SIMON THOMPSON

LEARNING FUNCTIONAL
PROGRAMMING

The essence of functional programming

Beginning to learn functional programming

Resources, advice and hottlenecks

THE ESSENCE OF
FUNCTIONAL
PROGRAMMING

ISP Elm

Miranda Erang
ldris Hackell Scala

H

0Caml

Elixir

higher-order
functions

pattern data
matching types

lambdas recursion

higher-order
functions

pattern data
matching types

lambdas recursion

enses dependent

types
reactive higher-order
functions Dsls
lazy pattern data
malching types monoids
WPES. lambdas recursion effects

types.
ypes. o immutability

Model the world as data
+
Functions over the data
+
Functions as data

And when | say “function” ...

| mean in the mathematical
sense, taking inputs to outputs,
and doing nothing else!

The approach underties
lots of examples,

The approach underties
lots of examples,
libraries, laziness,
monads, lenses ...

Rock-Paper-Scissors

AR BT
e

>
2

z?fm . !ﬁé s

)

ST
A . < 3 - 3 o C

P o 4

e A L e gﬁ X - e A o

e P > ' R N 2 A e
»7: s, A ; e B ot 2V e A e

L S el ST L et S T T e T S i e 2 SN S S PO oY

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

S

T
_.-12'.2:?.

& e B DR~

SeRre

e i ek A ARt A e S N K e < - P

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

e s S e

o B s i

A A T e e

= Rock

Paper
Scissors

[Move] —> Move

Rock
beat (x:xs) =
case X of
Rock —> Sc1ssors
Paper —> Rock
Scissors —> Paper

Parsers

text

parse tree

4

remaining text

text parse tree

remaining text

Side-effects

store hefore

input —}‘—} result

store after

Delay/force ... streams

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

. o

. -
2 . Tir™
- r4
J v - ') : > &
s = -

(cons(X,Xs),
() —> {X;XS}

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

github.com/simonjohnthompson/streams

github.com/simonjohnthompson/Interaction

Functions give us expressivity
+
lypes help to constrain that
+
Give a language for modelling

BEGINNING
FUNCTIONAL
PROGRAMMING

higher-order
functions

data
types

lamhdas

higher-order
functions

pattern data
matching types

lamhdas recursion

Pick any language

Start with the concrete before
going to complex abstractions.

PAITERN
MAICRING

type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw

type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw

area({circle, ,R}) —> math:pi()*R*R;
area({rectangle,H,W}) —> HxW.

type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw

—-type point() :: {float(),float()}.

—type shape() :: {circle,point(),float()} |
{rectangle, point(),float(),float()}.

—spec area(shape()) —> float().

area({circle, ,R}) —> math:pi()*RxR;
area({rectangle,H,W}) —> HxW.

PAITERN
MAICHING!

area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area shape =
if 1s_circle shape
then pix(radius shape)*(radius shape)
else height shape * width shape

area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area shape =
if 1s_circle shape
then pix(radius shape)*(radius shape)
else height shape * width shape

is_circle :: Shape —> Bool

is _circle (Circle _) = True
is_circle _ False

radius, height, width :: Shape —> Float
radius (Circle _ r)

height (Rectangle _ h _
width (Rectangle _ _

r
h
W

RECURSION

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
1f elem x Xxs
then nub xs
else X : nub xs

nub([]) — [I;

nub([X|Xs]) —>
[X|nub(remove(X,Xs))]1.

nub([]) — [I;

nub([X|Xs]) —>
[X|nub(remove(X,Xs))]1.

remove(_, [1) — [1;

remove(X, [X|Xs]) —
remove (X, Xs);

remove (X, [Y|Xs]) —
[Y|remove(X,Xs)].

RECURSION!

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

[]

nub (1:[1) =1 : nub []1 = [1]

nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

nub [] []
nub [1] nub (1:[1) =1 : nub []1 = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

nub [] []
nub [1] nub (1:[1) =1 : nub []1 = [1]
nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]1) = nub [2,1] = [2,1]

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]
= nub (1:[2,1])

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]
nub (1:[2,1])
nub [2,1]

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)

2 : nub [1]

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)
2 : 1 : nub []

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)
2 : 1 : nub []
2 1 : []

nub :: Eq a => [a] —> [al
nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

ub [1,2,1]
nub (1:[2,1])
nub [2,1]
nub (2:[1]1)
2 : nub [1]
1 nub (1:[]1)
+ 1 : nub []
1 : []
1 [1]

n

nub :: Eq a => [a] —> [al
nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

ub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

1 nub (1:[]1)

+ 1 : nub []
[

n

2
2
2
2
[

nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

foo [] = ..
foo (x:xs) = ..

nub :: Eq a => [a] —> [a]

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

How to get started (with recursion)?

Examples, examples, examples.
From simple “five finger” exercises,
to a favourite small library.

RESOURCES

simon Thompson

Simon Thompson

Coprye i

pred B genal

(‘ '()(/()

eve /}[

Bryan o,

tUivay,
<en & Doy,

Codle

You Can Belj,

eve In

Bryan ¢ Stlliveay,
ren &

‘art

Do Stey

Online

Wiki-books, MOQCs, video
channels, try-XXX,
tutorials ...

Working together

XXX-bridge, code clubs,
meet-ups, reading groups. ..

AND THEN ...

Pick any language

Start with the concrete hefore
going to complex abstractions.

Choosing a language

ISP Elm
Miranda Erlang
ldris T Scala
i

Elixir 0Caml

Find a project

Reimplement something
Iry something new
Join an Open Source project

S Ta

Abstraction

This board belongs to Newcastle University PhD student Tom
Fisher, who is doing research in homological algebra.
Thanks to Christian Perfect for the photo.
whatsonmyblackboard.wordpress.com

http://www.ncl.ac.uk/maths/
http://en.wikipedia.org/wiki/Homological_algebra
https://twitter.com/christianp

Enjoy!

Type-driven development
Functional Concurrency
Systems programming in ML

SIMON THOMPSON

LEARNING FUNCTIONAL
PROGRAMMING

