaces
Scoping/modules

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, …
Strategic prog

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed
Strict
Refs etc and i/o.
Modules + interfaces
Scoping/modules

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module,  
API, DSL, context.
Naive strategic prog

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, …
Strategic prog

Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed
Strict
Refs etc and i/o.
Modules + interfaces
Scoping/modules

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module,  
API, DSL, context.
Naive strategic prog

ROTOR

(O)Caml
OCaml compiler
So far: renaming &
 dependency theory.
Derived visitors

HaRe

Haskell 98
Programmatica /
GHC Haskell API
Basic refactorings,
clones, type-based, …
Strategic prog

Wrangler in a nutshell

Automate the simple things, and …

… provide decision support tools otherwise.

Embed in common IDEs: emacs, eclipse, …

Handle full language, multiple modules, tests, ...

Faithful to layout and comments.

Build in Erlang and apply the tool to itself.

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

C
lo

ne
 d

et
ec

tio
n 

an
d

re
m

ov
al

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

C
lo

ne
 d

et
ec

tio
n 

an
d

re
m

ov
al

M
od

ul
e

st
ru

ct
ur

e
im

pr
ov

em
en

t

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

C
lo

ne
 d

et
ec

tio
n 

an
d

re
m

ov
al

M
od

ul
e

st
ru

ct
ur

e
im

pr
ov

em
en

t
API: define new

refactorings

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

C
lo

ne
 d

et
ec

tio
n 

an
d

re
m

ov
al

M
od

ul
e

st
ru

ct
ur

e
im

pr
ov

em
en

t
API: define new

refactorings

DSL for composite
refactorings

Analyses needed …

Static semantics

Types

Modules

Side-effects

Analyses needed …

Static semantics

Types

Modules

Side-effects

Atoms

Process structure

Macros

Conventions and frameworks

 Desirable

Feasible

Viable

dschool.stanford.edu

 Desirable

Feasible

Sustainable

 Desirable

Feasible

Sustainable

Renaming

What is in a name?

Resolving names requires not just the static structure …

 … but also types (polymorphism, overloading) and modules.

Beyond the wits of regexps.

Leverage other infrastructure or the compiler.

 f x = (x*x + 42) + (x + 42)

 f x y = (x*x + y) + (x + y)

Types sneak in …

✓

 f x = (x*x + 42) + (x + 42)

 f x y = (x*x + y) + (x + y)

Types sneak in …

funny = length ([[True]] ++ []) +
 length ([True] ++ [])

funny xs = length ([[True]] ++ xs) +
 length ([True] ++ xs)

×

✓

 … as do different sorts of atoms

-module(foo).
-export([foo/1,foo/0]).

foo() -> spawn(foo,foo,[foo]).

foo(X) -> io:format("~w",[X]).

f1(P) ->
 receive
 {ok, X} -> P!thanks;
 {error,_} -> P!grr
 end,
 P!{value,X}.

And some peculiarities

×

f1(P) ->
 receive
 {ok, X} -> P!thanks;
 {error,_} -> P!grr
 end,
 P!{value,X}.

And some peculiarities

f2(P) ->
 receive
 {ok, X} -> P!thanks;
 {error,X} -> P!grr
 end,
 P!{value,X}.

×

✓

Abandon any idea
of building language-

independent refactoring
tools.

OCaml’s module system

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

OCaml modules

PLDI 2019

Theory of naming dependency:
value extensions.

Characterise renamings by
value extension kernels.

Abstract renaming semantics,  
 proved adequate:

“Two equal abstractions have
equal concrete versions”

Formalised using Coq.

Characterising Renaming within OCaml’s Module
System: Theory and Implementation

Reuben N. S. Rowe
Hugo Férée

Simon J. Thompson
Scott Owens

School of Computing, University of Kent, Canterbury, UK
{r.n.s.rowe,h.feree,s.j.thompson,s.a.owens}@kent.ac.uk

Abstract
We present an abstract, set-theoretic denotational semantics
for a significant subset of OCaml and its module system,
allowing to reason about the correctness of renaming value
bindings. Our semantics captures information about the bind-
ing structure of programs, as well as about which declara-
tions are related by the use of different language constructs
(e.g. functors, module types and module constraints). Correct
renamings are precisely those that preserve this structure.
We show that our abstract semantics is sound with respect to
a (domain-theoretic) denotational model of the operational
behaviour of programs, and that it allows us to prove vari-
ous high-level, intuitive properties of renamings. This formal
framework has been implemented in a prototype refactoring
tool for OCaml that performs renaming.

CCS Concepts • Theory of computation → Abstrac-
tion; Denotational semantics; Program constructs; Func-
tional constructs; • Software and its engineering → Soft-
ware maintenance tools.

Keywords Adequacy, dependencies, modules, module types,
OCaml, refactoring, renaming, semantics.

ACM Reference Format:
Reuben N. S. Rowe, Hugo Férée, Simon J. Thompson, and Scott
Owens. 2019. Characterising Renaming within OCaml’s Module
System: Theory and Implementation. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’19), June 22–26, 2019, Phoenix, AZ, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3314221.
3314600

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314600

1 Introduction
Refactoring is the process of changing how a program works
without changing what it does, and is a necessary and on-
going process in both the development and maintenance of
any codebase [12]. Whilst individual refactoring steps are
often conceptually very simple, applying them in practice
can be complex, involving many repeated but subtly varying
changes across the entire codebase. Moreover refactorings
are, by and large, context sensitive, meaning that carrying
them out by hand can be error-prone and the use of general-
purpose utilities (even powerful ones such as grep and sed)
is only effective up to a point.
This immediately poses a challenge, but also presents an

opportunity. The challenge is how to ensure, or check, a
proposed refactoring does not change the behaviour of the
program (or does so only in very specific ways). The opportu-
nity is that since refactoring is fundamentally a mechanistic
process it is possible to automate it. Indeed, this is desirable
in order to avoid human-introduced errors. Our aim in this
paper is to outline how we might begin to provide a solution
to the dual problem of specifying and verifying the correct-
ness of refactorings and building correct-by-construction
automated refactoring tools for OCaml [22, 31].
Renaming is a quintessential refactoring, and so it is on

this that we focus as a first step. Specifically, we look at re-
naming the bindings of values in modules. One might very
well be tempted to claim that, since we are in a functional
setting, this is simply α-conversion (as in λ-calculus) and
thus trivial. This is emphatically not the case.OCaml utilises
language constructs, particularly in its module system, that
behave in fundamentally different ways to traditional vari-
able binders. Thus, to carry out renaming inOCaml correctly,
one must take the meaning of these constructs into account.

Some of the issues are illustrated by the example program
in fig. 1 below. This program defines a functor Pair tak-
ing two modules as arguments, which must conform to the
Stringable module type. It also defines two structures Int
and String. It then uses these as arguments in applications
of Pair, the result of which is bound as the module P. To
rename the to_string function in the module Int correctly,
we must take the following into account.

950

Building tools can  
lead us to

 re-think theory.

Clone detection

Duplicate code considered harmful

It’s a bad smell …

increases chance of bug propagation,

increases size of the code,

increases compile time, and,

increases the cost of maintenance.

But … it’s not always a problem.

What is similar code?

(X+3)+4 4+(5-(3*X))

What is similar code?

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

X+Y

What is similar code?

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

X+Y

The anti-unification gives the (most specific)
common generalisation.

What is similar code?

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

X+Y

The anti-unification gives the (most specific)
common generalisation.

f(Z,W) -> X+Y.

What is similar code?

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

X+Y

The anti-unification gives the (most specific)
common generalisation.

f(Z,W) -> X+Y.

f(X+3,4) f(4,5-(3*X))

What makes a clone (in Erlang)?

Thresholds

Number of expressions

Number of tokens

Number of variables introduced

Similarity = mini=1..n(size(Gen)/size(Ei))

What makes a clone (in Erlang)?

Thresholds … and their defaults

Number of expressions ≥ 5

Number of tokens ≥ 20

Number of variables introduced ≤ 4

Similarity = mini=1..n(size(Gen)/size(Ei)) ≥ 0.8

Clone detection and removal

Find a clone, name it and its parameters, and eliminate.

What could go wrong?

What could go wrong?

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down?

Widows and orphans, sub-clones, premature generalisation, …

What could go wrong?

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down?

Widows and orphans, sub-clones, premature generalisation, …

new_fun(FilterName, NewVar_1) ->
 FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets
 NewVar_1,
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->
 %%Add rulests to filter
 RuleSetNameA = "a",
 RuleSetNameB = "b",
 RuleSetNameC = "c",
 RuleSetNameD = "d",
 ... 16 lines which handle the rules sets are elided ...
 %%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

What could go wrong?

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down?

Widows and orphans, sub-clones, premature generalisation, …

Bring in the experts

With a domain expert …

can choose in the right order,

name the clones and their parameters, …

And the domain expert can learn in the process …

e.g. test code example from Ericsson.

Support user
involvement rather than

full automation.

 Desirable

Feasible

Sustainable

 Obstacles

Observations

Incentives

 Obstacles

Observations

Incentives

User data

Keep it simple!

User observations

Comprehension exercise on student coursework.

Clone detection exercise with Ericsson staff.

Workflow integration at LambdaStream.

Developing and using DSL with Quviq.

Sitting-in with OCaml group at Jane Street.

 Obstacles

Observations

Incentives

Why not?

We can do things it would take too long to do without a tool.

We can be less risk-averse: e.g. in doing generalisation.

Exploratory: try and undo if we wish.

95% ≫ 0%: hit most cases … fix the last 5% “by hand”.

Concrete incentives

Quviq

Routine task of removing
code instrumentation
before shipping.

Estimated 1 person-month
of savings per annum.

Jane Street

Compliance overhead

Reduce the cost of code
review for refactorings
like renamings …

 … if a tool is trusted.

The ecosystem

Editor integration … but which are the most popular?

LSP support.

Build and test tools, pre-processors.

Dependencies … and Windows.

Benefits should  
outweigh costs.

 Obstacles

Observations

Incentives

Layout

Appearance must be right

my_list() ->
 [foo,
 bar,
 baz,
 wombat
]

my_funny_list() ->
 [foo
 ,bar
 ,baz
 ,wombat
]

Appearance must be right

my_list() ->
 [foo,
 bar,
 baz,
 wombat
]

my_funny_list() ->
 [foo
 ,bar
 ,baz
 ,wombat
]

{v1, v2, v3}

{v1,v2,v3}

Appearance must be right

my_list() ->
 [foo,
 bar,
 baz,
 wombat
]

my_funny_list() ->
 [foo
 ,bar
 ,baz
 ,wombat
]

{v1, v2, v3}

{v1,v2,v3}

f (g x y)

f $ g x y

Appearance must be right

my_list() ->
 [foo,
 bar,
 baz,
 wombat
]

my_funny_list() ->
 [foo
 ,bar
 ,baz
 ,wombat
]

data MyType = Foo |
 Bar |
 Baz

data HerType = Foo
 | Bar
 | Baz

{v1, v2, v3}

{v1,v2,v3}

f (g x y)

f $ g x y

Preserving appearance

Preserve precisely parts not touched.

Pretty print … or use lexical details.

Preserving appearance isn’t built in

Compilers throw away some / all layout info, comments, …

Need to build infrastructure to hide layout manipulations.

Learn layout for synthesised code from existing codebase?

Scrap Your Reprinter by Orchard et al

“but there is
something freeing about it.
Nothing like not needing to

make choices …”

I have types … I don’t need a tool

Up to 90% of refactorings
done by hand

ICSE 2009

https://www.reddit.com/r/haskell/comments/65d510/experience_reports_on_refactoring_haskell_code/

https://www.fpcomplete.com/blog/2016/12/software-project-maintenance-is-where-haskell-shines

But is it really as simple as that … ?

Changes in bindings – e.g. name capture – can give code that
compiles and type checks, but gives different results.

Are you really prepared to fix 1,000 type error messages?

Maybe just be risk averse …

From Monad to Applicative

moduleDef :: LParser Module
moduleDef = do
 reserved "module"
 modName <- identifier
 reserved "where"
 imports <- layout importDef (return ()) decls <- layout decl (return ())
 cnames <- get
 return $ Module modName imports decls cnames

From Monad to Applicative

moduleDef :: LParser Module
moduleDef = Module
 <$> (reserved "module" *> identifier <* reserved "where")
 <*> layout importDef (return ())
 <*> layout decl (return ())
 <*> get

moduleDef :: LParser Module
moduleDef = do
 reserved "module"
 modName <- identifier
 reserved "where"
 imports <- layout importDef (return ()) decls <- layout decl (return ())
 cnames <- get
 return $ Module modName imports decls cnames

From List to Vector

map :: (a -> b) -> [a] -> [b]
app :: [a] -> [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]

take :: Int -> [a] -> [a]

From List to Vector

map :: (a -> b) -> [a] -> [b]
app :: [a] -> [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]

take :: Int -> [a] -> [a]

vmap :: (a -> b) -> (Vec n a) -> (Vec n b)
vapp :: (Vec n a) -> (Vec m a) -> (Vec n+m a)
vfilter :: (a -> Bool) -> (Vec n a) -> (Vecs n a)

vtake :: (n :: Int) -> (Vec m a) -> (Vec (min n m) a)
vtake :: (n :: Int) -> (Vec m a) -> (Vecs n a)

Types vs refactorings?

The more precise the typings, the more fragile the structure.

Difficulty of getting it right first time: Vec vs Vecs vs …

vmap :: (a -> b) -> (Vec n a) -> (Vec n b)
vapp :: (Vec n a) -> (Vec m a) -> (Vec n+m a)
vfilter :: (a -> Bool) -> (Vec n a) -> (Vecs n a)

vtake :: (n :: Int) -> (Vec m a) -> (Vec (min n m) a)
vtake :: (n :: Int) -> (Vec m a) -> (Vecs n a)

Types can both  
help and hinder  

effective refactoring

 Obstacles

Observations

Incentives

Why should I trust your  
refactoring tool on my code?

80 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Refactoring Tools Are
Trustworthy Enough
John Brant

Refactoring tools don’t have to guarantee correctness to be
useful. Sometimes imperfect tools can be particularly helpful.

A COMMON DEFINITION of refactor-
ing is “a behavior-preserving transfor-
mation that improves the overall code
quality.” Code quality is subjective, and
a particular refactoring in a sequence
of refactorings often might temporar-
ily make the code worse. So, the code-
quality-improvement part of the defi -
nition is often omitted, which leaves
that refactorings are simply behavior-
preserving transformations.

From that defi nition, the most impor-
tant part of tool-supported refactorings
appears to be correctness in behavior
preservation. However, from a develop-
er’s viewpoint, the most important part
is the refactoring’s usefulness: can it help
developers get their job done better and
faster? Although absolute correctness is a
great feature to have, it’s neither a neces-
sary nor suffi cient condition for develop-
ers to use an automated refactoring tool.

Consider an imperfect refactoring
tool. If a developer needs to perform a
refactoring that the tool provides, he or
she has two options. The developer can
either use the tool and fi x the bugs it in-
troduced or perform manual refactor-
ing and fi x the bugs the manual changes
introduced. If the time spent using the
tool and fi xing the bugs is less than the
time doing it manually, the tool is use-
ful. Furthermore, if the tool supports
preview and undo, it can be more use-

ful. With previewing, the developer can
double-check that the changes look cor-
rect before they’re saved; with undo, the
developer can quickly revert the changes
if they introduced any bugs.

Often, even a buggy refactoring tool
is more useful than an automated refac-
toring tool that never introduces bugs.
For example, automated tools often can’t
check all the preconditions for a refactor-
ing. The preconditions might be undecid-
able, or no effi cient algorithm exists for
checking them. In this case, the buggy
tool might check as much as it can and
proceed with the refactoring, whereas
the correct version sees that it can’t
check everything it needs and aborts
the refactoring, leaving the developer to
perform it manually. Depending on the
buggy tool’s defect rate and the develop-
er’s abilities, the buggy tool might intro-
duce fewer errors than the correct tool
paired with manual refactoring.

Even when a refactoring can be im-
plemented without bugs, it can be ben-
efi cial to relax some preconditions to
allow non-behavior-preserving transfor-
mations. For example, after implement-
ing Extract Method in the Smalltalk
Refactoring Browser, my colleagues and
I received an email requesting that we
allow the extracted method to override

POINT

continued on page 82

0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E NOVEMBER/DECEMBER 2015 | IEEE SOFTWARE 81

Trust Must Be Earned
Friedrich Steimann

 Creating bug-free refactoring tools is a real challenge.
However, tool developers will have to meet this
challenge for their tools to be truly accepted.

WHEN I ASK people about the progress
of their programming projects, I often
get answers like “I got it to work—now
I need to do some refactoring!” What
they mean is that they managed to tweak
their code so that it appears to do what
it’s supposed to do, but knowing the pro-
cess, they realize all too well that its re-
sult won’t pass even the lightest code re-
view. In the following refactoring phase,
whether it’s manual or tool supported,
minor or even larger behavior changes go
unnoticed, are tolerated, or are even wel-
comed (because refactoring the code has
revealed logical errors). I assume that this
conception of refactoring is by far the
most common, and I have no objections
to it (other than, perhaps, that I would
question such a software process per se).

Now imagine a scenario in which
code has undergone extensive (and ex-
pensive) certifi cation. If this code is
touched in multiple locations, chances
are that the entire certifi cation must be
repeated. Pervasive changes typically
become necessary if the functional re-
quirements change and the code’s cur-
rent design can’t accommodate the new
requirements in a form that would al-
low isolated certifi cation of the changed
code. If, however, we had refactoring
tools that have been certifi ed to preserve
behavior, we might be able to refactor
the code so that the necessary functional

changes remain local and don’t require
global recertifi cation of the software.
Unfortunately, we don’t have such tools.

There’s also a third perspective—
the one I care about most. As an engi-
neer, and even more so as a researcher,
I want to do things that are state-of-the-
art. Where the state-of-the-art leaves
something to be desired, I want to push
it further. If that’s impossible, I want
to know why, and I want people to un-
derstand why so that they can adjust
their expectations. Refactoring-tool us-
ers will more easily accept limitations if
these limitations are inherent in the na-
ture of the matter and aren’t engineering
shortcomings.

What we have today is the common
sentiment that “if only the tool people
had enough resources, they would fi x
the refactoring bugs,” suggesting that
no fundamental obstacles to fi xing them
exist. This of course has the corollary
that the bugs aren’t troubling enough to
be fi xed (because otherwise, the neces-
sary resources would be made available).
For this corollary, two explanations are
common: “Hardly anyone uses refactor-
ing tools anyway, so who cares about
the bugs?” and “The bugs aren’t a real
problem; my compiler and test suite will
catch them as I go.” I reject both expla-

COUNTERPOINT

continued on page 82

IEEE Software, Nov/Dec 2015

IEEE Software, Nov/Dec 2015

44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Challenges to
and Solutions
for Refactoring
Adoption
An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

// Several practical challenges must be overcome to
facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges. //

INDUSTRIAL SOFTWARE systems
typically have complex, evolving
code bases that must be maintained
for many years. It’s important to en-
sure that such systems’ design and
code don’t decay or accumulate tech-
nical debt.1 Software suffering from
technical debt requires signifi cant ef-
fort to maintain and extend.

A key approach to managing
technical debt is refactoring. Wil-
liam Opdyke defi ned refactoring
as “behavior-preserving program
transformation.”2 Martin Fowler’s
seminal work increased refactoring’s
popularity and extended its acade-
mic and industrial reach.3 Modern
software development methods such

as Extreme Programming (“refactor
mercilessly”)4 have adopted refactor-
ing as an essential element.

However, our experience assess-
ing industrial software design5 and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefl y describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey fi ndings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

Survey Details
CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

FOCUS: REFACTORING

Breaking code

Cannot justify the time spent

Unpredictable impact

Difficult to review

Inadequate tools

IEEE Software, Nov/Dec 2015

44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

Challenges to
and Solutions
for Refactoring
Adoption
An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

// Several practical challenges must be overcome to
facilitate industry’s adoption of refactoring. Results
from a Siemens Corporate Development Center India
survey highlight common challenges to refactoring
adoption. The development center is devising and
implementing ways to meet these challenges. //

INDUSTRIAL SOFTWARE systems
typically have complex, evolving
code bases that must be maintained
for many years. It’s important to en-
sure that such systems’ design and
code don’t decay or accumulate tech-
nical debt.1 Software suffering from
technical debt requires signifi cant ef-
fort to maintain and extend.

A key approach to managing
technical debt is refactoring. Wil-
liam Opdyke defi ned refactoring
as “behavior-preserving program
transformation.”2 Martin Fowler’s
seminal work increased refactoring’s
popularity and extended its acade-
mic and industrial reach.3 Modern
software development methods such

as Extreme Programming (“refactor
mercilessly”)4 have adopted refactor-
ing as an essential element.

However, our experience assess-
ing industrial software design5 and
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN)
has revealed numerous challenges to
refactoring adoption in an industrial
context. So, we surveyed CT DC IN
software architects to understand
these challenges. Although we knew
many of the problems facing refac-
toring adoption, our survey gave us
insight into how these challenges
ranked within CT DC IN. Drawing
on this insight, we outline solutions
to the challenges and briefl y describe
key CT DC IN initiatives to encour-
age refactoring adoption. We hope
our survey fi ndings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more
effective refactoring adoption.

Survey Details
CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure &
Cities, and Energy), address diverse
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to
understand the organization’s status
quo regarding technical debt, code
and design smells, and refactoring.
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand
these deterrents—and thereby adopt
appropriate measures to address
them—we conducted our survey.

FOCUS: REFACTORING

Breaking code

Cannot justify the time spent

Unpredictable impact

Difficult to review

Inadequate tools

Preserving meaning

Do these two programs mean the same thing?

Difficult to examine and compare the meanings directly …

 … so we look at other ways of trying to answer this.

Different scopes

main

main module

“all” modules

“all” functions

Different contexts

All tests for the project.

Refactorings need to be test-framework aware

Naming conventions: foo and foo_test …

Macro use, etc.

The makefile for the project.

Using these versions of these libraries … which we don’t control.

test verify

instances of
the refactoring

the refactoring
itself

Assuring meaning preservation

test verify

instances of
the refactoring

the refactoring
itself

Assuring meaning preservation

Rename foo to bar in
this project.

test verify

instances of
the refactoring

the refactoring
itself

Assuring meaning preservation

Rename foo to bar in
this project.

Renaming for all names,
functions and projects.

test verify

instances of
the refactoring ✓ ✓
the refactoring

itself ✓ ✓

Testing

test verify

instances of
the refactoring ✓
the refactoring

itself

Testing new vs old (with Huiqing Li)

module2

function1

function2

module2

function1

function2

Compare the results of function1 and function1 (unmodified) …

… using existing unit tests, and randomly-generated inputs

… could compare ASTs as well as behaviour (in former case).

test verify

instances of
the refactoring

the refactoring
itself ✓

Fully random

moduleR

function1

function2

moduleR

function1

function2

Generate random modules,

… generate random refactoring commands,

… and check ≣ with random inputs. (w/ Drienyovszky, Horpácsi).

moduleR

Verification

test verify

instances of
the refactoring

the refactoring
itself ✓

Tool verification (with Nik Sultana)

Deep embeddings of small languages:

… potentially name-capturing λ-calculus

… PCF with unit and sum types.

Isabelle/HOL: LCF-style secure proof checking.

Formalisation of meta-theory: variable binding, free / bound
variables, capture, fresh variables, typing rules, etc …

… principally to support pre-conditions.

Figure 1. Automated refactoring process

2.1 Stages in refactoring
Li (2006, see Chapter 4) describes refactoring as being made up
of three stages. This is illustrated in Figure 1. The preprocessing
stage involves producing representations of the program that are
suitable for transformation – this stage involves lexing, parsing,
and possibly further processing to generate a representation of
programs that is more rich than their Abstract Syntax Tree (AST),
if required.
The second stage involves the actual refactoring. Applying a

refactoring involves two steps: checking the refactoring’s precon-
ditions and transforming the program if the preconditions are satis-
fied by the program.
The last stage involves printing the program representation into

the representation we usually manipulate – a list of characters. For
some programming languages, such as Erlang, it suffices to pretty-
print the program since there is a widely-accepted and adhered-to
layout for programs (Li et al. 2006, §3.1). For other languages, such
as Haskell, further processing is required to ensure that the printed
refactored program mimics the layout of the original program since
the language does not enforce a particular layout.

2.2 Preserving program appearance
Since the layout of Haskell programs can be idiosyncratic, transfor-
mation tools need to take this into account by restoring the original
program’s appearance in the transformed program. For Haskell pro-
grams one could choose between explicit delimitation using braces
and using a so-called offside structure: the delimitation of code
is inferred from the code’s indentation. This is described in the
Haskell Report (Jones et al. 2003, §9.3).
During manual refactoring the preservation of layout and com-

ments is straightforward, but automating this preservation can be
challenging. Li (2006, §2.4) describes the automatic preservation
of program appearance for refactored Haskell programs. Her ap-
proach uses two basic program representations: the token stream
and an AST annotated with type and scope information. These two
representations are kept consistent (Li 2006, §4.2.3) since trans-
formations are effected on both: the AST is transformed to effect
changes to the program, and the token stream is also modified to en-
sure that program layout rules are adhered to following the AST’s
transformation. Comments are also preserved – and moved together
with code deemed related – using information in the token stream
and heuristics used to associate comments to code.
Besides program layout and comments, names (of variables,

definitions, etc) are features that should be preserved too. Names
are typically chosen with care in order to improve the program’s
readability. Name information can be obtained from the AST. In the
work described in this paper we focus solely on the main (second)
stage in the refactoring process. Within this stage we concentrate
on the preservation of name information together with program
behaviour. From this point onwards whenever a reference is made
to refactoring we intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditions and a
program transformation. When a refactoring is applied to a pro-
gram, the transformation is effected only if all the preconditions
are satisfied by the program. Otherwise the program is returned un-
changed. A refactoring with conjoined preconditions represented
by the effective predicate Q, and effecting program transformation
T , behaves thus:

λp. if (Qp) then (T p) else p

Let ≃ denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is behaviour-
preserving for arbitrary programs) one must prove that:

∀p. (Qp) −→ (T p) ≃ p

Apart from p, refactorings are usually parametrised by other
values required by transformation T and which might also be con-
sumed by Q. Let us assume that the parameters have already been
provided and that the refactoring is a curried function – so at this
stage we only see the last formal parameter: the program itself.
Together with the program, the parameter values are inputs to the
refactoring and the values themselves might influence whether the
preconditions are satisfied. For example, the rename a variable
refactoring is additionally parametrised by two variable names: the
name to change and the name to change it to. These parameters are
also provided to the refactoring’s preconditions since they include
provisions to ensure that name-clash does not occur as a result of
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refactoring are
not satisfied then the program is not transformed. In implementa-
tions of refactorings, if the preconditions are not satisfied then the
user may be prompted to provide different parameters to the refac-
toring and offered the choice to abandon the refactoring. Let us call
this the interactive model.
A different approach would involve endowing the refactorings

with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditions. The user
is later informed of these changes and might need to effect further
corrective changes. For example, in the event of a name-clash the
refactoring might perform renamings such that the transformation
would still preserve program behaviour. By contrast, this model
involves compensating for preconditions that are not satisfied.
These two models have analogues in the λ-calculus; for exam-

ple, with regards to names a transformation can be defined in a
non-renaming or in a renaming manner. These lead to interactive
and compensating refactoring definitions respectively. We opt for
the interactive approach in the research described in this paper. The
two transformation definitions will be described further in the next
section and the effect each has on the complexity of proofs will be
discussed.
The interactive approach is illustrated by means of a transition

diagram in Figure 2.

2.5 Transformation operations
Transformations might simply replace an (sub)expression with an-
other, or else propagate changes in expressions by using substitu-
tion. Substitution is the canonical transformation operation for clas-
sical λ-calculi – other expositions of λ-calculi may use different
canonical operations. For example when using nominal techniques
(Urban and Tasson 2005) swapping is the canonical operation.
In order to facilitate reasoning about programs, programs are

usually identified ‘up to renaming of bound variables’. Moreover,

52

Shallow embedding

test verify

instances of
the refactoring ✓
the refactoring

itself

Automatically verify instances of refactorings

Prove the equivalence of the particular pair of functions / systems
using an SMT solver …

… SMT solvers linked to Haskell by Data.SBV (Levent Erkok).

Manifestly clear what is being checked.

The approach delegates trust to the SMT solver …

… can choose other solvers, and examine counter-examples.

DEMUR work with Colin Runciman

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
 where
 g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
 where
 g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk
Q.E.D.
*Refac2> propertyh
Falsifiable. Counter-example:
 s0 = 0 :: SInteger
 s1 = -1 :: SInteger

test verify

instances of
the refactoring ✓ ✓
the refactoring

itself ✓ ✓

Trust is a
complicated, multi-

dimensional issue … but
we’re working on it.

 Desirable

Feasible

Sustainable

dschool.stanford.edu

Re-use don’t reinvent

Compiler front ends are available …

 … even if they don’t quite support all we need,

 … such as layout preservation, types, …

Keeping up with language evolution, hopefully.

But libraries aren’t necessarily maintained: e.g. Strafunski.

Open Source

Increases trust.

Invites contributors: a shout out to

 … Alan Zimmermann, who ported Hare to GHC API,

 … Richard Carlsson, who adapted and extended Wrangler,

 … and a number of others.

Editor integration: Language Server Protocol will help.

System openness

Open Source … confidence in the code … other committers.

Openness of the system …

… you can check the changes that a refactoring makes,

… and for the DSL can see which refactorings performed

Extensibility

API: templates and rules … in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

API: templates and rules … in Erlang

rule({M,F,A}, N) ->
 ?RULE(?T("F@(Args@@)"),
 begin
 NewArgs@@=delete(N, Args@@),
 ?TO_AST("F@(NewArgs@@)")
 end,
 refac_api:fun_define_info(F@) == {M,F,A}).

delete(N, List) -> … delete Nth elem of List …

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

Clone removal

Rename function

Rename variables

Reorder variables

Add to export list

Fold* against the def.

Clone removal

Clone removal in the DSL

Transaction as a whole … non-transactional components OK.

Not just an API: ?transaction etc. modify interpretation of what
they enclose …

?transaction(
 [?interactive(RENAME FUNCTION)
 ?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)
 ?repeat_interactive(SWAP ARGUMENTS)
 ?if_then(EXPORT IF NOT ALREADY)
 ?non_transaction(FOLD INSTANCES OF THE CLONE)
]).

It’s better to
implement libraries, APIs
and DSLs than individual

refactorings

What is the ideal language  
supporting refactoring?

What’s the ideal language for refactoring?

Changes are first class.

No layout choice: you have to
conform to layout rules.

No macros, reflection, …

Compiler stability

Integration with a semantically-
aware change management tool.

Theory of patches, …

 Desirable

Feasible

Sustainable

 Obstacles

Observations

Incentives

https://github.com/alanz/HaRe

https://www.cs.kent.ac.uk/projects/wrangler

https://gitlab.com/trustworthy-refactoring/
refactorer

