
Haskell for
Erlangers

(c) Simon Thompson
University of Kent, 2015

Rationale

Functional languages

• Erlang … you know.

• Haskell … this week.

• Miranda, ML, OCaml, F#, …

• Strongly-typed, rich type languages, …

• LISP, scheme: weakly typed, macros, eval …

Functional languages
• If by that you mean including lambdas

• Java

• JavaScript

• Ruby

• C++

• …

Why learn Haskell?

• A different perspective … change the way
you write Erlang (or Java or …).

• Different tools for different jobs.

• Transformation / language processing.

• DSLs.

• It’s fun!

Haskerl

Non-strict, purely-functional languages, such as Haskell, are perceived
to be inadequate for everyday, get-the-job-done tasks; in particular,
they are seen to be "bad at I/O". Consequently, an informal working
group has been designing an extended variant of Haskell to address
these requirements …

The Perl language is nothing if not "good for everyday, get-the-job-
done" tasks - it puts UNIX at the programmer's fingertips. … What
follows is an informal note about what we call the "Haskerl" extension
to Haskell …

http://www.dcs.gla.ac.uk/~partain/haskerl/partain-1.html

Immutability

Immutability

• Objects whose state doesn’t change …

• … if you want a different object, create one.

• Objects ≈ Values in functional languages.

Immutability

• Java theory and practice: To mutate or not to
mutate? Immutable objects can greatly simplify
your life

• Brian Goetz , Principal Consultant, Quiotix Corp

• http://www.ibm.com/developerworks/java/
library/j-jtp02183/j-jtp02183-pdf.pdf

Immutability

• They can only be in one state, so as long as they are
properly constructed … never get into an inconsistent state.

• You can freely share and cache references to immutable
objects without having to copy or clone them; you can cache
their fields … without worrying about the values becoming
stale or inconsistent with the rest of the object's state.

• They are inherently thread-safe, so you don't have to
synchronize access to them across threads.

Inefficient?

• Compare with garbage collection …

• … gain from the lack of a whole class of errors.

Implementing functional languages

• A functional implementation can share
references to the same object, so no need for
copy to support mutation.

• On “update” copy only the part of the structure
that is affected …

• … smart data structure design can minimise
this.

Erlang recap

Weakly typed

• Numbers, atoms,
tuples and lists.

• (Extensible) records:
syntactic sugar.

• Dynamic aspects.

Val = [12,”34”,[56],{[78]}].

NewTree =
 Tree#tree{value=42}.

F = list_to_atom(“blah”),
apply(?MODULE,F,Args).

Concurrency at the core

• Processes.

• No shared memory.

• Asynchronous
message passing.

• Process ids or names.

Pid = spawn(server,fac,[]),
Pid ! {self(),N},
receive
 {ok,Result} -> …
 stopped -> …
end, …

fac() ->
 receive
 {From, stop} ->
 From ! stopped;
 {From, N} ->
 From ! {ok,fact(N)},
 fac()
 end.

Pattern Matching

• Haskell-style, but …

• Single assignment.

• Bound variables can
appear in patterns.

• Selective receive.

N = 46,
N = 23+23,
N = 35,
 …

receiveFrom(Pid) ->
 receive
 {Pid,Payload} -> …
 … -> …
 end.

receive {foo,Foo} -> … end,
receive {bar,Bar} -> … end …

Open Telecom Platform

• Erlang + OTP.

• Design patterns.

• Generic behaviours.

• Server, FSM, event
handler, supervisor.

• Callback interface.

init(FreqList) ->
 Freqs = {FreqList, []},
 {ok, Freqs}.

terminate(_,_) ->
 ok.

handle_cast(stop, Freqs) ->
 {stop, normal, Freqs}.

handle_call(allocate, From, Freqs)
 ->
 {NewFreqs, Reply} =
 allocate(Freqs, From),
 {reply, Reply, NewFreqs};

Other Erlang features

• Eager evaluation.

• Side effects.

• Name/arity identify a function.

• Bindings: shadows, multiple BOs.

• Macros.

Pragmatics

• One implementation, one standard.

• Well-defined, controlled release cycle.

• Open Source but … Ericsson effort.

• Erlang Extension Proposals.

Haskell for Erlangers

Strongly typed
• Built-in types.

• User-defined types

• Most general types,
at compile time.

• Polymorphism and
overloading.

• Higher types, kinds.

type String = [Char]

data Tree a =
 Leaf a |
 Node (Tree a) (Tree a)

sort :: (Ord a) =>
 [a] -> [a]

:type <any-expression>

Laziness at the core
• Language is pure:

no side-effects.

• Evaluation is lazy.

• Only evaluate when
a value is needed …

• … and only to the
extent that’s needed .

ifThenElse :: Bool -> a -> a
ifThenElse True x y = x
ifThenElse False x y = y

replicate :: Int -> a -> [a]
replicate n x
 = take n (repeat x)
repeat x
 = xs
 where
 xs = x : xs

Pattern Matching

• Erlang-style, but …

• It’s not assignment.

• Bound variables can’t
appear in patterns.

• No repeated
variables in patterns.

N = 46,
N = 23+23,
N = 35,
 …

booksBorrowed pers dbase
 = [bk |
 (pers,bk) <- dbase]

booksBorrowed pers dbase
 = [bk |
 (p,bk) <- dbase,
 p==pers]

Controlled side-effects
• Monads: ADT for

side-effecting
computations.

• m a = computations
returning value of
type a

• do notation: syntactic
sugar for clarity.

goUntilEmpty :: IO ()
goUntilEmpty
 = do line <- getLine
 if (line == [])
 then return ()
 else (do putStrLn line
 goUntilEmpty)

sumTree :: Tree Int -> Id Int
sumTree Nil = return 0
sumTree (Node n t1 t2)
 = do num <- return n
 s1 <- sumTree t1
 s2 <- sumTree t2
 return (num + s1 + s2)

Other Haskell features

• Overloading and type classes.

• Local definitions.

• Module system more complex than Erlang.

• No macros (but there is Template Haskell).

• Language of choice for DSLs.

Pragmatics

• GHC predominates, others exist.

• Standards: Haskell 2010, … cf GHC.

• Haskell Platform: controlled releases.

• HackageDB and Cabal: 3000+
contributed Open Source packages.

• No stable production quality GUI lib.

GHCi and the
Haskell Platform

The Haskell Platform

• The latest version of the compiler
GHC, the “shell” version GHCi,
and various standard libraries.

• Download the platform
http://www.haskell.org/platform/

ghci commands

expression Evaluate expression

:type expr Give the most general type of expr

:load Foo Load and compile the module Foo

:reload Reload the last module loaded

:help Give help on the ghci commands

:quit Quit

Modules in Haskell
• The unit of compilation

is a module.

• Demo lives in Demo.hs

• By default everything is
exported.

• Can hide on import.

• Can import qualified:
name thus: Demo.bar.

module Demo where

import Demo2 hiding (foo)

bar … = … baz …

module Demo2(foo,baz) where

baz … = … …

The basics of Haskell

Function application

• In Erlang: traditional
function application

iff(true,false)

• In Haskell: uses
juxtaposition, just put
the arguments after
the function, separated
by white space

iff True False

Type declarations

• The type declaration
is optional.

• :type iff in GHCi
will tell you the most
general type.

exOr :: Bool -> Bool -> Bool

exOr True y = not y
exOr False y = y

iff x y = not (x `exOr` y)

Characters and strings
• Characters: Char.
• type String = [Char]

• putStr is part of the
IO system using the
IO monad.

• show and read are
overloaded …

’a’,...,’0’,...,’Z’ :: Char
’\n’,’\’’,’\”’,’\t’ :: Char

fromEnum :: Char -> Int
toEnum :: Int -> Char

”string” :: String

putStr :: String -> IO ()

show :: a -> String
read :: String -> a

Guards

• Switch between
different alternatives
using guards.

• Guard can be any
Boolean expression.

• Erlang: compare with
when

max :: Int -> Int -> Int

max x y
 | x>=y = x
 | x<y = y

max’ x y
 | x>=y = x
 | otherwise = y

max’’ x y
 | x>y = x
max’’ x y
 = y

Local definitions
• Definitions can be

local: where and let.

• wheres are local to
function equations.

• let definitions are
local to expressions.

• Size of Haskell … .

triArea a b c
 = sqrt(s*(s-a)*(s-b)*(s-c))
 where
 s = (a+b+c)/2

triArea a b c
 = let
 s = (a+b+c)/2
 in
 sqrt(s*(s-a)*(s-b)*(s-c))

Layout sensitive

• The first character of
a definition opens up
a box …

• … which is closed
only when something
below or to the left.

• “Offside rule”

mystery x = x*x

 +x

 +2

next x = …

Layout in practice

• In Emacs with
Haskell mode,
repeated tabbing
will take you
through various
sensible layout
options.

mystery x y …
 | guard1 = result1
 | guard2 = res…
 …ult2
 …
 | guardn = resultn
 where
 local1 = …
 …
 local2 … = …

Types: tuples and lists

Tuples

• Tuples enclosed in
parentheses: (…,…,…)

• Heterogeneous.

• Access by pattern
matching (…,…,…).

• Erlang compare with
{…,…,…}

addPair :: (Int,Int) -> Int

addPair (n,m) = n+m

type Person = (String,Int)

showPers :: Person -> String

showPers (name,age)
 = name ++ show age

Lists
• Lists in square

brackets: […,…,…]

• Access by pattern
matching over the
constructor (x:xs).

• Homogeneous.

• Static typing still OK.

addLst :: [Int] -> Int

addLst [] = 0
addLst (n:l) = n + addLst l

add2elem :: [Int] -> Int

add2elem [n,m] = n+m

-- what do these do?

puzzle [n:l] = n + puzzle l

puzzle’ [n:l] = n+1

Defining data types

Rock - Paper - Scissors

• Enumerated type
with three elements.

• Plus a bit of type
class magic (later).

• Definitions by
pattern matching.

data Move
 = Rock | Paper | Scissors
 deriving (Show,Eq)

beat :: Move -> Move
beat Rock = Paper
beat Paper = Scissors
beat Scissors = Rock

outcome :: Move -> Move -> Int
outcome Rock Rock = 0
outcome Rock Paper = -1
outcome Rock Scissors = 1
 …

data types

• Elements of the
People type are of the
form
Person n a
where n is a String
and a an Int.

type Name = String
type Age = Int

data People
 = Person Name Age
 deriving (Eq,Show)

Person ”Ronnie” 14
Person ”Simon” 44

showPerson :: People -> String

showPerson (Person n a) =
 n ++ ” -- ” ++ show a

Terminology
• Person is a constructor

used to build elements.

• Person is a function.

• Constructors begin
with capitals.

• Erlang: compare with
{person,Name,Age}

data People
 = Person Name Age
 deriving (Eq,Show)

Person
 :: Name -> Age -> People

Compare

• Compare product
types with tuples.

data People
 = Person Name Age
 deriving (Eq,Show)

type People
 = (Name, Age)

Alternatives

• Different alternatives,
built by the different
constructors.

• Incredibly useful for
modelling: usually
things come in a
number of forms.

data Shape =
 Circle Float |
 Rect Float Float
 deriving (Eq,Show,Ord,Read)

isRound :: Shape -> Bool
isRound (Circle _) = True
isRound (Rect _ _) = False

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rect h w) = h*w

Questions

• Define a function to
give the perimeter of
a shape.

• Add triangles to the
type and the function
definitions.

• Compare with Java?

data Shape =
 Circle Float |
 Rect Float Float
 deriving (Eq,Show)

isRound :: Shape -> Bool
isRound (Circle _) = True
isRound (Rect _ _) = False

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rect h w) = h*w

Syntax … ()

Parentheses

• Tuples must be
constructed like this
(…,…,…)

• Operators as
functions, (&&).

• Operator sections,
(1+), (`rem`2).

(&&) True False --> False

map (1+) [2,3] --> [3,4]

filter ((/=0).(`rem`2)) [1..9]
 --> [1,3,5,7,9]

Parentheses

• Grouping: in
deriving, contexts, ...

• Parsing
• Pattern matching

constructor applications.

• General expressions

• Type annotations

 … deriving (Eq, Show)

 … (Eq a, Show a) => a -> Int

sum (Node t1 t2) = …

sum (x:xs) = …

4-(3-2)

foldr (*) (1::Integer)
 [1..1000]

Lazy evaluation

Lazy evaluation

• Evaluate arguments
only when their
values are needed.

ite :: Bool -> a -> a -> a

ite True x y = x
ite False x y = y

let undef=undef::Int in
 ite True 2 undef
 --> 2

Lazy evaluation

• Evaluate arguments
only as much as
needed for
computation to
continue.

• Coroutines …

repeat :: a -> [a]
repeat x
 = xs
 where
 xs = x : xs

replicate :: Int -> a -> [a]
replicate n x
 = take n (repeat x)

take :: Int -> [a] -> [a]
take 0 _ = []
take n (x:xs)
 = x : take (n-1) xs

Sieve

• Sieve of Eratosthenes.

• Generate as many primes as you want … .

primes = sieve [2..]

sieve (x:xs) = x : sieve [y | y<-xs, y `rem` x /= 0]

Avoiding delay
• sumI creates a large

sum expr, only
evaluated at the
end.

• So does sumIA!

• Add the annotation
$! so that strict in
this argument.

sumI n m
 | n>m = 0
 | otherwise = n + sumI (n+1) m

sumIA n m = accIA n m 0

accIA n m s
 | n>m = s
 | otherwise = accIA (n+1) m (n+s)

sumIS n m = accIS n m 0

accIS n m s
 | n>m = s
 | otherwise = accIS (n+1) m $! (n+s)

Types: going further

Polymorphism

Some examples

• General question:
what constraints does
the definition put on
the type of the
function?

length [] = 0
length (x:xs) = 1 + length xs

fst (x,_) = x

map f [] = []
map f (x:xs) = f x : map f xs

filter p [] = []
filter p (x:xs)
 | p x = x : filter p xs
 | otherwise = filter p xs

twice f x = f (f x)

length :: ->

List length

length is a function

length [] = 0
length (x:xs) = 1 + length xs

length :: [a] -> Int

argument is a list

result is an Int

no constraint on list elements

length :: [] -> Intlength :: [] ->

First of a pair

fst is a function

fst (x,_) = x

argument is a pair

result is the 1st element

no constraint on 2nd elements

fst :: (a,b) -> afst :: (a,) -> afst :: (,) -> fst :: ->

map :: (a -> b) -> [a] -> [b]

Mapping along a list

map is a function

map f [] = []
map f (x:xs) = f x : map f xs

f is a function

result is a list

2nd arg is a list

2nd arg elements have f applied
result elements
are results of f

Other examples
filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []
filter p (x:xs)
 | p x = x : filter p xs
 | otherwise = filter p xs

twice :: (a -> a) -> a -> a

twice f x = f (f x)

Definitions

• We can define
polymorphic types:

• Synonyms (type), e.g.
generalised strategy.

• Algebraic types
(data)

type Strategy a
 = [a] -> a

data Tree a
 = Leaf a
 | Node (Tree a) (Tree a)
 deriving …

Questions
• Find the minimum

value in such a tree.

• Define trees with
data (a) at internal
nodes as well.

• How can you use the
internal values to
memoise the minima?

data Tree a
 = Leaf a
 | Node (Tree a) (Tree a)
 deriving …

Overloading

elem :: a -> [a] -> Bool

Element of a list

elem is a function

elem x [] = False
elem x (y:ys) =
 x==y || elem x ys

result is a Bool

2nd arg is a list 2nd arg elements same type as x

can compare elements x,y::a for equality

Type classes

• A class specifies an
interface.

• An instance gives an
implementation of
that interface.

class Eq a where
 (==) :: a -> a -> Bool

instance Eq Bool where
 True == x = x
 False == x = not x

instance Eq a => Eq [a] where
 [] == [] = True
 [] == _ = False
 _ == [] = False
 (x:xs) == (y:ys)
 = x==y && xs==ys

elem :: (Eq a) => a -> [a] -> Bool

Element of a list

elem is a function

elem x [] = False
elem x (y:ys) =
 x==y || elem x ys

result is a Bool

2nd arg is a list 2nd arg elements same type as x

a is an instance of the Eq type class

Example: expressions

Expressions

• Integer expressions.

• Aim: want to have
parse taking a
String to an Expr.

• Exercise: how to
add variables to the
model?

data Expr
 = Lit Int
 | Var Var
 | App Op Expr Expr

data Op = Add | Mul | Sub | ...

eval :: Expr -> Int

eval (Lit n) = n
eval (App Op e1 e2)
 = evalOp Op (eval e1) (eval e2)

evalOp Add = (+)
evalOp Mul = (*)

The Parse type

• First attempt:

• Extract an object of
type a from a
String.

type Parse a = String -> a

bracket ”(234” --> ’(’

number ”234” --> 2 or 23 or 234 …

bracket ”234” --> no result

The Parse type

• Second attempt:

• Extract a collection
of objects of type a
from a String.

• Here use list for
collection.

type Parse a = String -> [a]

bracket ”(234” --> [’(’]

number ”234” --> [2, 23, 234]
bracket ”234” --> []

The Parse type

• Third attempt:

• Extract a collection
of objects of type a
from a String.

• Pair each object
with what’s left of
the input.

type Parse a
 = String -> [(a,String)]

bracket ”(234” --> [(’(’,”234”)]
number ”234” --> [(2,”34”),
 (23,”4”),
 (234,””)]
bracket ”234” --> []

Lazy evaluation

Lazy evaluation

• Evaluate arguments
only when their
values are needed.

ite :: Bool -> a -> a -> a

ite True x y = x
ite False x y = y

let undef=undef::Int in
 ite True 2 undef
 --> 2

Lazy evaluation

• Evaluate arguments
only as much as
needed for
computation to
continue.

• Coroutines …

repeat :: a -> [a]
repeat x
 = xs
 where
 xs = x : xs

replicate :: Int -> a -> [a]
replicate n x
 = take n (repeat x)

take :: Int -> [a] -> [a]
take 0 _ = []
take n (x:xs)
 = x : take (n-1) xs

Lazy “streams”

• Lazy infinite lists look
very like “streams” of
values flowing along
wires in a network.

• Recursion corresponds
to a feedback loop in a
network.

hamming =
 1 : merge
 (map (*2) hamming)
 (map (*3) hamming)

merge (x:xs) (y:ys)
 | x<y = x : merge xs (y:ys)
 | x==y = x : merge xs ys
 | x>y = y : merge (x:xs) ys

Higher-order functions

Higher-order functions

• What happens when
we apply ite to two
arguments?

• We get a function
awaiting a string to
return a string.

• Partial application.

ite :: Bool -> a -> a -> a

ite True x y = x
ite False x y = y

ite True "foo"

Examples

• Functions as
arguments …

• … and results.

map :: (a -> b) -> [a] -> [b]

(=='.') :: Char -> Bool

map (=='.')
 :: String -> [Bool]

map (map (=='.'))
 :: [String] -> [[Bool]]

List comprehensions

Generate and test

• Combining mapping
and filtering.

doubleOdds xs =
 [x*2 | x<-xs, odd x]

odd = (/=0).(`rem`2)

factors n =
 [m | m<-[1..n],
 n `rem` m == 0]

perms [] = [[]]
perms xs =
 [x:p | x<-xs,
 p<-perms(xs--[x])]

Sieve

• Sieve of Eratosthenes.

• Generate as many primes as you want … .

primes = sieve [2..]

sieve (x:xs) = x : sieve [y | y<-xs, y `rem` x /= 0]

Next … a ‘live’ example

Scenario

Type-driven development

• Define relevant types.

• 2D grid.

• True = empty

• False = occupied

type Maze = [[Bool]]

type Point = (Int,Int)

type Path = [Point]

Example

makeMaze :: [String] -> Maze

makeMaze lines
 = map (map (==‘.')) lines

mazeSt1 :: [String]

mazeSt1
 = ["..#..####",
 "#...#...#",
 "..#...#.#",
 "##.##.#.#",
 "....#...#",
 "#.#...#.#",
 "#.##.##.#",
 "#..#....#",
 "##...##.#",
 "..#..##.."]

Alternative types

• List (collection of
empty points) …

• … plus grid size.

type Maze = [Point]

type Maze = ([Point],Int,Int)

type Point = (Int,Int)

type Path = [Point]

Alternative types

• List of lines …

• … each line a list of
places …

• … and a place is
represented by the
list of adjacent points.

type Maze = [[[Point]]]

type Point = (Int,Int)

type Path = [Point]

Type-driven development

• Define relevant types.

• 2D grid.

• True = empty

• False = occupied

type Maze = [[Bool]]

type Point = (Int,Int)

type Path = [Point]

Example

makeMaze :: [String] -> Maze

makeMaze = map (map (=='.'))

mazeSt1 :: [String]

mazeSt1
 = ["..#..####",
 "#...#...#",
 "..#...#.#",
 "##.##.#.#",
 "....#...#",
 "#.#...#.#",
 "#.##.##.#",
 "#..#....#",
 "##...##.#",
 "..#..##.."]

Type-driven development

• Define types of the
main function …

• … and the
auxiliary functions
needed.

paths :: Maze -> Point -> Point
 -> [Path]

isPath :: Maze -> Path -> Bool

isEmpty :: Maze -> Point -> Bool

adjPoints :: Maze -> Point
 -> [Point]

Type-driven development

• Now develop
definitions …

• … top-down or
bottom-up.

• For top-down use
dummy defs …
can still type check.

paths :: Maze -> Point -> Point
 -> [Path]

isPath :: Maze -> Path -> Bool

isEmpty :: Maze -> Point -> Bool

adjPoints :: Maze -> Point
 -> [Point]

isPath = isPath -- dummy def

