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What do you mean by “refactoring”?











What does “refactoring” mean?

Minor edits or wholesale changes

Something local or of global scope

Just a general change in the software … 

               … or something that changes its  
structure, but not its functionality? 

Something chosen by a programmer …

 … or chosen by an algorithm?
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What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

 

    

 

 

 



What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, …

Generalising a function … extracting a definition.

 

 



Extension and reuse

    io:format("ping!~n"), 
    timer:sleep(500),
    b ! {msg, Msg, N - 1},

loop_a() ->
    receive
      stop -> ok;
      {msg, _Msg, 0} -> loop_a();
      {msg, Msg, N} ->

    loop_a()
     end.

Function extraction in Erlang



Extension and reuse

    io:format("ping!~n"), 
    timer:sleep(500),
    b ! {msg, Msg, N - 1},

loop_a() ->
    receive
      stop -> ok;
      {msg, _Msg, 0} -> loop_a();
      {msg, Msg, N} ->

    loop_a()
     end.

Let’s turn this into a function

Function extraction in Erlang



loop_a() ->
    receive
      stop -> ok;
      {msg, _Msg, 0} -> loop_a();
      {msg, Msg, N} ->

    io:format("ping!~n"), 
    timer:sleep(500),
    b ! {msg, Msg, N - 1},
    loop_a()

     end.
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    timer:sleep(500),
    b ! {msg, Msg, N - 1},
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Function extraction in Erlang

loop_a() ->
    receive
      stop -> ok;
      {msg, _Msg, 0} -> loop_a();
      {msg, Msg, N} ->

    loop_a()
     end.

     body(Msg,N),

body(Msg,N) ->
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Extension and reuse



What sort of refactoring interests us?

Changes beyond the purely local, which can be effected easily.

Renaming a function / module / type / structure.

Changing a naming scheme: camel_case to camelCase, …

Generalising a function … extracting a definition.

Changing a type representation.

Changing a library API.

Module restructuring: e.g. removing inclusion loops. 



Refactoring tools
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=

Transformation
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Refactoring
=

Transformation + Pre-condition



How to refactor?

By hand … using an editor

Flexible … but error-prone.

Infeasible in the large. 

Tool-supported

Handles transformation and analysis.

Scalable to large-code bases: module-aware.

Integrated with tests, macros, ...
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Traversals, strategies and visitors

Multi-purpose

Collect and analyse info.

Effect a transformation. 

Separation of concerns

Point-wise operation …

… and tree traversal
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Haskell

Strongly typed
Lazy
Pure + Monads
Complex type system
Layout sensitive

Erlang

Weakly typed
Strict
Some side-effects
Concurrency
Macros and idioms

OCaml

Strongly typed
Strict
Refs etc and i/o.
Modules + interfaces
Scoping/modules 

Wrangler

Full Erlang
Erlang, syntax_tools
HaRe + module,  
API, DSL, context.
Naive strategic prog

ROTOR

(O)Caml
OCaml compiler
So far: renaming &
 dependency theory.
Derived visitors

HaRe

Haskell 98 
Programmatica / 
GHC Haskell API 
Basic refactorings, 
clones, type-based, …
Strategic prog



Wrangler in a nutshell

Automate the simple things, and …    

… provide decision support tools otherwise.

Embed in common IDEs: emacs, eclipse, …

Handle full language, multiple modules, tests, ...

Faithful to layout and comments.

Build in Erlang and apply the tool to itself.



Wrangler

Basic refactorings: structural, macro, 
process and test-framework related
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Analyses needed …

Static semantics

Types

Modules

Side-effects

 

 

 

 



Analyses needed …

Static semantics

Types

Modules

Side-effects

Atoms

Process structure

Macros

Conventions and frameworks



  Desirable

Feasible

Viable

dschool.stanford.edu
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Renaming



What is in a name?

Resolving names requires not just the static structure … 

 … but also types (polymorphism, overloading) and modules.

Beyond the wits of regexps.

Leverage other infrastructure or the compiler.



     
 f x = (x*x + 42) + (x + 42) 

 f x y = (x*x + y) + (x + y) 

Types sneak in …

✓



     
 f x = (x*x + 42) + (x + 42) 

 f x y = (x*x + y) + (x + y) 

Types sneak in …

funny = length ([[True]] ++ []) +  
        length ([True] ++ []) 

funny xs = length ([[True]] ++ xs) +  
           length ([True] ++ xs) 

×

✓



 … as do different sorts of atoms

-module(foo). 
-export([foo/1,foo/0]). 

foo() -> spawn(foo,foo,[foo]). 

foo(X) -> io:format("~w",[X]). 



f1(P) -> 
    receive 
        {ok, X} -> P!thanks; 
        {error,_} -> P!grr 
    end, 
    P!{value,X}. 

And some peculiarities

×



f1(P) -> 
    receive 
        {ok, X} -> P!thanks; 
        {error,_} -> P!grr 
    end, 
    P!{value,X}. 

And some peculiarities

f2(P) -> 
    receive 
        {ok, X} -> P!thanks; 
        {error,X} -> P!grr 
    end, 
    P!{value,X}. 

×

✓



Abandon any idea 
of building language-

independent refactoring 
tools.



OCaml’s module system
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PLDI 2019

Theory of naming dependency: 
value extensions.

Characterise renamings by 
value extension kernels.

Abstract renaming semantics,    
 proved adequate: 

“Two equal abstractions have     
equal concrete versions”

Formalised using Coq.

Characterising Renaming within OCaml’s Module
System: Theory and Implementation

Reuben N. S. Rowe
Hugo Férée

Simon J. Thompson
Scott Owens

School of Computing, University of Kent, Canterbury, UK
{r.n.s.rowe,h.feree,s.j.thompson,s.a.owens}@kent.ac.uk

Abstract
We present an abstract, set-theoretic denotational semantics
for a significant subset of OCaml and its module system,
allowing to reason about the correctness of renaming value
bindings. Our semantics captures information about the bind-
ing structure of programs, as well as about which declara-
tions are related by the use of different language constructs
(e.g. functors, module types and module constraints). Correct
renamings are precisely those that preserve this structure.
We show that our abstract semantics is sound with respect to
a (domain-theoretic) denotational model of the operational
behaviour of programs, and that it allows us to prove vari-
ous high-level, intuitive properties of renamings. This formal
framework has been implemented in a prototype refactoring
tool for OCaml that performs renaming.
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1 Introduction
Refactoring is the process of changing how a program works
without changing what it does, and is a necessary and on-
going process in both the development and maintenance of
any codebase [12]. Whilst individual refactoring steps are
often conceptually very simple, applying them in practice
can be complex, involving many repeated but subtly varying
changes across the entire codebase. Moreover refactorings
are, by and large, context sensitive, meaning that carrying
them out by hand can be error-prone and the use of general-
purpose utilities (even powerful ones such as grep and sed)
is only effective up to a point.
This immediately poses a challenge, but also presents an

opportunity. The challenge is how to ensure, or check, a
proposed refactoring does not change the behaviour of the
program (or does so only in very specific ways). The opportu-
nity is that since refactoring is fundamentally a mechanistic
process it is possible to automate it. Indeed, this is desirable
in order to avoid human-introduced errors. Our aim in this
paper is to outline how we might begin to provide a solution
to the dual problem of specifying and verifying the correct-
ness of refactorings and building correct-by-construction
automated refactoring tools for OCaml [22, 31].
Renaming is a quintessential refactoring, and so it is on

this that we focus as a first step. Specifically, we look at re-
naming the bindings of values in modules. One might very
well be tempted to claim that, since we are in a functional
setting, this is simply α-conversion (as in λ-calculus) and
thus trivial. This is emphatically not the case.OCaml utilises
language constructs, particularly in its module system, that
behave in fundamentally different ways to traditional vari-
able binders. Thus, to carry out renaming inOCaml correctly,
one must take the meaning of these constructs into account.

Some of the issues are illustrated by the example program
in fig. 1 below. This program defines a functor Pair tak-
ing two modules as arguments, which must conform to the
Stringable module type. It also defines two structures Int
and String. It then uses these as arguments in applications
of Pair, the result of which is bound as the module P. To
rename the to_string function in the module Int correctly,
we must take the following into account.

950



Building tools can  
lead us to 

 re-think theory.



Clone detection



Duplicate code considered harmful

It’s a bad smell …

increases chance of bug propagation,

increases size of the code,

increases compile time, and,

increases the cost of maintenance. 

But … it’s not always a problem.



What is similar code?

(X+3)+4 4+(5-(3*X))
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What is similar code?

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

X+Y

The anti-unification gives the (most specific) 
common generalisation. 

f(Z,W) -> X+Y.

f(X+3,4) f(4,5-(3*X))



What makes a clone (in Erlang)?

Thresholds  

Number of expressions  

Number of tokens 

Number of variables introduced  

Similarity = mini=1..n(size(Gen)/size(Ei))  



What makes a clone (in Erlang)?

Thresholds … and their defaults

Number of expressions ≥ 5

Number of tokens ≥ 20

Number of variables introduced ≤ 4

Similarity = mini=1..n(size(Gen)/size(Ei)) ≥ 0.8



Clone detection and removal 

Find a clone, name it and its parameters, and eliminate.

What could go wrong?



What could go wrong?
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What could go wrong?

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down?

Widows and orphans, sub-clones, premature generalisation, …

new_fun(FilterName, NewVar_1) ->  
  FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),  
  %%Add rulests to filter  
  RuleSetNameA = "a",  
  RuleSetNameB = "b",  
  RuleSetNameC = "c",  
  RuleSetNameD = "d",  
  ... 16 lines which handle the rules sets are elided ...    
  %%Remove rulesets  
  NewVar_1,  
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->  
  %%Add rulests to filter  
  RuleSetNameA = "a",  
  RuleSetNameB = "b",  
  RuleSetNameC = "c",  
  RuleSetNameD = "d",  
  ... 16 lines which handle the rules sets are elided ...    
  %%Remove rulesets  
   
{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.



What could go wrong?

Naming can’t be automated, nor the order of eliminating.

Bottom-up or top-down?

Widows and orphans, sub-clones, premature generalisation, …



Bring in the experts

With a domain expert …

can choose in the right order,

name the clones and their parameters, …

And the domain expert can learn in the process …

e.g. test code example from Ericsson.



Support user 
involvement rather than           

full automation.



  Desirable

Feasible

Sustainable
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User data



Keep it simple!



User observations

Comprehension exercise on student coursework.

Clone detection exercise with Ericsson staff.

Workflow integration at LambdaStream.

Developing and using DSL with Quviq.

Sitting-in with OCaml group at Jane Street.



  Obstacles

Observations

Incentives



Why not?

We can do things it would take too long to do without a tool.

We can be less risk-averse: e.g. in doing generalisation.

Exploratory: try and undo if we wish.

95% ≫ 0%: hit most cases … fix the last 5% “by hand”.



Concrete incentives

Quviq

Routine task of removing    
code instrumentation       
before shipping.

Estimated 1 person-month       
of savings per annum.

Jane Street

Compliance overhead

Reduce the cost of code    
review for refactorings          
like renamings …

 … if a tool is trusted.



The ecosystem

Editor integration … but which are the most popular?

LSP support.

Build and test tools, pre-processors.

Dependencies … and Windows.



Benefits should  
outweigh costs.



  Obstacles

Observations

Incentives



Layout



Appearance must be right

my_list() ->
    [ foo,
      bar,
      baz,
      wombat
    ]

my_funny_list() ->
    [ foo
      ,bar
      ,baz
      ,wombat
    ] 
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    [ foo
      ,bar
      ,baz
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    ] 

{v1, v2, v3}

{v1,v2,v3} 

f (g x y)

f $ g x y



Appearance must be right

my_list() ->
    [ foo,
      bar,
      baz,
      wombat
    ]

my_funny_list() ->
    [ foo
      ,bar
      ,baz
      ,wombat
    ] 

data MyType = Foo |
              Bar |
              Baz

data HerType = Foo
             | Bar
             | Baz

{v1, v2, v3}

{v1,v2,v3} 

f (g x y)

f $ g x y



Preserving appearance

Preserve precisely parts not touched.

Pretty print … or use lexical details.



Preserving appearance isn’t built in

Compilers throw away some / all layout info, comments, …

Need to build infrastructure to hide layout manipulations.

Learn layout for synthesised code from existing codebase?

Scrap Your Reprinter by Orchard et al





“but there is 
something freeing about it. 
Nothing like not needing to 

make choices …”



I have types … I don’t need a tool



Up to 90% of refactorings
done by hand

ICSE 2009



https://www.reddit.com/r/haskell/comments/65d510/experience_reports_on_refactoring_haskell_code/

https://www.fpcomplete.com/blog/2016/12/software-project-maintenance-is-where-haskell-shines



But is it really as simple as that … ?

Changes in bindings – e.g. name capture – can give code that 
compiles and type checks, but gives different results.

Are you really prepared to fix 1,000 type error messages?

Maybe just be risk averse …





From Monad to Applicative

moduleDef :: LParser Module  
moduleDef = do 
    reserved "module" 
    modName <- identifier 
    reserved "where" 
    imports <- layout importDef (return ()) decls <- layout decl (return ()) 
    cnames <- get 
    return $ Module modName imports decls cnames 



From Monad to Applicative

moduleDef :: LParser Module 
moduleDef = Module 
    <$> (reserved "module" *> identifier <* reserved "where")                
    <*> layout importDef (return ()) 
    <*> layout decl (return ()) 
    <*> get    

moduleDef :: LParser Module  
moduleDef = do 
    reserved "module" 
    modName <- identifier 
    reserved "where" 
    imports <- layout importDef (return ()) decls <- layout decl (return ()) 
    cnames <- get 
    return $ Module modName imports decls cnames 



From List to Vector

map    :: (a -> b) -> [a] -> [b] 
app    :: [a] -> [a] -> [a]                              
filter :: (a -> Bool) -> [a] -> [a] 

take   :: Int -> [a] -> [a] 



From List to Vector

map    :: (a -> b) -> [a] -> [b] 
app    :: [a] -> [a] -> [a] 
filter :: (a -> Bool) -> [a] -> [a] 
                   
take   :: Int -> [a] -> [a] 

vmap    :: (a -> b) -> (Vec n a) -> (Vec n b) 
vapp    :: (Vec n a) -> (Vec m a) -> (Vec n+m a) 
vfilter :: (a -> Bool) -> (Vec n a) -> (Vecs n a) 

vtake   :: (n :: Int) -> (Vec m a) -> (Vec (min n m) a) 
vtake   :: (n :: Int) -> (Vec m a) -> (Vecs n a) 



Types vs refactorings?

The more precise the typings, the more fragile the structure.

Difficulty of getting it right first time:  Vec vs Vecs vs …

vmap    :: (a -> b) -> (Vec n a) -> (Vec n b) 
vapp    :: (Vec n a) -> (Vec m a) -> (Vec n+m a) 
vfilter :: (a -> Bool) -> (Vec n a) -> (Vecs n a) 

vtake   :: (n :: Int) -> (Vec m a) -> (Vec (min n m) a) 
vtake   :: (n :: Int) -> (Vec m a) -> (Vecs n a) 



Types can both  
help and hinder  

effective refactoring



  Obstacles

Observations

Incentives



Why should I trust your  
refactoring tool on my code?
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Refactoring Tools Are 
Trustworthy Enough
John Brant

Refactoring tools don’t have to guarantee correctness to be 
useful. Sometimes imperfect tools can be particularly helpful.

A COMMON DEFINITION of refactor-
ing is “a behavior-preserving transfor-
mation that improves the overall code 
quality.” Code quality is subjective, and 
a particular refactoring in a sequence 
of refactorings often might temporar-
ily make the code worse. So, the code- 
quality-improvement part of the defi -
nition is often omitted, which leaves 
that refactorings are simply behavior-
preserving transformations.

From that defi nition, the most impor-
tant part of tool-supported refactorings 
appears to be correctness in behavior 
preservation. However, from a develop-
er’s viewpoint, the most important part 
is the refactoring’s usefulness: can it help 
developers get their job done better and 
faster? Although absolute correctness is a 
great feature to have, it’s neither a neces-
sary nor suffi cient condition for develop-
ers to use an automated refactoring tool.

Consider an imperfect refactoring 
tool. If a developer needs to perform a 
refactoring that the tool provides, he or 
she has two options. The developer can 
either use the tool and fi x the bugs it in-
troduced or perform manual refactor-
ing and fi x the bugs the manual changes 
introduced. If the time spent using the 
tool and fi xing the bugs is less than the 
time doing it manually, the tool is use-
ful. Furthermore, if the tool supports 
preview and undo, it can be more use-

ful. With previewing, the developer can 
double-check that the changes look cor-
rect before they’re saved; with undo, the 
developer can quickly revert the changes 
if they introduced any bugs.

Often, even a buggy refactoring tool 
is more useful than an automated refac-
toring tool that never introduces bugs. 
For example, automated tools often can’t 
check all the preconditions for a refactor-
ing. The preconditions might be undecid-
able, or no effi cient algorithm exists for 
checking them. In this case, the buggy 
tool might check as much as it can and 
proceed with the refactoring, whereas 
the correct version sees that it can’t 
check everything it needs and aborts 
the refactoring, leaving the developer to 
perform it manually. Depending on the 
buggy tool’s defect rate and the develop-
er’s abilities, the buggy tool might intro-
duce fewer errors than the correct tool 
paired with manual refactoring.

Even when a refactoring can be im-
plemented without bugs, it can be ben-
efi cial to relax some preconditions to 
allow non-behavior-preserving transfor-
mations. For example, after implement-
ing Extract Method in the Smalltalk 
Refactoring Browser, my colleagues and 
I received an email requesting that we 
allow the extracted method to override 

POINT

continued on page 82
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Trust Must Be Earned
Friedrich Steimann

 Creating bug-free refactoring tools is a real challenge. 
However, tool developers will have to meet this 
challenge for their tools to be truly accepted.

WHEN I ASK people about the progress 
of their programming projects, I often 
get answers like “I got it to work—now 
I need to do some refactoring!” What 
they mean is that they managed to tweak 
their code so that it appears to do what 
it’s supposed to do, but knowing the pro-
cess, they realize all too well that its re-
sult won’t pass even the lightest code re-
view. In the following refactoring phase, 
whether it’s manual or tool supported, 
minor or even larger behavior changes go 
unnoticed, are tolerated, or are even wel-
comed (because refactoring the code has 
revealed logical errors). I assume that this 
conception of refactoring is by far the 
most common, and I have no objections 
to it (other than, perhaps, that I would 
question such a software process per se).

Now imagine a scenario in which 
code has undergone extensive (and ex-
pensive) certifi cation. If this code is 
touched in multiple locations, chances 
are that the entire certifi cation must be 
repeated. Pervasive changes typically 
become necessary if the functional re-
quirements change and the code’s cur-
rent design can’t accommodate the new 
requirements in a form that would al-
low isolated certifi cation of the changed 
code. If, however, we had refactoring 
tools that have been certifi ed to preserve 
behavior, we might be able to refactor 
the code so that the necessary functional 

changes remain local and don’t require 
global recertifi cation of the software. 
Unfortunately, we don’t have such tools.

There’s also a third perspective—
the one I care about most. As an engi-
neer, and even more so as a researcher, 
I want to do things that are state-of-the-
art. Where the state-of-the-art leaves 
something to be desired, I want to push 
it further. If that’s impossible, I want 
to know why, and I want people to un-
derstand why so that they can adjust 
their expectations. Refactoring-tool us-
ers will more easily accept limitations if 
these limitations are inherent in the na-
ture of the matter and aren’t engineering 
shortcomings.

What we have today is the common 
sentiment that “if only the tool people 
had enough resources, they would fi x 
the refactoring bugs,” suggesting that 
no fundamental obstacles to fi xing them 
exist. This of course has the corollary 
that the bugs aren’t troubling enough to 
be fi xed (because otherwise, the neces-
sary resources would be made available). 
For this corollary, two explanations are 
common: “Hardly anyone uses refactor-
ing tools anyway, so who cares about 
the bugs?” and “The bugs aren’t a real 
problem; my compiler and test suite will 
catch them as I go.” I reject both expla-

COUNTERPOINT
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Challenges to 
and Solutions 
for Refactoring 
Adoption
An Industrial Perspective

Tushar Sharma and Girish Suryanarayana, Siemens Technology and 
Services Private Limited

Ganesh Samarthyam, independent consultant and corporate trainer

// Several practical challenges must be overcome to 
facilitate industry’s adoption of refactoring. Results 
from a Siemens Corporate Development Center India 
survey highlight common challenges to refactoring 
adoption. The development center is devising and 
implementing ways to meet these challenges. //

INDUSTRIAL SOFTWARE systems 
typically have complex, evolving 
code bases that must be maintained 
for many years. It’s important to en-
sure that such systems’ design and 
code don’t decay or accumulate tech-
nical debt.1 Software suffering from 
technical debt requires signifi cant ef-
fort to maintain and extend.

A key approach to managing 
technical debt is refactoring. Wil-
liam Opdyke defi ned refactoring 
as “behavior-preserving program 
transformation.”2 Martin Fowler’s 
seminal work increased refactoring’s 
popularity and extended its acade-
mic and industrial reach.3 Modern 
software development methods such 

as Extreme Programming (“refactor 
mercilessly”)4 have adopted refactor-
ing as an essential element.

However, our experience assess-
ing industrial software design5 and 
training software architects and de-
velopers at Siemens Corporate De-
velopment Center India (CT DC IN) 
has revealed numerous challenges to 
refactoring adoption in an industrial 
context. So, we surveyed CT DC IN 
software architects to understand 
these challenges. Although we knew 
many of the problems facing refac-
toring adoption, our survey gave us 
insight into how these challenges 
ranked within CT DC IN. Drawing 
on this insight, we outline solutions 
to the challenges and briefl y describe 
key CT DC IN initiatives to encour-
age refactoring adoption. We hope 
our survey fi ndings and refactoring-
centric initiatives help move the soft-
ware industry toward wider, more 
effective refactoring adoption.

Survey Details
CT DC IN is a core software de-
velopment center for Siemens prod-
ucts. Its software systems pertain 
to different Siemens sectors (Indus-
try, Healthcare, Infrastructure & 
Cities, and Energy), address diverse 
domains, are built on different plat-
forms, and are in various develop-
ment and maintenance stages.

CT DC IN, which has increas-
ingly focused on improving its soft-
ware’s internal quality, wanted to 
understand the organization’s status 
quo regarding technical debt, code 
and design smells, and refactoring. 
Furthermore, recent internal de-
sign assessments and training ses-
sions revealed challenges to refactor-
ing adoption. To better understand 
these deterrents—and thereby adopt 
appropriate measures to address 
them—we conducted our survey. 

FOCUS: REFACTORING

Breaking code

Cannot justify the time spent

Unpredictable impact

Difficult to review

Inadequate tools
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Preserving meaning



Do these two programs mean the same thing?

Difficult to examine and compare the meanings directly …

 … so we look at other ways of trying to answer this.



Different scopes

main

main module

“all” modules

“all” functions



Different contexts

All tests for the project.

Refactorings need to be test-framework aware  

Naming conventions: foo and foo_test …

Macro use, etc.

The makefile for the project.

Using these versions of these libraries … which we don’t control.



test verify

instances of            
the refactoring

the refactoring      
itself

Assuring meaning preservation



test verify

instances of            
the refactoring

the refactoring      
itself

Assuring meaning preservation

Rename foo to bar in 
this project.



test verify

instances of            
the refactoring

the refactoring      
itself

Assuring meaning preservation

Rename foo to bar in 
this project.

Renaming for all names, 
functions and projects.



test verify

instances of            
the refactoring ✓ ✓
the refactoring      

itself ✓ ✓



Testing



test verify

instances of            
the refactoring ✓
the refactoring      

itself



Testing new vs old (with Huiqing Li)

module2

function1

function2

module2

function1

function2

Compare the results of function1 and function1 (unmodified) …

… using existing unit tests, and randomly-generated inputs 

… could compare ASTs as well as behaviour (in former case).



test verify

instances of            
the refactoring

the refactoring      
itself ✓



Fully random

moduleR

function1

function2

moduleR

function1

function2

Generate random modules,

… generate random refactoring commands, 

… and check ≣ with random inputs. (w/ Drienyovszky, Horpácsi).

moduleR



Verification



test verify

instances of            
the refactoring

the refactoring      
itself ✓



Tool verification (with Nik Sultana)

Deep embeddings of small languages:

… potentially name-capturing λ-calculus

… PCF with unit and sum types.

Isabelle/HOL: LCF-style secure proof checking.

Formalisation of meta-theory: variable binding, free / bound 
variables, capture, fresh variables, typing rules, etc …

… principally to support pre-conditions.

Figure 1. Automated refactoring process

2.1 Stages in refactoring
Li (2006, see Chapter 4) describes refactoring as being made up
of three stages. This is illustrated in Figure 1. The preprocessing
stage involves producing representations of the program that are
suitable for transformation – this stage involves lexing, parsing,
and possibly further processing to generate a representation of
programs that is more rich than their Abstract Syntax Tree (AST),
if required.
The second stage involves the actual refactoring. Applying a

refactoring involves two steps: checking the refactoring’s precon-
ditions and transforming the program if the preconditions are satis-
fied by the program.
The last stage involves printing the program representation into

the representation we usually manipulate – a list of characters. For
some programming languages, such as Erlang, it suffices to pretty-
print the program since there is a widely-accepted and adhered-to
layout for programs (Li et al. 2006, §3.1). For other languages, such
as Haskell, further processing is required to ensure that the printed
refactored program mimics the layout of the original program since
the language does not enforce a particular layout.

2.2 Preserving program appearance
Since the layout of Haskell programs can be idiosyncratic, transfor-
mation tools need to take this into account by restoring the original
program’s appearance in the transformed program. For Haskell pro-
grams one could choose between explicit delimitation using braces
and using a so-called offside structure: the delimitation of code
is inferred from the code’s indentation. This is described in the
Haskell Report (Jones et al. 2003, §9.3).
During manual refactoring the preservation of layout and com-

ments is straightforward, but automating this preservation can be
challenging. Li (2006, §2.4) describes the automatic preservation
of program appearance for refactored Haskell programs. Her ap-
proach uses two basic program representations: the token stream
and an AST annotated with type and scope information. These two
representations are kept consistent (Li 2006, §4.2.3) since trans-
formations are effected on both: the AST is transformed to effect
changes to the program, and the token stream is also modified to en-
sure that program layout rules are adhered to following the AST’s
transformation. Comments are also preserved – and moved together
with code deemed related – using information in the token stream
and heuristics used to associate comments to code.
Besides program layout and comments, names (of variables,

definitions, etc) are features that should be preserved too. Names
are typically chosen with care in order to improve the program’s
readability. Name information can be obtained from the AST. In the
work described in this paper we focus solely on the main (second)
stage in the refactoring process. Within this stage we concentrate
on the preservation of name information together with program
behaviour. From this point onwards whenever a reference is made
to refactoring we intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditions and a
program transformation. When a refactoring is applied to a pro-
gram, the transformation is effected only if all the preconditions
are satisfied by the program. Otherwise the program is returned un-
changed. A refactoring with conjoined preconditions represented
by the effective predicate Q, and effecting program transformation
T , behaves thus:

λp. if (Qp) then (T p) else p

Let ≃ denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is behaviour-
preserving for arbitrary programs) one must prove that:

∀p. (Qp) −→ (T p) ≃ p

Apart from p, refactorings are usually parametrised by other
values required by transformation T and which might also be con-
sumed by Q. Let us assume that the parameters have already been
provided and that the refactoring is a curried function – so at this
stage we only see the last formal parameter: the program itself.
Together with the program, the parameter values are inputs to the
refactoring and the values themselves might influence whether the
preconditions are satisfied. For example, the rename a variable
refactoring is additionally parametrised by two variable names: the
name to change and the name to change it to. These parameters are
also provided to the refactoring’s preconditions since they include
provisions to ensure that name-clash does not occur as a result of
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refactoring are
not satisfied then the program is not transformed. In implementa-
tions of refactorings, if the preconditions are not satisfied then the
user may be prompted to provide different parameters to the refac-
toring and offered the choice to abandon the refactoring. Let us call
this the interactive model.
A different approach would involve endowing the refactorings

with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditions. The user
is later informed of these changes and might need to effect further
corrective changes. For example, in the event of a name-clash the
refactoring might perform renamings such that the transformation
would still preserve program behaviour. By contrast, this model
involves compensating for preconditions that are not satisfied.
These two models have analogues in the λ-calculus; for exam-

ple, with regards to names a transformation can be defined in a
non-renaming or in a renaming manner. These lead to interactive
and compensating refactoring definitions respectively. We opt for
the interactive approach in the research described in this paper. The
two transformation definitions will be described further in the next
section and the effect each has on the complexity of proofs will be
discussed.
The interactive approach is illustrated by means of a transition

diagram in Figure 2.

2.5 Transformation operations
Transformations might simply replace an (sub)expression with an-
other, or else propagate changes in expressions by using substitu-
tion. Substitution is the canonical transformation operation for clas-
sical λ-calculi – other expositions of λ-calculi may use different
canonical operations. For example when using nominal techniques
(Urban and Tasson 2005) swapping is the canonical operation.
In order to facilitate reasoning about programs, programs are

usually identified ‘up to renaming of bound variables’. Moreover,
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Shallow embedding



test verify

instances of            
the refactoring ✓
the refactoring      

itself



Automatically verify instances of refactorings 

Prove the equivalence of the particular pair of functions / systems 
using an SMT solver …

… SMT solvers linked to Haskell by Data.SBV (Levent Erkok).

Manifestly clear what is being checked. 

The approach delegates trust to the SMT solver …

… can choose other solvers, and examine counter-examples.

DEMUR work with Colin Runciman



h :: Integer->Integer->Integer

h x y = g y + f (g y)
        where
        g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
         where
         g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y



h :: Integer->Integer->Integer

h x y = g y + f (g y)
        where
        g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
         where
         g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk
Q.E.D.
*Refac2> propertyh
Falsifiable. Counter-example:
  s0 = 0 :: SInteger
  s1 = -1 :: SInteger



test verify

instances of            
the refactoring ✓ ✓
the refactoring      

itself ✓ ✓



Trust is a 
complicated, multi-

dimensional issue … but 
we’re working on it.



  Desirable

Feasible

Sustainable

dschool.stanford.edu



Re-use don’t reinvent

Compiler front ends are available …

 … even if they don’t quite support all we need,

 … such as layout preservation, types, …

Keeping up with language evolution, hopefully.

But libraries aren’t necessarily maintained: e.g. Strafunski.



Open Source

Increases trust.

Invites contributors: a shout out to 

 … Alan Zimmermann, who ported Hare to GHC API,

 … Richard Carlsson, who adapted and extended Wrangler,

 … and a number of others.

Editor integration: Language Server Protocol will help.



System openness 

Open Source … confidence in the code … other committers.

Openness of the system …

… you can check the changes that a refactoring makes,

… and for the DSL can see which refactorings performed



Extensibility



API: templates and rules … in Erlang

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.



API: templates and rules … in Erlang

rule({M,F,A}, N) -> 
 ?RULE(?T("F@(Args@@)"),
       begin 
         NewArgs@@=delete(N, Args@@), 
         ?TO_AST("F@(NewArgs@@)")
       end, 
       refac_api:fun_define_info(F@) == {M,F,A}).

delete(N, List) ->  … delete Nth elem of List …

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.



Clone removal



Rename function

Rename variables

Reorder variables

Add to export list

Fold* against the def.

Clone removal



Clone removal in the DSL

Transaction as a whole … non-transactional components OK. 

Not just an API: ?transaction etc. modify interpretation of what 
they enclose …

?transaction(
     [?interactive( RENAME FUNCTION )
      ?refac_( RENAME ALL VARIABLES OF THE FORM NewVar*)
      ?repeat_interactive( SWAP ARGUMENTS )
      ?if_then( EXPORT IF NOT ALREADY )       
      ?non_transaction( FOLD INSTANCES OF THE CLONE )
     ]).





It’s better to 
implement libraries, APIs 
and DSLs than individual 

refactorings



What is the ideal language  
supporting refactoring?



What’s the ideal language for refactoring?

Changes are first class. 

No layout choice: you have to 
conform to layout rules. 

No macros, reflection, … 

Compiler stability

Integration with a semantically-
aware change management tool.

Theory of patches, …



  Desirable

Feasible

Sustainable



  Obstacles

Observations

Incentives



https://github.com/alanz/HaRe

https://www.cs.kent.ac.uk/projects/wrangler

https://gitlab.com/trustworthy-refactoring/
refactorer


