
The pragmatics of
clone detection
and elimination

Simon Thompson, Huiqing Li
Andreas Schumacher

University of Kent,UK and Ericsson AB

A story about …

A story about …
… a tool

A story about …
… a tool
… a concept

A story about …
… a tool
… a concept
… and practice

A story about …
… a tool: Wrangler, for refactoring Erlang
… a concept
… and practice

A story about …
… a tool: Wrangler, for refactoring Erlang
… a concept: code clones
… and practice

A story about …
… a tool: Wrangler, for refactoring Erlang
… a concept: code clones
… and practice: case studies with Ericsson

Insights about …

Insights about …
… how to design (refactoring) tools

Insights about …
… how to design (refactoring) tools
… what “code clone” might mean

Insights about …
… how to design (refactoring) tools
… what “code clone” might mean
… practice of clone detection and elimination

Erlang / refactoring / Wrangler

Erlang
Functional language.

Concurrency built-in.

OTP for fault-tolerance
and robustness.

Dynamic language:
hot code loading, …

Good tool ecosystem.

Open source.

Industrial take-up:
WhatsApp … SMEs.

Ericsson support.

Refactoring

Refactoring means changing the
design or structure of a program …
without changing its behaviour.

RefactorModify

Generalisation
-module (test).
-export([f/1]).

add_one ([H|T]) ->
[H+1 | add_one(T)];

add_one ([]) -> [].

f(X) -> add_one(X).

-module (test).
-export([f/1]).

add_one (N, [H|T]) ->
[H+N | add_one(N,T)];

add_one (N,[]) -> [].

f(X) -> add_one(1, X).

-module (test).
-export([f/1]).

add_int (N, [H|T]) ->
[H+N | add_int(N,T)];

add_int (N,[]) -> [].

f(X) -> add_int(1, X).

Generalisation and renaming

Generalisation
-export([printList/1]).

printList([H|T]) ->
io:format("~p\n",[H]),
printList(T);

printList([]) -> true.

printList([1,2,3])

-export([printList/2]).

printList(F,[H|T]) ->
F(H),
printList(F, T);

printList(F,[]) -> true.

printList(
fun(H) ->
io:format("~p\n", [H])

end,
[1,2,3]).

Wrangler refactoring tool
Structural, process,
macro refactorings.

Integrated into Emacs,
Eclipse, …

Multiple modules.

Testing-aware.

Refactoring = Condition
+ Transformation

Implement the simple …
… report the complex.

Make it extensible!

Usability?

Clone detection

Duplicate code considered harmful

It’s a bad smell …

• increases chance of bug propagation,
• increases size of the code,
• increases compile time, and,
• increases the cost of maintenance.
But … it’s not always a problem.

X+4 Y+5X+4 Y+5

What is ‘identical’ code?

variable+number

Identical if values of literals and variables
ignored, but respecting binding structure.

(X+3)+4 4+(5-(3*X))(X+3)+4 4+(5-(3*X))

What is ‘similar’ code?

X+Y

The anti-unification gives the (most specific)
common generalisation.

Example: clone candidate
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

? = ?,
? = ?,
? = ?,
[?,?,?]

Example: clone from sub-sequence
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

new_fun(NewVar_1,
NewVar_2,
NewVar_3) ->

S1 = NewVar_1,
S2 = NewVar_2,
S3 = NewVar_3,
{S1,S2,S3}.

Example: sub-clones
S1 = "This",
S2 = " is a ",
S3 = "string",
[S1,S2,S3]

S1 = "This",
S2 = "is another ",
S3 = "String",
[S3,S2,S1]

D1 = [1],
D2 = [2],
D3 = [3],
[D1,D2,D3]

D1 = [X+1],
D2 = [5],
D3 = [6],
[D3,D2,D1]

new_fun(NewVar_1,
NewVar_2,
NewVar_3) ->

S1 = NewVar_1,
S2 = NewVar_2,
S3 = NewVar_3,
[S1,S2,S3].

new_fun(NewVar_1,
NewVar_2,
NewVar_3) ->

S1 = NewVar_1,
S2 = NewVar_2,
S3 = NewVar_3,
[S3,S2,S1].

What makes a clone?

• Thresholds
• Threshold values and defaults

Thresholds

• Number of expressions

Thresholds

• Number of expressions
• Number of tokens

Thresholds

• Number of expressions
• Number of tokens
• Number of variables introduced

Thresholds

• Number of expressions
• Number of tokens
• Number of variables introduced
• Similarity = mini=1..n(size(AU)/size(Ei))

Threshold values

• Number of expressions ≥ 5
• Number of tokens ≥ 20
• Number of variables introduced ≤ 4
• Similarity = mini=1..n(size(AU)/size(Ei)) ≥ 0.8

What makes a clone?

Which thresholds and what threshold values?

Detection Expression search

All instances similar to
this expression …

… and their common
generalisation.

Default threshold:
≥ 20 tokens.

All clones in a project
meeting the threshold
parameters …

… and their common
generalisations.

Default threshold:
≥ 5 expressions and
similarity of ≥ 0.8.

The SIP Case Study

SIP case study

Session Initiation
Protocol

SIP message
manipulation allows
rewriting rules to
transform messages.
smm_SUITE.erl

2658 LOC.

Why test code particularly?

Many people touch the code.

Write some tests … write more by copy,
paste and modify.

Similarly to long-standing projects, with
a large proportion of legacy code.

“Who you gonna call?”

Can reduce by 20% by aggressively
removing all the clones identified …

… what results is of
no value at all.

Need to call in the
domain experts.

A var by any other name …

Bottom up, not top down

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

The general pattern

Identify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

May choose a sub-clone
23 line clone occurs;
choose to replace a
smaller clone.

Use search mode to
explore the nature
of the sub-clone.

new_fun() ->
{FilterKey1, FilterName1, FilterState, FilterKey2,
FilterName2} = create_filter_12(),
?OM_CHECK([#smmFilter{key=FilterKey1,

filterName=FilterName1,
filterState=FilterState,
module=undefined}],

?SGC_BS, ets, lookup, [smmFilter, FilterKey1]),
?OM_CHECK([#smmFilter{key=FilterKey2,

filterName=FilterName2,
filterState=FilterState,
module=undefined}],

?SGC_BS, ets, lookup, [smmFilter, FilterKey2]),
?OM_CHECK([#sbgFilterTable{key=FilterKey1,

sbgFilterName=FilterName1,
sbgFilterState=FilterState}],

?MP_BS, ets, lookup, [sbgFilterTable, FilterKey1]),
?OM_CHECK([#sbgFilterTable{key=FilterKey2,

sbgFilterName=FilterName2,
sbgFilterState=FilterState}],

?MP_BS, ets, lookup, [sbgFilterTable, FilterKey2]),
{FilterName2, FilterKey2, FilterKey1, FilterName1,
FilterState}.

check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?OM_CHECK([#sbgFilterTable{key=FilterKey,

sbgFilterName=FilterName,
sbgFilterState=FilterState}],

?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Avoid over-generalisation …
2 variants of check_filter_exists_in_sbgFilterTable …

• Check for the filter occurring uniquely in the table: call to
ets:tab2list instead of ets:lookup.
• Check a different table, replace sbgFilterTable by
smmFilter.

• Don’t generalise: too many parameters, how to name?
check_filter_exists_in_sbgFilterTable(FilterKey, FilterName, FilterState) ->
?OM_CHECK([#sbgFilterTable{key=FilterKey,

sbgFilterName=FilterName,
sbgFilterState=FilterState}],

?MP_BS, ets, lookup, [sbgFilterTable, FilterKey]).

Symbolic calls to deprecated code: erlang:module_loaded

erlang:module_loaded(M) -> true | false

code:is_loaded(M) -> {file, Loaded} | false

Define new function code_is_loaded:
code_is_loaded(BS, ModuleName, Result) ->

?OM_CHECK(Result, BS, erlang, module_loaded,[ModuleName]).

Remove all calls using fold against function refactoring.

Different checks: ?OM_CHECK vs ?CH_CHECK
code_is_loaded(BS, om, ModuleName, false) ->

?OM_CHECK(false, BS, code, is_loaded, [ModuleName]).

code_is_loaded(BS, om, ModuleName, true) ->

?OM_CHECK({file, atom_to_list(ModuleName)}, BS, code,

is_loaded, [ModuleName]).

But the calls to ?OM_CHECK have disappeared at step 6 …
… a case of premature generalisation!

Need to inline code_is_loaded/3 to be able to use this …

… but consolidate

‘Widows’ and ‘orphans’
Lines of code
“accidentally“
coincides with
the real clone.

Avoid passing
commands as
parameters?

new_fun(FilterName, NewVar_1) ->
FilterKey = ?SMM_CREATE_FILTER_CHECK(FilterName),
%%Add rulests to filter
RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",
... 16 lines which handle the rules sets are elided ...
%%Remove rulesets
NewVar_1,

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKey}.

new_fun(FilterName, FilterKey) ->
%%Add rulests to filter
RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",
... 16 lines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

Refactoring ⇒ comprehension

The process of naming is dependent on
understanding the code …

… and that understanding can lead to
some manual refactoring and so to larger
clones being found (8.1.4).
Also identifies bugs: ‘recovery’ / ‘rovery’.

And for the refactoring tool …

Look across modules.
Improve the reports (parameter values).
Parameter order.
Add some refactorings: e.g. inlining.

And for the refactoring tool …

Look across modules.
Improve the reports (parameter values).
Parameter order.
Add some refactorings: e.g. inlining.
And make it incremental … workflow

And for the refactoring tool …

Look across modules.
Improve the reports (parameter values).
Parameter order.
Add some refactorings: e.g. inlining.
And make it incremental … workflow
DSL for “scripting”

rename the
variables

replace all
the instances

Transaction control

In the DSL
rename the

function

Tool + human

Clone detection and elimination needs
tooling to make it practical …

Tool + human

Clone detection and elimination needs
tooling to make it practical …
… but there has to be a human in the
loop, irrespective of language, tool and
application area.

Tool + human

The right notion of clone for a particular
project comes from a complex space of
parameters and thresholds.

Tool + human

The right notion of clone for a particular
project comes from a complex space of
parameters and thresholds.
Refactoring in practice relies on a set of
complex choices and tradeoffs, which just
can’t be automated.

www.cs.kent.ac.uk/projects/wrangler/

