
ERLANG: THE POWER OF
FUNCTIONAL PROGRAMMING

SIMON THOMPSON

Erlang is a concurrent, fault-
tolerant, robust, distributed
programming language …

… that is based on the paradigm
of functional programming.

FUNCTIONAL
ERLANG

pattern
matching

recursion

do-it-yourself
data types

immutable
variables

tail recursion

list comprehensions

standard HOFs

numbers
atoms
tuples
lists

functions

“the influence is clear”

http://webcem01.cem.itesm.mx:8005/erlang/cd/downloads/hopl_erlang.pdf

fun

FUNCTIONS
AS DATA

“Functions are first-class citizens”

A function actively represents
behaviour of some sort, and we
deal with it just like any other

kind of data.

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

What is a strategy?

Random
Echo

No repeats
Statistical

…

We choose what to play,
depending on your last
move, or the history of

all your moves.

What is a strategy?

We choose what to play,
depending on your last
move, or the history of

all your moves.

What is a strategy?

Random
Echo

No repeats
Statistical

…

What is a strategy combinator?

Choose randomly between these strategies.

Apply them all and choose most popular result.

Replay each of these strategies on the history so
far and apply the one that’s been best so far.

What is a strategy combinator?

Choose randomly between these strategies.

Apply them all and choose most popular result.

Replay each of these strategies on the history so
far and apply the one that’s been best so far.

Take home

Toy example
Generality: not just a finite set …
Up a level: combining strategies

http://worldrps.com

https://github.com/simonjohnthompson/streams

PARSER
COMBINATORS

text parse tree

remaining text

text parse tree

remaining text

text parse tree

remaining text

text parse tree

remaining text

Take home

Real example
Haskell, Scala, OCaml, Elixir, …

Hints at a design pattern

but …

If all we want is one parse,
then we should only
evaluate the list of
possible results

on demand

EVALUATION
ON DEMAND

function evaluation in Erlang

function evaluation in Erlang

evaluate the arguments
before the body

function evaluation in Erlang

evaluate the arguments
before the body

fully evaluate
the argument

but if an argument is a
function then it’s

passed unevaluated.

but if an argument is a
function then it’s

passed unevaluated.

but if an argument is a
function then it’s

passed unevaluated.

STREAMS

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

streams

build

deconstruct

streams

build

deconstruct

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …

42, 43, 44, 45, 46, 47, 48, 49, 50, …

2, 3, 5, 7, 11,
13, 17, 19,
23, 29, 31,
37, 41, 43,

47, …

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

demo

Take home

“infinite” streams
apparently circular

repeated re-computation

LAZY 
EVALUATION

ensure that each argument is
evaluated at most once

ensure that each argument is
evaluated at most once

we must ensure that results
are memoised in some way

but isn't
that a job

for the
compiler?

key idea

we explicitly manage how
results are stored once evaluated

use an ETS table to keep track
of evaluated results, or …

… model the store functionally,
thread it through the calculations

USING
ETS TABLES

store either the head and tail,
or a “thunk” to be evaluated

Explicitly managed refs

Simulates full lazy implementation

Uses impure features …
… but a smooth transition

AN EXPLICIT
STORE

input result

store after

store before

Printing out the first N values

Node to {Head, {thunk, Tail}}

Thunk takes state as argument …
… so that the suspended

computation can be evaluated in
the context of the current state.

MEMOISATION

use ETS for general memoisation

use ETS for general memoisation

vectors

vectors

TO CONCLUDE

functions are flexible and
powerful modelling tool

strategies
parsers

simulation

pure modelling of effects
is not straightforward

monads, monad transformers,
effects, … provide some

useful patterns

reify?

can model DSLs of strategies,
parsers, and write interpreters

for these DSLs into the
functions we’ve seen here

data and types

all the data we used here was
well understood 30 years ago

it is just that the types have changed

functions are flexible and
powerful modelling tool

strategies
parsers

simulation

https://github.com/simonjohnthompson/streams

and I didn’t say
anything directly
about dependent

types ;-(

