Haskell for
Erlangers

(c) Simon Thompson
University of Kent, 2015

Functional languages

e Erlang ... you know.

e Haskell ... this week.
e Miranda, ML, OCaml, F#, ...
e Strongly-typed, rich type languages, ...

e LISP, scheme: weakly typed, macros, eval ...

Functional languages

o [f by that you mean including Lambdas

e Java
e JavaScript
* Ruby

o (C++

Why learn Haskell?

e A different perspective ... change the way

you write Erlang (or Java or ...).
e Different tools for ditferent jobs.
e Transformation / language processing.

e DSLs.

e [t's fun!

Haskerl

Non-strict, purely-functional languages, such as Haskell, are perceived
to be inadequate for everyday, get-the-job-done tasks; in particular,
they are seen to be "bad at I/O". Consequently, an informal working
group has been designing an extended variant of Haskell to address
these requirements ...

The Perl language is nothing if not "good for everyday, get-the-job-
done" tasks - it puts UNIX at the programmer's fingertips. ... What

follows is an informal note about what we call the "Haskerl" extension
to Haskell ...

http:/ /www.dcs.gla.ac.uk / ~partain /haskerl / partain-1.html

Immutability

Immutability

e Objects whose state doesn’t change ...

e ...if you want a different object, create one.

e Objects = Values in functional languages.

Immutability

e Java theory and practice: To mutate or not to
mutate? Immutable objects can greatly simplity
your life

* Brian Goetz , Principal Consultant, Quiotix Corp

e http:/ /www.ibm.com/developerworks/java/
library /j-jtp02183/j-jtp02183-pdf.pdf

Immutability

e They can only be in one state, so as long as they are
properly constructed ... never get into an inconsistent state.

e You can freely share and cache references to immutable
objects without having to copy or clone them; you can cache
their fields ... without worrying about the values becoming
stale or inconsistent with the rest of the object's state.

e They are inherently thread-safe, so you don't have to
synchronize access to them across threads.

Inefficient?®

e Compare with garbage collection ...

e ... gain from the lack of a whole class of errors.

Implementing functional languages

e A functional implementation can share
references to the same object, so no need for
copy to support mutation.

e On “update” copy only the part of the structure
that is affected ...

e ...smart data structure design can minimise
this.

Erlang recap

Weakly typed

e Numbers, atoms, Val = [12,734”,[56],{[78]}].
tuples and lists.
NewTree =
o (Extensible) records: Tree#tree{value=42}.

syntactic sugar.
F = list_to_atom(“blah”),

° Dynamic aspects. apply(?MODULE,F,Args).

Concurrency at the core

Processes.
No shared memory.

Asynchronous
message passing.

Process ids or names.

Pid = spawn(server,fac,[]),
Pid ! {Sel'F() ’ N} ’
receive
{ok,Result} -> ..
stopped -> ..
end, ..

fac() ->
receive
{From, stop} ->
From ! stopped;

{From, N} ->
From ! {ok,fact(N)},
fac()

end.

Pattern Matching

Haskell-style, but ...
Single assignment.

Bound variables can
appear 1n patterns.

Selective receive.

N = 46,
N = 23+23,
N = 35,

receiveFrom(Pid) ->
receive

{P1d,Payload} -> ..

- > .
end.

receive {foo,Foo} -> ..
receive {bar,Bar} -> ..

end,
end ..

Open Telecom Plattorm

Erlang + OTP.

Design patterns.

Generic behaviours.

Server, FSM, event

handler, supervisor.

Callback interface.

init(Freglist) ->
Fregs = {FreqglList, []},
{ok, Fregs}.

terminate(_,_) ->
ok.

handle_cast(stop, Fregs) ->
{stop, normal, Fregs}.

handle_call(allocate, From, Fregs)
->
{NewFreqgs, Reply} =
allocate(Fregs, From),
{reply, Reply, NewFregs};

Other Erlang features

Eager evaluation.

Side effects.

Name/ arity identify a function.
Bindings: shadows, multiple BOs.

Macros.

* One implementation, one standard.

* Well-defined, controlled release cycle.
* Open Source but ... Ericsson effort.

e Erlang Extension Proposals.

Haskell for Erlangers

Strongly typed

Built-in types.
User-defined types

Most general types,
at compile time.

Polymorphism and
overloading.

Higher types, kinds.

type String = [Char]

data Tree a =
Leaf a |
Node (Tree a) (Tree a)

sort :: (Ord a) =
[a] -> [a]

:type <any-expression>

Laziness at the core

Language 1s pure:
no side-effects.

Evaluation is lazy.

Only evaluate when
a value is needed ...

... and only to the

extent that’s needed .

1fThenElse :: Bool -> a -> a
1fThenElse True x y = x
1fThenElse False x y =y

replicate :: Int -> a -> [ad]

replicate n x
= take n (repeat x)

repeat x
= XS
where
XS = X : XS

Pattern Matching

N = 46,
e Erlang-style, but ... N - 23423,

e [t's not assighment.
booksBorrowed pers dbase
e Bound variables can’t = [bk |
. (pers,bk) <- dbase]
appear 1n patterns.

booksBorrowed pers dbase

- [bk |
* No repeated (p.bk) <- dbase,

variables in patterns. p==pers]

Controlled

side-effects

e Monads: ADT for
side-effecting
computations.

* m a=computations
returning value of

type a

* do notation: syntactic

sugar for clarity.

goUntilEmpty :: I0 OO

goUntilEmpty
= do line <- getlLine
1f (line == [])
then return ()
else (do putStrLn line
goUntilEmpty)

sumTree :: Tree Int -> Id Int

sumTree Nil = return 0

sumTree (Node n tl1 t2)
= do num <- return n
sl <- sumlree tl
s2 <- sumlree tZ
return (num + sl + s2)

Other Haskell features

Overloading and type classes.

Local definitions.

Module system more complex than Erlang.
No macros (but there is Template Haskell).

Language of choice for DSLs.

GHC predominates, others exist.
Standards: Haskell 2010, ... c¢f GHC.
Haskell Plattorm: controlled releases.

HackageDB and Cabal: 3000+
contributed Open Source packages.

No stable production quality GUI lib.

GHCi and the

Haskell Platform

The Haskell Platform

e The latest version of the compiler
GHC, the “shell” version GHCi,
and various standard libraries.

e Download the platform

http://www.haskell.org/platform/

ghci commands

expression Evaluate expression

:type expr Give the most general type of expr

:1load Foo Load and compile the module Foo
:reload Reload the last module loaded
:help Give help on the ghci commands

quit Quit

Modules in Haskell

e The unit of compilation

is a module. module Demo where
* Demo lives in Demo.hs import DemoZ hiding (foo)
e By default everythingis ?9" - = - baz -
exported.
e Can hide on import. module Demo2(foo,baz) where
baz .. =

e Can import qualified:
name thus: Demo.bar.

The basics of Haskell

Function application

e In Haskell: uses
juxtaposition, just put
the arguments after
the function, separated
by white space

* In Erlang: traditional
function application

1ff(true,false)

1ff True False

Type declarations

e The type declaration
is optional.

° :type iff in GHCH
will tell you the most
general type.

exOr :: Bool -> Bool -> Bool

exOr True y = not y
exOr False y =y

1ff x y = not (x "exOr" y)

Characters and strings

Characters: Char.
type String = [Char]

putStr is part of the

IO system using the
I0 monad.

show and read are
overloaded ...

a’,...,’0°,...,°’Z° :: Char
’An’, N\, N7, ’\t’ :: Char
fromEnum :: Char -> Int
toEnum :: Int -> Char
”string” :: String

putStr :: String -> 10 O

show :: a -> String
read :: String -> a

Guards

max ::. Int -> Int -> Int
e Switch between
. . max X y
different alternatives | x>=y = X
. | X<y =
using guards. Y
max’ Xy
* Guard can be any | x>=y = x
. | otherwise =y
Boolean expression.
max’’ Xy
e Erlang: compare with ' Py =X
max’’ Xy

when =y

Local definitions

e Definitions can be

. triArea a b c
local: where and let. et s ey (5-bY*(5-C))
where
° wheres are local to s = (a+b+c)/2

function equations.

Layout sensitive

e The first character of
a definition opens up mystery x = x*x >
a box ...

+X

e ... which is closed 2

only when something
below or to the left.

o “Offside rule”

next x = ..

Layout in practice

e In Emacs with
Haskell mode,
repeated tabbing
will take you
through various
sensible layout
options.

mystery X vy ..
| guardl
| guard?

| guardn
where
locall = ..

local2 .. = ..

resultl

res..
Lult?Z

resultn

Types: tuples and lists

Tuples

Tuples enclosed in
parentheses: C..,..,..)

Heterogeneous.

Access by pattern
matching (.., ..,..).

Erlang compare with

RO

addPair :: (Int,Int) -> Int

addPair (n,m) = n+m

type Person = (String,Int)

showPers :: Person -> String

showPers (name,age)
= hame ++ show age

Lists in square
brackets: [...,..,..]

Access by pattern
matching over the
constructor (x:xs).

Homogeneous.

Static typing still OK.

addLst :: [Int] -> Int

addLst [] =0
addLst (n:1) = n + addLst 1

addZ2elem :: [Int] -> Int
addZ2elem [n,m] = n+m
-- what do these do?

puzzle [n:1] = n + puzzle 1

puzzle’ [n:1] = n+l

Defining data types

Rock - Paper - Scissors

* Enumerated type
with three elements.

e Plus a bit of type
class magic (later).

e Definitions by
pattern matching.

data Move
= Rock | Paper | Scissors
deriving (Show,Eq)

peat :: Move -> Move
peat Rock = Paper
peat Paper = Scissors
peat Scissors = Rock

outcome :: Move -> Move -> Int
outcome Rock Rock = 0
outcome Rock Paper = -1
outcome Rock Scissors =1

data rypes

e Elements of the
People type are of the

form

Person n a
where nis a String
and a an Int.

type Name = String
type Age = Int

data People
= Person Name Age
deriving (Eqg,Show)

Person ”Ronnie” 14
Person ”Simon” 44
showPerson :: People -> String

showPerson (Person n a) =
n++ ” -- ” ++ show a

Terminology

°* Person 1s a constructor

used to build elements. gatq people
= Person Name Age

® Personis a function. deriving (Eq,Show)

e Constructors begin

with capitals. s

:: Name -> Age -> People

e Erlang: compare with
{person,Name,Age}

Compare

data People
= Person Name Age

O Compare pI'OdUCt deriving (Eq,Show)

types with tuples.
type People

= (Name, Age)

Alternatives

o Different alternatives, d“é?é:“e’pﬁlzat |

built by the different Rect Float Float
deriving (Eqg,Show,0Ord,Read)

constructors.
1sRound :: Shape -> Bool
* Incredibly usetul for isRound (Circle _) = True
. 1sRound (Rect _ _) = False
modelling: usually
area :: Shape -> Float

things come in a
area (Circle r) = pi*r*r

number of forms. area (Rect h w) = h*w

e Define a function to

give the perimeter of

a shape.

e Add triangles to the
type and the function
definitions.

e Compare with Java?

data Shape =

Circle Float |
Rect Float Float
deriving (Eq,Show)

1S
1S
1S

ar

Rounda

Round : :

Round

ea ..

Shape -> Bool

(Circle _) = True
(Rect _ _) = False

Shape -> Float

area (Circle r) = pi*r*r
area (Rect h w) = h*w

Parentheses

 Tuples must be
constructed like this

G

e Operators as
functions, (&&).

(&) True False --> False
map (1+) [2,3] --> [3,4]

filter ((/=0).(rem 2)) [1..9]
. -=> [1,3,5,7:9]
e Operator sections,

(1+), (rem 2).

Parentheses

. . .. deriving (Eq, Show)
e Grouping: in

deriving, contexts, ... - (Fa @ showa) =>a -> Int

e Parsing
sum (Node tl1 t2) = ..
e Pattern matching
S sum (X:XSs) = ..
constructor applications.
. 4-(3-2)
* (General expressions

. foldr (*) (1::Integer)
* Type annotations [1..1000]

Lazy evaluation

Lazy evaluation

1te :: Bool -> a -> a -> a

e Evaluate arguments ite True xy = x

: 1te False x y =
only when their y =y

values are needed let undef=undef::Int in
. 1te True 2 undef

-—> 2

Lazy evaluation

e Evaluate arguments
only as much as
needed for
computation to
continue.

e (Coroutines ...

repeat :: a -> [ad]

repeat x
= XS
where
XS = X . XS

replicate :: Int -> a -> [ad]

replicate n x
= take n (repeat x)

take :: Int -> [a] -> [d]

take 0 _ = []
take n (x:xs)
= X : take (nh-1) xs

Sieve

primes = sieve [Z2..]

sieve (X:xs) = x : sieve [¥y | y<-xs, y rem x /= 0]

e Sieve of Eratosthenes.

* (Generate as many primes as you want

Avoiding delay

* sumI creates a large sumrnm

| n>m =0
sum expr, Only | otherwise = n + sumI (n+l) m
evaluated at the SsumIA n m = accIA n m 0
end' accIA nm s
| n>m = S
® SO does sumIA! | otherwise = accIA (n+1) m (n+s)

sumIS nm = accIS nm 0@

e Add the annotation
$! so that strict in

accIS nm s
| n>m
| otherwise

S
accIS (n+1) m $! (n+s)

this argument.

Types: going further

Polymorphism

Some examples

General question:
what constraints does
the definition put on
the type of the
function?

length [] =0

length (x:xs) = 1 + length xs
fst (x,_) = x

map f [] = []

map f (x:xs) = f x : map f xs

filter p [] = L[]
filter p (x:xs)

p x =x_.: filter p xs
otherwise = filter p xs

twice f x = f (f x)

List length

length []
length (x:xs)

0
1 + length xs

length is a function result is an Int

argument is a list ~ no constraint on list elements

length :: [a] -> Int

First of a pair

fst (x,_) = x

fst is a function result is the 1st element

argument is a pair 1o constraint on 2nd elements

fst :: (a,b) -> a

Mapping along a list

map £ [] = []

map f (x:xs) = f x : map f xs

map 1S a function result is a list

fis a function 2nd argis a list
result elements

2nd arg elements have f applied are results of f

map :: (a -> b) -> [a] -> [b]

Other examples

filter :: (a -> Bool) -> [a] -> [ad]

filter p [] = []
filter p (x:xs)
p X =Xx: filter p xs
otherwise = filter p xs

twice :: (a -> a) -> a -> a

twice f x = f (f x)

Definitions

e We can define

polymorphic types: type Strategy
= [a] -> a

e Synonyms (type), e.g.

data Tree a

generalised strategy. = Leaf a
| Node (Tree a) (Tree a)
deriving ..

e Algebraic types
(data)

¢ Find the minimum

value in such a tree.

¢ Define trees with
data Tree a

data (a) at internal _ Leaf a
| Node (Tree a) (Tree a)
nodes as well. deriving ..

e How can you use the
internal values to
memoise the minima?

Overloading

Element of a list

elem x [] = False
elem x (y:ys) =
x==y || elem x ys

elemis a function result is a Bool
2nd argisalist 2nd arg elements same type as x

can compare elements x,y::a for equality

elem :: a -> [a] -> Bool

Type classes

* A class specifies an
interface.

e An instance gives an

implementation of
that interface.

class Eq a where
(==) :: a -> a -> Bool

instance Eq Bool where
True == x = X
False == X = not X

instance Eq a => Eq [a] where
[] == [] = True
[] == _ = False
_ == [] = False
(x:xs) == (y:ys)
= X==y && Xs==ys

Element of a list

elem x [] = False
elem x (y:ys) =
x==y || elem x ys

elemis a function result 1s a Bool

2nd argisalist 2nd arg elements same type as x

a is an instance of the Eq type class

elem :: (Eg a) => a -> [a] -> Bool

Example: expressions

Expressions

data Expr
® . = L1t Int
Integer expressions. * -t- W
) | App Op Expr Expr
e Aim: want to have

. data Op = Add | Mul | Sub | ...
parse taking a

eval :: Expr -> Int

String to an Expr.
eval (Lit n) = n

® : . eval (App Op el e2)
EXQI‘Clse: hOW to = evalOp Op (eval el) (eval e2)
add variables to the
evalOp Add = (+)
model? evalOp Mul = (*)

The Parse type

e First attempt:

e Extract an object of
type a from a

String.

type Parse a = String -> a

bracket *(234” --> ’(’

number ”234” --> 2 Oor 23 Oor 234 ...

bracket »”234” --> no result

The Parse type

e Second attempt:

e Extract a collection tyre Parse a = String -> [a]

of objects of type a
] yP bracket ”(234” --> [’(’]

from a String. number »234” --» [2, 23, 234]

. bracket ”234” --
e Here use list for ‘ > L

collection.

The Parse type

e Third attempt:

e Extract a collection
of objects of type a

from a String.

e Pair each object
with what’s left of
the input.

type Parse a
= String -> [(a,String)]

bracket ”(234” --> [(C(,7234”)]

number ”234” --> [(2,734”),
(23 , ,’4,’) ,
(234, ,”’)]

bracket ”234” --> []

Lazy evaluation

Lazy evaluation

1te :: Bool -> a -> a -> a

e Evaluate arguments ite True xy = x

: 1te False x y =
only when their y =y

values are needed let undef=undef::Int in
. 1te True 2 undef

-—> 2

Lazy evaluation

e Evaluate arguments
only as much as
needed for
computation to
continue.

e (Coroutines ...

repeat :: a -> [ad]

repeat x
= XS
where
XS = X . XS

replicate :: Int -> a -> [ad]

replicate n x
= take n (repeat x)

take :: Int -> [a] -> [d]

take 0 _ = []
take n (x:xs)
= X : take (nh-1) xs

Lazy “streams”

e Lazy infinite lists look

very like “streams” of ~ hammng =
1 : merge

values flowing along (map (*2) hamming)
. . (map (*3) hamming)
wires in a network.

merge (x:xs) (y:ys)

* Recursion corresponds X<y = x : merge xs (y:ys)
. X==y = X . merge XS ys
to a teedback lOOp 1n a x>y =Y : merge (X:XSs) ys

network.

Higher-order functions

Higher-order functions

e What happens when
we apply ite to two
arguments? ite :: Bool -> a -> a -> d

. 1te True x y = x
* We get a function ite False X y = y

awaiting a string to
return a string.

1te True "foo"

e Partial application.

Examples

e Functions as
arguments ...

e ... and results.

map :: (a -> b) -> [a] -> [b]
=="'.") :: Char -> Bool

map (=='.")
:: String -> [Bool]

map (map (=="."))
:: [String] -> [[Bool]]

List comprehensions

Generate and test

e Combining mapping
and filtering.

doubleOdds xs =
[x*¥2 | x<-xs, odd x]

odd = (/=0).(rem 2)

factors n =
[m | me[1..n],
n rem m==0]

perms [] = [[1]

perms Xs
[xX:p | x<-Xxs,
p<-perms(xs--[x])]

Sieve

primes = sieve [Z2..]

sieve (X:xs) = x : sieve [¥y | y<-xs, y rem x /= 0]

e Sieve of Eratosthenes.

* (Generate as many primes as you want

Next ... a ‘live’ example

Scenario

Type-driven development

* Define relevant types.

e 2D grid.

type Maze = [[Bool]]

type Point = (Int,Int)

® f—
True = empty type Path = [Point]

* False = occupied

Example

mazeStl :: [String]

mazeStl

= [V H. L HEE
o HL A y |
T makeMaze :: [String] -> Maze
"##'##'#'#"’ makeMaze lines

ORI = map (map (==¢.")) lines

"# # # #||, - p p _ °
A
"# # #",
'##...##.#"

CHL]

Alternative types

o List (collection of
empty points) ...

o ... plus grid size.

type Maze = [Point]
type Maze = ([Point],Int,Int)
type Point = (Int,Int)

type Path = [Point]

Alternative types

e [istoflines...

e ... cach line a list of type Maze = [[[Point]]]

laces ...
I) type Point = (Int,Int)
® ... and d plaCe IS type Path = [Point]
represented by the

list of adjacent points.

Type-driven development

* Define relevant types.

e 2D grid.

type Maze = [[Bool]]

type Point = (Int,Int)

® f—
True = empty type Path = [Point]

* False = occupied

Example

mazeStl :: [String]

mazeStl
= ["..#. . ###H#",

"#.o. 8. HY,

R SR - - A makeMaze :: [String] -> Maze

“HEt L HHHH"

- 2 , makeMaze = map (map (=='."))
#
#it .
.
'##...##.#",
R TR = S

Type-driven development

e Define types of the
main function ...

e ... and the
auxiliary functions
needed.

paths :: Maze -> Point -> Point
-> [Path]

1sPath :: Maze -> Path -> Bool
1sEmpty :: Maze -> Point -> Bool

adjPoints :: Maze -> Point
-> [Point]

Type-driven development

e Now develop
definitions ...

e ...top-down or
bottom-up.

* For top-down use
dummy defs ...
can still type check.

paths :: Maze -> Point -> Point
-> [Path]

1sPath :: Maze -> Path -> Bool

1sEmpty :: Maze -> Point -> Bool

adjPoints :: Maze -> Point

-> [Point]

1sPath = 1sPath -- dummy def

