The pragmatics of
clone detection
and elimination

Simon Thompson, Huiging Li
Andreas Schumacher

University of Kent,UK and Ericsson AB

University of | &
Test Kent ‘ C\o%n\puting

property based testing

A story about ...

University of | &

Test Kent

property based testing

s
Computing

A story about ...
... a tool

Test Uln(l_g';t]y'otf \

s
property based testing Computing

A story about ...

... a tool
... a concept

Test
erty based testing

University of ‘ Q
I(ent Com\puting

A story about ...

... a tool
... a concept
... and practice

Test
erty based testing

University of ‘ Q
I(ent Com\puting

A story about ...
... a tool: Wrangler, for refactoring Erlang
... a concept
... and practice

Te S t University of Q
Kent ..
property based testing n Computing

A story about ...
... a tool: Wrangler, for refactoring Erlang
... a concept: code clones
... and practice

Te S t University of Q
Kent ..
property based testing n Computing

A story about ...
... a tool: Wrangler, for retactoring Erlang
... a concept: code clones
... and practice: case studies with Ericsson

Te S t University of Q
Kent ..
property based testing n Computing

Insights about ...

University of | &

Test Kent

property based testing

s
Computing

Insights about ...
... how to design (refactoring) tools

University of | &
Test Kent ‘ C\o/rr;puting

Insights about ...
... how to design (refactoring) tools
... what “code clone” might mean

University of | &
Test Kent ‘ Ctm\puting

eeeeeeeeeeeeeeeeeeee

Insights about ...

... how to design (refactoring) tools

... what “code clone” might mean

... practice of clone detection and elimination

University of | &
Test Kent ‘ Ctm\puting

eeeeeeeeeeeeeeeeeeee

Erlang / refactoring / Wrangler

property based testing Computing

Erlang E[.'q

RLANG

Functional language. Good tool ecosystem.

Concurrency built-in. Open source.

OTP for fault-tolerance Industrial take-up:
and robustness. WhatsApp ... SMEs.
Dynamic language: Ericsson support.

hot code loading, ...

property based testing Computing

Refactoring

Refactoring means changing the
design or structure of a program ...
without changing its behaviour.

Refactor

Te St University of R
Kent &
property based testing n Computing

Generalisation and renaming

-module (test). -module (test).

-export([£/1]). -export([£/1]).

add_one ([H|T]) -> add int (N, [H|T]) ->
[H+1 | add one(T)]; [H+N | add int(N,T)];

add_one ([]) -> [1]. add int (N,[]) -> [].

f(X) -> add_one(X). f(X) -> add _int(1, X).
Te St Ulz_gﬁ.otf (;\;Vm\puting

property based testing

Generalisation

-export([printList/1]). —export ([printList/2]).

printList([H|T]) -> ‘ printList(F,[H|T]) ->

io:format ("~p\n",[H]), F(H),
printList(T); printList(F, T);
printList([]) -> true. printList(F,[]) -> true.
printList([1,2,3]) printList(
fun(H) ->
io:format("~p\n", [H])
end,
[1,2,3]).

University of

Test Kant

property based testing

N
x\
Computing

Wrangler refactoring tool

/
Structural, process, Refactoring = Condition
macro refactorings. + Transformation
Integrated into Emacs, Implement the simple ...
Eclipse, report the complex.
Multiple modules. Make it extensible!
Testing-aware. Usability?

ppppppppp Test kent | ..

Clone detection

property based testing Computing

Duplicate code considered harmful

It’'s a bad smell ...

increases chance of bug propagation,
iIncreases size of the code,

iIncreases compile time, and,
increases the cost of maintenance.

But ... it’'s not always a problem.

property based testing Computing

What is ‘identical’ code?

variable+number

N

X+ 5

|dentical if values of literals and variables
ignored, but respecting binding structure.

property based testing Computing

What is ‘similar’ code?

X+Y

/ AN

(X+3)+ 4+ (5-(3*X))

The anti-unification gives the (most specific)
common generalisation.

property based testing Computing

Example: clone candidate

S1 = "This", S1 = "This", D1 = [1], D1 = [X+1],
s2 =" is a ", S2 = "is another ", D2 = [2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[S1,S2,S3] [S3,S2,51] [D1,D2,D3] [D3,D2,D1]

P = 7

[] ® ,

? = 7

® ® ,

? = ?

o o ,

[') ? 'P]

[] , ® , []

T t University of Q.«
es Kent
property based testing

Com\puting

Example: clone from sub-sequence

S1 = "This", S1 = "This", D1 = [1], D1 = [X+1],
s2 =" is a ", S2 = "is another ", D2 = [2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[S1,S2,S3] [S3,S2,S1] [D1,D2,D3] [D3,D2,D1]

new fun(NewVar 1,
NewVar 2,
NewVar 3) ->

S1 = NewVar 1,
S2 = NewVar 2,
S3 = NewVar 3,
{S1,S2,S3}.

A

Test Kent &

property based testing Computing

Example: sub-clones

Sl = "This", S1 = "This", D1 = [1], D1 = [X+1],
s2 =" is a ", S2 = "is another ", D2 = [2], D2 = [5],
S3 = "string", S3 = "String", D3 = [3], D3 = [6],
[S1,S2,S83] [S3,S82,S1] [D1,D2,D3] [D3,D2,D1]
new fun(NewVar 1, new fun(NewVar 1,
NewVar 2, NewVar 2,
NewVar 3) -> NewVar 3) ->
S1 = NewVar 1, S1 = NewVar 1,
S2 = NewVar 2, S2 = NewVar_ 2,
S3 = NewVar_ 3, S3 = NewVar_ 3,
[S1,S2,S3]. [S3,S2,S1].

A

N

Computing

Test Kent

property based testing

What makes a clone?

* Thresholds
« Threshold values and defaults

property based testing Computing

Thresholds

* Number of expressions

property based testing Computing

Thresholds

Number of expressions

Number of tokens

Test Kent &

Computin
property based te puting

Thresholds

Number of expressions
Number of tokens
Number of variables introduced

Test Kent &

property based te Computing

Thresholds

Number of expressions

Number of tokens

Number of variables introduced

Similarity = min_, . (size(AU)/size(E)))

property based testing Computing

Threshold values

* Number of expressions =5

« Number of tokens = 20

» Number of variables introduced < 4

- Similarity = min_; .(size(AU)/size(E;)) =0.8

property based testing Computing

What makes a clone?

Which thresholds and what threshold values?

property based testing Computing

Detection Expression search

All clones in a project All instances similar to
meeting the threshold this expression ...
parameters ...

... and their common ... and their common
generalisations. generalisation.
Default threshold: Default threshold:
> 5 expressions and > 20 tokens.

similarity of = 0.8.

property based testing Computing

The SIP Case Study

property based testing Computing

o
S|P case study =
ERICSSON
Session Initiation
Protocol
SIP message #
manipulation allows e
rewriting rules to]
transform messages. SPuessge | Drver | D S esige
smm SUITE.erl
2658 LOC.
fest Rt S

property based testing

Why test code particularly?

Many people touch the code.

Write some tests ... write more by copy,
paste and modify.

Similarly to long-standing projects, with
a large proportion of legacy code.

property based testing Computing

“Who you gonna call?”

Can reduce by 20% by aggressively

removing all the clones identified ...

... what results is of

1 2658
no value at all. > 9342
3 2231
Need to call in the 4 2217
5 2216

domain experts.

© 00 N O

10

2218
2203
2201
2183
2149

11 2131
12 2097
13 2042

University of ‘ Q,
I(ent Com\puting

erl-output

0@ 0 B ©@s A

New Open Recent Save Undo Redo Cut Copy Paste

Y

Help

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2139.4-2227.28

: This code

~has been cloned once:

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2280.4-2368.32:

The cloned expression/function after generalisation:

new_fun(Newvar_1, NewVar_2) ->

2COMMENT(
Newvar_1, [1),
RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL(ok, RSSetResult),
AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,
?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?0M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel = "Filter_1",
CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),
?TRIAL(ok, CreateFilterl),
{ok, FilterKeyl} = ?SMM_NAME_TO_KEY(smmFilter, FilterNamel),
FilterName2 = "Filter_2",
CreateFilter2 = ?SMM_CREATE_FILTER(FilterName2),
?TRIAL(ok, CreateFilter2),
{ok, FilterKey2} = ?SMM_NAME_TO_KEY(smmFilter, FilterName2),
FilterState = ?SMM_FILTER_STATE(FilterStateAtom),
?0M_CHECK([#sbgFilterTable{key=FilterKeyl,
sbgFilterName=FilterNamel,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]),

?0M_CHECK([#sbgFilterTable{key=FilterKey2,

-:%* *ar|l-output* 97% (2165,0) (Fundamental Compilation)

A var by any other name ...

A N ™

erl-output

MECECH OAC R 7

New Open Recent Save Undo Redo Cut Copy Paste Help

/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:2139.4-2227.28: This code
~ has been cloned once:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:2280.4-2368.32:

The cloned expression/function after generalisation:

new_fun(NewVar_1, NewVar_2) ->

7COMMENT(
Newvar_1, [1),

RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL(ok, RSSetResult),
AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,
?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?0M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel = "Filter_1",
CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),

[R

Similar detection finished with *** 43 *** clone(s) found.

~
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:196.4-202.71: This code h
as been cloned 15 times: |
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:377.4-383.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:693.4-699.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:755.4-761.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:807.4-813.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:904.4-910.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:988.4-994.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:1084.4-1090.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:1497.4-1503.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:1585.4-1591.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:1719.4-1725.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:1803.4-1809.71:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2026.4-2032.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:2143.4-2149.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:2284.4-2290.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/smm_SUITE.erl:2428.4-2434.71:

The cloned expression/function after generalisation:

new_fun() ->
SetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL(ok, SetResult),
AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,
?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?70M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
Amount0OfRuleSets.

Bottom up, not top down

The largest clone
has 88 lines, and
2 parameters.

But what does it
represent?

What to call it?

Best to work
bottom up.

Test

property based testing

erl-output

U O & W & =

New Open Recent Save Undo Redo Cut Copy Paste

v

Help

/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2139.4-2227.28: This code

has been cloned once:
/Users/simonthompson/Desktop/StockholmAug®9/code/smm_SUITE.erl:2280.4-2368.32:

fThe cloned expression/function after generalisation:

new_fun(NewVar_1, NewVar_2) ->

2COMMENT(
Newvar_1, [1),
RSSetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE_1, no),
?TRIAL(ok, RSSetResult),
AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,
?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
?0M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
FilterStateAtom = notUsed,
FilterNamel = ,
CreateFilterl = ?SMM_CREATE_FILTER(FilterNamel),
?TRIAL(ok, CreateFilterl),
{ok, FilterKeyl} = ?SMM_NAME_TO_KEY(smmFilter, FilterNamel),
FilterName2 = ,
CreateFilter2 = ?SMM_CREATE_FILTER(FilterName2),
?TRIAL(ok, CreateFilter2),
{ok, FilterKey2} = ?SMM_NAME_TO_KEY(smmFilter, FilterName2),
FilterState = ?SMM_FILTER_STATE(FilterStateAtom),
?0M_CHECK([#sbgFilterTable{key=FilterKeyl,
sbgFilterName=FilterNamel,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]),

?0M_CHECK([#sbgFilterTable{key=FilterKey2,

-:** *ar|-output* 97% (2165,0) (Fundamental Compilation)

University of

Kent

Com\puting

The general pattern

|dentify a clone.

Introduce the corresponding
generalisation.

Eliminate all the clone instances.

So what’s the complication?

property based testing Computing

May choose a sub-clone

23 line clone occurs; .., .o -

{Filterkeyl, FilterNamel, FilterState, FilterKey2,
choose o rep|ace a FilterName2} = create_filter_120),
?0M_CHECK ([#smmFilter{key=FilterKeyl,
filterName=FilterNamel,
ESTT1E1||EBF (3|()r1€3. filterState=FilterState,
module=undefined}],
?SGC_BS, ets, lookup, [smmFilter, FilterKeyl]),
?0M_CHECK ([#smmFilter{key=FilterKey2,

USG SearCh mOde tO filterName=FilterName2,

filterState=FilterState,

module=undefined}],
€3)(F)IC)rEB tr]EB r1€1tLJr€3 ?SGC_BS, ets, Tookup, [smmFilter, FilterKey2]),

?0M_CHECK ([#sbgFilterTable{key=FilterKkeyl,
C)f tr]fa E;LJt)-(:IC)r]GB_ sbgFilterName=FilterNamel,
sbgFilterState=FilterState}],
?MP_BS, ets, lookup, [sbgFilterTable, FilterKeyl]),
?0M_CHECK ([#sbgFilterTable{key=FilterKkey2,
sbgFilterName=FilterName2,

check_filter_exists_in_sbgFilterTable(Filterkey, FilterName, FilterState) ->
?0M_CHECK ([#sbgFilterTable{key=Filterkey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, Tlookup, [sbgFilterTable, Filterkey]).

Test Uln(]_gﬁ'otf N

property based testing

Com\puting

Avoid over-generalisation ...

2 variants of check_filter_exists_in_sbgFilterTable ..

 Check for the filter occurring uniquely in the table: call to
ets:tab21ist instead of ets: Tookup.

- Check a different table, replace sbgrilterTable by
smmF1i1lter.

- Don’t generalise: too many parameters, how to name?

check_filter_exists_in_sbgFilterTable(Filterkey, FilterName, FilterState) ->
?0M_CHECK ([#sbgFilterTable{key=FilterKkey,
sbgFilterName=FilterName,
sbgFilterState=FilterState}],
?MP_BS, ets, Tlookup, [sbgFilterTable, Filterkey]).

A

T e S t University of
Kent
property based testing n

s
Computing

but consolidate

Different checks: ?0M_CHECK VS ?CH_CHECK

code_is_loaded(BS, om, ModuleName, false) ->
?0M_CHECK(false, BS, code, is_loaded, [ModuleName]).
code_is_loaded(BS, om, ModuleName, true) ->
70M_CHECK({file, atom_to_list(ModuleName)}, BS, code,
1s_loaded, [ModuleName]).

But the calls to ?7om_cHECK have disappeared at step 6 ...
. a case of premature generalisation!

Need to inline code_is_Tloaded/3 to be able to use this ...

Q,
Com

Test Kent

property based testing

‘Widows’ and ‘orphans’

L|neS of Code new_fun(FilterName, Newvar_1l) ->
Filte rkey = ?SMM_CREATE_FILTER_CHECK(FilterName),
& i & %%Add rulests to filter
accidentally s
. . . RuleSetNameB = "b",
COInCIdeS Wlth RuleSetNameC = "c"’
RuleSetNameD = "d",
the real C|One. ... 16 1ines which handle the rules sets are elided ...
%%Remove rulesets
Newvar_1,

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD, FilterKkey}.

Avoid passing

(3()rT]rT]E1r](jES as new_fun(FilterName, FilterKkey) ->
%%Add rulests to filter

parameters? RuleSetNameA = "a",
RuleSetNameB = "b",
RuleSetNameC = "c",
RuleSetNameD = "d",

. 16 Tines which handle the rules sets are elided ...
%%Remove rulesets

{RuleSetNameA, RuleSetNameB, RuleSetNameC, RuleSetNameD}.

Test Uln(]_gﬁ'otf \

property based testing

Com\puting

Refactoring = comprehension

The process of naming is dependent on
understanding the code ...

... and that understanding can lead to
some manual refactoring and so to larger
clones being found (8.1.4).

Also identifies bugs: ‘recovery’/ ‘rovery’.

property based testing Computing

And for the refactoring tool ...

Look across modules.

Improve the reports (parameter values).
Parameter order.

Add some refactorings: e.g. inlining.

And for the refactoring tool ...

Look across modules.

Improve the reports (parameter values).
Parameter order.

Add some refactorings: e.g. inlining.
And make it incremental ... workflow

property based testing Computing

And for the refactoring tool ...

Look across modules.

Improve the reports (parameter values).
Parameter order.

Add some refactorings: e.g. inlining.
And make it incremental ... workflow
DSL for “scripting”

eeeeeeeeeeeeeeeeeeee

In the DSL

rename the

Transaction control function

/Users/simonthompson/Desktop/StockholmAug®9/code/smm S erl:1084.4-1090.71:
/Users/simonthompson/Desktop/StockholmAug@9/code/s uillE.erl:1497.4-1503.71:
/Users/simonthompson/Desktop/StockholmAug®9/a smm_SUITE - .4- .71
/Users/simonthompson/Desktop/StockholmAr=” Lode/smm_SUIT rename the
/Users/simonthompson/Desktop/Stockhaliiiugd9/code/smm_SUIT - .4-] e H
/Users/simonthompson/Desktop/StafitiolmAug®9/ code/smm_Skil ~ variables
/Users/simonthompson/DesktagStockholmAug@®9/codes®inn SUT H .4- .71
/Users/simonthompson/Rafktop/StockholmAug@d tode/smm_SUITE.erl:2284.4-2290.71:
/Users/simonthompseli/Desktop/StockhalnAug®9/code/smm_SUITE.er] :2428.4-2434.71:

The cloned expression/function after generalisation:

new_fun() ->
SetResult = ?SMM_IMPORT_FILE_BASIC(?SMM_RULESET_FILE. rEBE)IEi(:EB Ei”
?TRIAL(ok, SetResult), the instances

AmountOfRuleSets = ?SMM_RULESET_FILE_1_COUNT,
?0M_CHECK(AmountOfRuleSets, ?MP_BS, ets, info, [sbgRuleSetTable, size]),
70M_CHECK(AmountOfRuleSets, ?SGC_BS, ets, info, [smmRuleSet, size]),
AmountOfRuleSets.

-:** *arl-output* 9% (237,0) (Fundamental Compilation)

Tool + human

Clone detection and elimination needs
tooling to make it practical ...

University of | &
Test Kent ‘ C\o;n\puting

eeeeeeeeeeeeeeeeeeee

Tool + human

Clone detection and elimination needs
tooling to make it practical ...

... but there has to be a human in the
loop, irrespective of language, tool and
application area.

property based testing Computing

Tool + human

The right notion of clone for a particular
project comes from a complex space of
parameters and thresholds.

University of | &
Test Kent ‘ C\o;n\puting

eeeeeeeeeeeeeeeeeeee

Tool + human

The right notion of clone for a particular
project comes from a complex space of
parameters and thresholds.

Refactoring in practice relies on a set of
complex choices and tradeoffs, which just
can’'t be automated.

property based testing Computing

www.cs.kent.ac.uk/projects/wrangler/

property based testing Computing

