
Property-based testing
for Web Services

Simon Thompson Thomas Arts
University of Kent Quviq

Introduction

EU PROWESS project

Aims to improve testing, particularly for web services,
through uptake and use of property-based testing (PBT).

The QuickCheck tool for PBT can be used to test web
services as well as systems built in Erlang, Java, C, …

… but system models and properties are written in Erlang.

University of Sheffield UK

University of Kent UK

Chalmers University of Technology Sweden

Universidad Politécnica de Madrid Spain

University of A Coruña Spain

Quviq AB Sweden

Erlang Solutions Ltd UK

Interoud Innovation S.L. Spain

SP Technical Research Institute of Sweden Sweden

Erlang ecosystem

Erlang

Megaload

QuickCheck

Wrangler

Web Services

C

Erlang

Java

fault_check
WSToolkit

JSONgen

James
ranking

complexity

smother

pulse

Mu2

Overview

test results

implementationtests

test results

implementationtests

QuickCheck

test results

properties

implementationtests

QuickCheck

test results

properties

implementationtests

ReadSpec

QuickCheck

test results

properties

implementationtests

ReadSpec

QuickCheck

GoodExamples

test results

properties

specification

implementationtests

existing tests

QuickCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
James

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDL dsl

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDLdsl

WStoolkit

test results

properties

specification

implementationtests

existing tests

QuickCheck

UI testing: Webdriver

test results

properties

implementationtests

QuickCheck

PULSE

test results

properties

implementationtests

QuickCheck

test results

properties

implementationtests

QuickCheck

FaultCheck

test results

properties

implementationtests

QuickCheck

Mu2

test results

properties

implementationtests

QuickCheck

Mu2
Smother

test results

properties

implementationtests

QuickCheck

ComplexityCheck

test results

properties

implementationtests

QuickCheck

test results

properties

implementationtests

QuickCheck

implementation

test results

properties

implementationtests

QuickCheck

implementation
implementation

test results

properties

implementationtests

QuickCheck

implementation

Ranker

implementation

test results

propertiesspecification

implementationtests

QuickCheckMegaload

Case study

VoDKATV
Internet-Protocol TV (IPTV) / “Over the top” content (OTT)
Cloud Middleware Architecture.

Interactive services for IPTV/OTT environments, eg, hotels.

Runs on a set-top-box (STB) , connected to a TV + remote.

Component-based; on client side: STB, tablet, PC, phone, …

Set-top box
The STB includes

● a portable middleware layer implemented in Erlang,
● a UI layer developed in HTML, JavaScript and CSS

(Webkit browser);
● communication between the UI layer and the

middleware via a WebSocket-based protocol.

Web services for interactions
Some APIs respond in XML, others in JSON

Different kinds of authentication for access to the APIs:
● none required,
● authentication with cookies
● authentication with tokens, e.g. expiration time, max #

logins per user, …

Property-based testing for VoDKATV
This is where the demo by Thomas fits …

The toolset

test results

properties

specification

implementationtests

WStoolkit

^

test results

properties

specification

implementationtests

specification

WStoolkit

properties

Wrangler

Evolution in PBT with WStoolkit
Using Wrangler, Kent’s tool for refactoring Erlang systems.

Infer of changes between WSDL descriptions …

… from these generate refactoring scripts …

… which automate model evolution as much as possible.

test results

propertiesspecification

implementationtests

QuickCheckMegaload

Megaload – Load testing VoDKA
Cloud-based load testing of systems.

Megaload: loads, monitors and presents results.

Generating load profiles …
 … and shrinking to minimal (counter-) examples in the
most load-effective way.

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse

test results

properties

specification

implementationtests

existing tests

QuickCheck

Synapse
James

Inference and PBT
How to develop properties for a system. Two tools:

● James – infer models for web services from unit tests
written in Java, using JUnit.

● Synapse - infer FSM from systems, and visualise the
difference between models / systems.

James

New JUnit tests from existing tests, by model inference.

Track a combination of data- / control-flow information …
 … extracted from running the test suite on the SUT
 … run the tests on the Java VM
 … track information using C++ agent and JVM-TI API

James

Track and send to an Erlang server:
● the execution order of the calls in the JUnit tests, and
● how objects are reused.

Server generates a model … visualised through GraphViz.

Translate model into QuickCheck … then generate new
tests, that can be added to the original test suite.

Synapse
An Erlang interface to grammar inference tools.

Synapse interfaces to the StateChum tool for passive and
active inference of FSM models, as well as:

● active and passive learning,
● model differencing, and
● FSM and difference visualisation.

Understanding properties and models

ReadSpec to render QuickCheck models in (semi-)natural
language.

Synapse tool allows users to visualise differences between
variants of models / systems as FSMs.

GoodExamples tool to make the meaning of a property
more concrete by viewing it as a set of unit tests.

test results

properties

implementationtests

ReadSpec

QuickCheck

test results

properties

implementationtests

ReadSpec

QuickCheck

GoodExamples

ReadSpec
ReadSpec uses QuickCheck to automatically generate
semi-natural language descriptions of QuickCheck
properties and QuickCheck state machine models.

Example: simple_eqc.erl contains a property to test the
delete operation of the lists module:

?FORALL({I,L}, {int(), list(int())},

not lists:member(I,lists:delete(I, L)))

FEATURE: Simple QuickCheck properties
SCENARIO: Deleting an integer from a list should result in a list that
does not contain that integer.
GIVEN I have the integer 19
AND I have the list [7, -24, -18, 17, -8, -9, -8]
THEN lists:member(19, lists:delete(19, [7,-24,-18,17,-8,-9,-8]))
IS FALSE.

Good Examples tool
It can be hard to tell what a property tests…
properties - powerful and general;
unit tests - easy to understand but specific.

Good Examples - makes the meaning of a property more
concrete by viewing it as a set of unit tests.

Scenario 1: From a test suite, which of our test cases the
property captures?
Solution: Our technique can say with high probability
whether a property captures a given test case.

Scenario 2: what does a property test?
Solution: Our technique to generates representative
examples of what a QuickCheck property tests.

Support for Web Services
Tools to support data generation for web services models:

JSONgen is a library for generating QuickCheck generators
from descriptions of JSON data using JSON schemas, and
for automatically exploring and testing JSON web services.

wsdl_dsl is a QuickCheck library that implements a domain
specific language which re-uses the WSDL syntax to allow
users to express WSDL types as QuickCheck generators.

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDL dsl

test results

properties

specification

implementationtests

existing tests

QuickCheck

JSONgen
WSDLdsl

WStoolkit

JSONgen – convert and explore
Convert JSON schema to mochijson2 Erlang term.

Convert JSON schema into a QuickCheck generator.

Convert JSON data value in mochijson2 format to text

Explore and test a JSON based web service using the web
links / data types embedded in the JSON schema args.

Can tailor the actions with a QuickCheck state machine.

test results

properties

implementationtests

QuickCheck

Scaling PBT
Model using components
instead of a single model.

Library for mocking the
behaviour of callout
components.

Clustered system resulting
from the component models.

MoreBugs
QuickCheck “by hand”: run QC, fix bug, repeat …

With MoreBugs, can find “all” bugs at once, through
● find bug,
● generalise
● modify generator to avoid it
and repeat …

Graphical editing

test results

properties

implementationtests

QuickCheck

Mu2

test results

properties

implementationtests

QuickCheck

Mu2
Smother

Validating quality of test suites
Smother used to assess
the MC/DC coverage of a
test suite.

Mu2 supports mutation
testing

Add screen-shot of
smother here.

test results

properties

implementationtests

QuickCheck

FaultCheck

Testing non-functional requirements

FaultCheck …

… a fault-injection tool for C
code that combines fault-
injection and property based
testing using QuickCheck.

WebDriver

Continuous integration

Comparing different implementations

Results

test results

properties

specification

implementationtests

existing tests

QuickCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Scalable PBT:
components
and mocking

test results

properties

specification

implementationtests

existing tests

QuickCheck

Accessible PBT:
ReadSpec,
GoodExamples

test results

properties

specification

implementationtests

existing tests

QuickCheck

PBT for web
services: WStoolkit,
JSONgen

test results

properties

specification

implementationtests

existing tests

QuickCheck

Discovering
properties:
James, Synapse

test results

properties

specification

implementationtests

existing tests

QuickCheck

Improved testing:
Smother, Mu2,
FaultCheck

test results

properties

specification

implementationtests

existing tests

QuickCheck

Evolution and
PBT: QC CI,
WStoolkit, Ranker

implementation

Acknowledgement

The Universities of Sheffield, Kent, A Coruña, Chalmers
Technical University and the Polytechnic University of
Madrid; Quviq AB, Interoud, Erlang Solutions Ltd and SP
gratefully acknowledge the support of the European
Commission for the PROWESS project, funded under
Framework Programme 7.

Results
Scalable PBT: components, mocking
Accessible PBT: ReadSpec, GoodExamples
PBT for web services: WStoolkit, JSONgen
Discovering properties: James, Synapse
Improved testing: Smother, Mu2, FaultCheck
Evolution and PBT: QC CI, WStoolkit, Ranker

www.prowess-project.eu

