
FUNCTIONAL PROGRAMMING
FOR 3G BLOCKCHAIN

SIMON THOMPSON, IOHK & KENT UNI

Haskell

Erlang

OCaml

Scala

Elm

F#

Idris

LISP
Miranda

Elixir

Haskell

Erlang

OCaml

Scala

Elm

F#

Idris

LISP
Miranda

Elixir

pattern
matching

data

higher-order
functions

recursionlambdas
types

pattern
matching

data

higher-order
functions

recursionlambdas
types

pattern
matching

data

higher-order
functions

recursionlambdas
types

monads

monoids

reactive

lazy

immutability

lenses

DSLs

types,
types,
types,
 …

effects

dependent
types

fun

Model the world as data

immutable
data

 32

 4 3

 32

 324

 32

 4

Model the world as data
+

Functions over the data

And when we say “function” …

We mean in the mathematical
sense, taking inputs to outputs,

and doing nothing else!

So what about
side-effects?

input output

input output

state after

state before

Model the world as data
+

Functions over the data
+

Functions as data

Behaviour becomes data:
  

Behaviour becomes data:
map/reduce, monads,

APIs, laziness …

rock
paper

scissors

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

I choose what to
play, depending on

the history of all
your moves.

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

data Move = Rock
 | Paper
 | Scissors

type Strategy = [Move] -> Move

I choose what to
play, depending on

the history of all
your moves.

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

data Move = Rock
 | Paper
 | Scissors

type Strategy = [Move] -> Move

I choose what to
play, depending on

the history of all
your moves.

beat :: Strategy

beat (x:xs) =
 case x of

 Rock -> Scissors
 Paper -> Rock
 Scissors -> Paper

beat [] = Rock

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

types

Functions give us expressivity
+

Types help to constrain that
+

Type-driven development

type Point = (Float,Float)

data Shape = Circle Point Float
 | Rectangle Point Float Float

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

nub: remove all duplicates

type inference

type inference
polymorphism = generics  

 

type inference
polymorphism = generics
type classes = overloading

type inference
polymorphism = generics
type classes = overloading

monads, monoids, lenses, …

type inference
polymorphism = generics
type classes = overloading

monads, monoids, lenses, …
dependent types

not just “types”
effects

information flow
regions

…

calculation

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

nub: remove all duplicates

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Rewrite … work “top down”
nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

Not just in theory ...

Haskell

startups

GHC

stack/cabal

tools

IDEs

experienced
people

metaprogramming

libraries

beacon language

Cardano

3rd-gen

PoS

Sidechains

Secure foundations

This board belongs to Newcastle University PhD student Tom
Fisher, who is doing research in homological algebra.

Thanks to Christian Perfect for the photo.
whatsonmyblackboard.wordpress.com

http://www.ncl.ac.uk/maths/
http://en.wikipedia.org/wiki/Homological_algebra
https://twitter.com/christianp

Secure foundations
Immutable data
Explicit effects

Functions as data
Expressive types

Secure foundations
Immutable data
Explicit effects

Functions as data
Expressive types

Develop from a formal spec

Secure foundations
Develop from a formal spec

Property-based random tests
Model in a proof assistant
Minimal “napkin” machine

Haskell

Cardano SL

Plutus

Marlowe
Real world / time User wallets

Scripting Cardano

Minimal “napkin” machine
 

Functional transaction model

UTxO vs Accounts

Functional, dataflow

Compositional

Imperative, entangled

Shared state

Extended UTxO

UTxO vs Extended UTxO

Validator(Redeemer) = True
Validator(Redeemer,
 Data,
 State) = True

Validator(Redeemer,
 Data,
 State) = True

UTxO vs Extended UTxO

data flows with value

scripts have an identity

a transaction can control
how its UTxOs are spent

Haskell “all the way down”

contribute :: Campaign -> Value -> MockWallet ()
contribute campaign value = do
 when (value <= 0) $
 throwOtherError "Must contribute a positive
value"

 ownPK <- ownPubKey
 tx <- payToScript
 (Ledger.scriptAddress
(contributionScript campaign))
 value
 DataScript (Ledger.lifted ownPK)

 register (refundTrigger campaign)
 (refundHandler (Ledger.hashTx tx)
campaign)

contributionScript :: Campaign -> ValidatorScript
contributionScript campaign =
 ValidatorScript (validator `apply` campaign)
 where validator =

 Ledger.fromCompiledCode $$(PlutusTx.compile
 [|| (\Campaign{..} action contrib tx ->
 let
 PendingTx ps outs _ _ (Height h) _ _
= tx
 isValid = case action of
 Refund -> h >
collectionDeadline &&

contributorOnly outs &&
 $$(txSignedBy)
tx contrib
 Collect -> h > deadline

Unify on- & off-
chain code

Meta-programming

Domain-specific languages

Domain-specific languages

Domain-specific languages …
… as data types, monads,

… and embedded in Haskell

Marlowe

Marlowe

 (When (Or (majority_chose refund)
 (majority_chose pay))
 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

 (When (Or (majority_chose refund)
 (majority_chose pay))

 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original)

Marlowe

 (When (Or (majority_chose refund)
 (majority_chose pay))
 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

 (When (Or (majority_chose refund)
 (majority_chose pay))
 90
 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original)
 redeem_original)

Marlowe

 (When (Or (majority_chose refund)
 (majority_chose pay))
 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original))

(CommitCash id1 alice 15000 10 100
 (When (Or (majority_chose refund)
 (majority_chose pay))
 90
 (Choice (majority_chose pay)
 (Pay alice bob AvailableMoney)
 redeem_original)
 redeem_original)
 Null)

Implementing Marlowe

Validator(Redeemer,
 Data,
 State) = True

the Marlowe interpreter is a
single Plutus script

use the Data script for
residual contract

we could also compile …

question of fees, code reuse,
libraries, …

Marlowe & ACTUS

www.actusfrf.org

immutable + explicit effects

immutable + explicit effects

immutable + explicit effects
strongly typed + formal specs

immutable + explicit effects
strongly typed + formal specs

full stack + ecosystem

www.iohk.io

github.com/input-output-hk/marlowe

extra slides

Syntax WTF!

 CommitCash com1 alice ada100 10 200
 (CommitCash com2 bob ada20 20 200
 (When (PersonChoseSomething choice1 alice) 100
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))
 (Pay pay1 bob alice ada20 200
 (Both (RedeemCC com1 Null)
 (RedeemCC com2 Null))))
 (RedeemCC com1 Null))
 Null

