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The essence of functional programming

Beginning to learn functional programming

Resources, advice and hottlenecks
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Model the world as data
+
Functions over the data
+
Functions as data



And when | say “function” ...

| mean in the mathematical
sense, taking inputs to outputs,
and doing nothing else!



The approach underties
lots of examples,




The approach underties
lots of examples,
libraries, laziness,
monads, lenses ...




Rock-Paper-Scissors
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Original image: https://www.thishopeanchors.com/single-post/2017/04/06/Rock-Paper-Scissors
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Paper
Scissors

[Move] —> Move

Rock
beat (x:xs) =
case X of
Rock —> Sc1ssors
Paper —> Rock
Scissors —> Paper



Parsers



text

# parse tree

4

remaining text



text parse tree

remaining text



Side-effects



store hefore

input —}‘—} result

store after



Delay/force ... streams



Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/



Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/
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(cons(X,Xs),
() —> {X;XS}

Original image: http://www.metso.com/services/spare-wear-parts-conveyors/conveyor-belts/



github.com/simonjohnthompson/streams

github.com/simonjohnthompson/Interaction






Functions give us expressivity
+
lypes help to constrain that
+
Give a language for modelling
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Pick any language

Start with the concrete before
going to complex abstractions.



PAITERN
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type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw




type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw

area({circle, ,R}) —> math:pi()*R*R;
area({rectangle,H,W}) —> HxW.




type Point = (Float,Float)

data Shape = Circle Point Float
| Rectangle Point Float Float

: : Shape —> Float

(Circle _ r) pikrxr
(Rectangle _ h w) = hxw

—-type point() :: {float(),float()}.

—type shape() :: {circle,point(),float()} |
{rectangle, point(),float(),float()}.

—spec area(shape()) —> float().

area({circle, ,R}) —> math:pi()*RxR;
area({rectangle,H,W}) —> HxW.
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area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw
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area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area shape =
if 1s_circle shape
then pix(radius shape)*(radius shape)
else height shape * width shape




area :: Shape —> Float

area (Circle _ r) pikrkr
area (Rectangle _ h w) hw

area shape =
if 1s_circle shape
then pix(radius shape)*(radius shape)
else height shape * width shape

is_circle :: Shape —> Bool

is _circle (Circle _ ) = True
is_circle _ False

radius, height, width :: Shape —> Float
radius (Circle _ r)

height (Rectangle _ h _
width (Rectangle _ _

r
h
W



RECURSION



nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
1f elem x Xxs
then nub xs
else X : nub xs




nub([]) — [I;

nub([X|Xs]) —>
[X|nub(remove(X,Xs))]1.




nub([]) — [I;

nub([X|Xs]) —>
[X|nub(remove(X,Xs))]1.

remove(_, [1) — [1;

remove(X, [X|Xs]) —
remove (X, Xs);

remove (X, [Y|Xs]) —
[Y|remove(X,Xs)].




RECURSION!



nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs




nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

[]

nub (1:[1) =1 : nub []1 = [1]




nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

nub [] []
nub [1] nub (1:[1) =1 : nub []1 = [1]

nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]




nub :: Eq a => [a] —> [al

nub [] =
nub(x:xs) =
1f elem x Xs

then nub xs
else x : nub xs

nub [] []
nub [1] nub (1:[1) =1 : nub []1 = [1]
nub [2,1] = nub (2:[1]) = 2 : nub [1] = [2,1]

nub [1,2,1] = nub (1:[2,1]1) = nub [2,1] = [2,1]
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nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]
= nub (1:[2,1])




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]
nub (1:[2,1])
nub [2,1]




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)

2 : nub [1]




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])
nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)
2 : 1 : nub []




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

nub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

2 @ nub (1:[1)
2 : 1 : nub []
2 1 : []




nub :: Eq a => [a] —> [al
nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

ub [1,2,1]
nub (1:[2,1])
nub [2,1]
nub (2:[1]1)
2 : nub [1]
1 nub (1:[]1)
+ 1 : nub []
1 : []
1 [1]

n




nub :: Eq a => [a] —> [al
nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

ub [1,2,1]

nub (1:[2,1])

nub [2,1]

nub (2:[1]1)

2 : nub [1]

1 nub (1:[]1)

+ 1 : nub []
[

n

2
2
2
2
[




nub :: Eq a => [a] —> [al

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs

foo [] = ..
foo (x:xs) = ..




nub :: Eq a => [a] —> [a]

nub [] =

nub(x:xs) =
if elem X Xxs
then nub xs
else x : nub xs




How to get started (with recursion)?

Examples, examples, examples.
From simple “five finger” exercises,
to a favourite small library.
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Online

Wiki-books, MOQCs, video
channels, try-XXX,
tutorials ...









Working together

XXX-bridge, code clubs,
meet-ups, reading groups. ..



AND THEN ...



Pick any language

Start with the concrete hefore
going to complex abstractions.



Choosing a language

ISP Elm
Miranda Erlang
ldris T Scala
i

Elixir 0Caml



Find a project

Reimplement something
Iry something new
Join an Open Source project
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Abstraction

This board belongs to Newcastle University PhD student Tom
Fisher, who is doing research in homological algebra.
Thanks to Christian Perfect for the photo.
whatsonmyblackboard.wordpress.com


http://www.ncl.ac.uk/maths/
http://en.wikipedia.org/wiki/Homological_algebra
https://twitter.com/christianp

Enjoy!

Type-driven development
Functional Concurrency
Systems programming in ML
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