
LEARNING FUNCTIONAL
PROGRAMMING

SIMON THOMPSON

The essence of functional programming

Beginning to learn functional programming

Resources, advice and bottlenecks

THE ESSENCE OF
FUNCTIONAL

PROGRAMMING

Haskell

Erlang

OCaml

Scala

Elm

F#

Idris

LISP
Miranda

Elixir

pattern
matching

data

higher-order
functions

recursionlambdas
types

pattern
matching

data

higher-order
functions

recursionlambdas
types

pattern
matching

data

higher-order
functions

recursionlambdas
types

monads

monoids

reactive

lazy

immutability

lenses

DSLs

types,
types,
types,
 …

effects

dependent
types

fun

Model the world as data
+

Functions over the data
+

Functions as data

And when I say “function” …

I mean in the mathematical
sense, taking inputs to outputs,

and doing nothing else!

The approach underlies
lots of examples,

 

The approach underlies
lots of examples,

libraries, laziness,
monads, lenses …

Rock-Paper-Scissors

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

We choose what to
play, depending on

the history of all
your moves.

Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors

data Move = Rock
 | Paper
 | Scissors

beat :: [Move] -> Move

beat [] =
 Rock
beat (x:xs) =
 case x of

 Rock -> Scissors
 Paper -> Rock
 Scissors -> Paper

We choose what to
play, depending on

the history of all
your moves.

Parsers

text parse tree

remaining text

text parse tree

remaining text

Side-effects

input result

store after

store before

Delay/force … streams

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

cons(X,Xs) ->
 fun() -> {X,Xs} end.

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

head(L) ->
 case (L()) of
 {H,_} -> H
 end.

tail(L) ->
 case (L()) of
 {_,T} -> T
 end.

cons(X,Xs) ->
 fun() -> {X,Xs} end.

-define(cons(X,Xs),
 fun() -> {X,Xs} end).

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/

head(L) ->
 case (L()) of
 {H,_} -> H
 end.

tail(L) ->
 case (L()) of
 {_,T} -> T
 end.

github.com/simonjohnthompson/streams

github.com/simonjohnthompson/Interaction

type

Functions give us expressivity
+

Types help to constrain that
+

Give a language for modelling

BEGINNING
FUNCTIONAL

PROGRAMMING

data

higher-order
functions

lambdas
types

pattern
matching

data

higher-order
functions

recursionlambdas
types

Pick any language

Start with the concrete before
going to complex abstractions.

PATTERN
MATCHING

type Point = (Float,Float)

data Shape = Circle Point Float
 | Rectangle Point Float Float

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

-type point() :: {float(),float()}.

-type shape() :: {circle,point(),float()} |  
 {rectangle,point(),float(),float()}.

-spec area(shape()) -> float().

area({circle,_,R}) -> math:pi()*R*R;
area({rectangle,H,W}) -> H*W.

type Point = (Float,Float)

data Shape = Circle Point Float
 | Rectangle Point Float Float

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

-type point() :: {float(),float()}.

-type shape() :: {circle,point(),float()} |  
 {rectangle,point(),float(),float()}.

-spec area(shape()) -> float().

area({circle,_,R}) -> math:pi()*R*R;
area({rectangle,H,W}) -> H*W.

type Point = (Float,Float)

data Shape = Circle Point Float
 | Rectangle Point Float Float

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

PATTERN
MATCHING!

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

Link to something more familiar

area shape =
 if is_circle shape
 then pi*(radius shape)*(radius shape)
 else height shape * width shape

is_circle :: Shape -> Bool

is_circle (Circle _ _) = True
is_circle _ = False

radius, height, width :: Shape -> Float

radius (Circle _ r) = r
height (Rectangle _ h _) = h
width (Rectangle _ _ w) = w

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

area shape =
 if is_circle shape
 then pi*(radius shape)*(radius shape)
 else height shape * width shape

is_circle :: Shape -> Bool

is_circle (Circle _ _) = True
is_circle _ = False

radius, height, width :: Shape -> Float

radius (Circle _ r) = r
height (Rectangle _ h _) = h
width (Rectangle _ _ w) = w

area :: Shape -> Float

area (Circle _ r) = pi*r*r
area (Rectangle _ h w) = h*w

RECURSION

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list
is the list with all

duplicates
removed.

The nub of a list
is the list with all

duplicates
removed.

nub([]) -> [];

nub([X|Xs]) ->
 [X|nub(remove(X,Xs))].

remove(_,[]) -> [];

remove(X,[X|Xs]) ->
 remove(X,Xs);

remove(X,[Y|Xs]) ->
 [Y|remove(X,Xs)].

The nub of a list
is the list with all

duplicates
removed.

nub([]) -> [];

nub([X|Xs]) ->
 [X|nub(remove(X,Xs))].

remove(_,[]) -> [];

remove(X,[X|Xs]) ->
 remove(X,Xs);

remove(X,[Y|Xs]) ->
 [Y|remove(X,Xs)].

RECURSION!

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Generate all the answers?

nub [] = []

nub [1] = nub (1:[]) = 1 : nub [] = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]) = nub [2,1] = [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Generate all the answers?

nub [] = []

nub [1] = nub (1:[]) = 1 : nub [] = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]) = nub [2,1] = [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Generate all the answers?

nub [] = []

nub [1] = nub (1:[]) = 1 : nub [] = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]) = nub [2,1] = [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Generate all the answers?

nub [] = []

nub [1] = nub (1:[]) = 1 : nub [] = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]) = nub [2,1] = [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

Rewrite … work “top down”
nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

nub [1,2,1]
= nub (1:[2,1])
= nub [2,1]
= nub (2:[1])
= 2 : nub [1]
= 2 : nub (1:[])
= 2 : 1 : nub []
= 2 : 1 : []
= 2 :[1]
= [2,1]

Rewrite … work “top down”

Accept the template: the lists get shorter …

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

foo [] = …
foo (x:xs) = … x … foo xs …

Accept the template: the lists get shorter …

nub :: Eq a => [a] -> [a]

nub [] = []

nub(x:xs) =
 if elem x xs
 then nub xs
 else x : nub xs

The nub of a list is the list
with all duplicates removed.

foo [] = …
foo (x:xs) = … x … foo xs …

 … and look at some examples
nub [1,2] = [1,2]
nub [2,1,2] = [1,2]

How to get started (with recursion)?

Examples, examples, examples.
From simple “five finger” exercises,

to a favourite small library.

RESOURCES

Online

Wiki-books, MOOCs, video
channels, try-XXX,

tutorials …

Working together

XXX-bridge, code clubs,
meet-ups, reading groups…

AND THEN …

Pick any language

Start with the concrete before
going to complex abstractions.

Haskell

Erlang

OCaml

Scala

Elm

F#

Idris

LISP
Miranda

Elixir

Choosing a language

Find a project

Reimplement something
Try something new

Join an Open Source project

Systems

Abstraction This board belongs to Newcastle University PhD student Tom
Fisher, who is doing research in homological algebra.

Thanks to Christian Perfect for the photo.
whatsonmyblackboard.wordpress.com

http://www.ncl.ac.uk/maths/
http://en.wikipedia.org/wiki/Homological_algebra
https://twitter.com/christianp

Enjoy!

Type-driven development
Functional Concurrency

Systems programming in ML

LEARNING FUNCTIONAL
PROGRAMMING

SIMON THOMPSON

