
Building trustworthy refactoring tools

Simon Thompson, University of Kent, UK

Joint work with Thomas Arts, Dániel Drienyovszky,
Dániel Horpácsi, Huiqing Li and Nik Sultana

Why should I trust my code to your refactoring tool?

Outline

What we do … and how we do it

Psychological, pragmatic and technical

A range of equivalences

Testing … property-based testing

Verification … manual and automated

System-level and program-level

Refactoring

Change how a program works …

	
 … without changing what it does.

Extension and reuse

	 io:format("ping!~n"),
	 timer:sleep(500),
	 b ! {msg, Msg, N - 1},

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

	 loop_a()
 end.

Let’s turn this into a function

Why refactor?

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->
	 io:format("ping!~n"),
	 timer:sleep(500),
	 b ! {msg, Msg, N - 1},
	 loop_a()
 end.

	 io:format("ping!~n"),
	 timer:sleep(500),
	 b ! {msg, Msg, N - 1},

Why refactor?

loop_a() ->
 receive
 stop -> ok;
 {msg, _Msg, 0} -> loop_a();
 {msg, Msg, N} ->

	 loop_a()
 end.

	 body(Msg,N),

body(Msg,N) ->

.

Extension and reuse

Why refactor?

“Clones considered harmful”: detect
and eliminate duplicate code.

Improve the module structure:
remove loops, for example.

Counteract decay ... comprehension

How to refactor?

By hand … using an editor.

	
 Flexible … but error-prone.

	
 Infeasible in the large.

Tool-supported.

	
 Handle atoms, types, names, side-effects, …

	
 Scalable to large-code bases: module-aware.	

	
 Integrated with tests, macros, ...	

Wrangler

Basic refactorings: structural, macro,
process and test-framework related

C
lo

ne
 d

et
ec

tio
n

an
d

re
m

ov
al

M
od

ul
e

st
ru

ct
ur

e
im

pr
ov

em
en

t
API: define new

refactorings

DSL for composite
refactorings

API: templates and rules … in Erlang

rule({M,F,A}, N) ->
 ?RULE(?T("F@(Args@@)"),
 begin
 NewArgs@@=delete(N, Args@@),
 ?TO_AST("F@(NewArgs@@)")
 end,
 refac_api:fun_define_info(F@) == {M,F,A}).

delete(N, List) -> … delete Nth elem of List …

?RULE(Template, NewCode, Cond)

The old code, the new code and the pre-condition.

Rename function

Rename variables

Reorder variables

Add to export list

Fold* against the def.

Clone removal

Clone removal in the DSL

Transaction as a whole … non-transactional components OK.

Not just an API: ?transaction etc. modify interpretation of what
they enclose …

?transaction(
 [?interactive(RENAME FUNCTION)
 ?refac_(RENAME ALL VARIABLES OF THE FORM NewVar*)
 ?repeat_interactive(SWAP ARGUMENTS)
 ?if_then(EXPORT IF NOT ALREADY)
 ?non_transaction(FOLD INSTANCES OF THE CLONE)
]).

Wrangler in a nutshell

Automate the simple things, and …

	
 … provide decision support tools otherwise.

Embed in common IDEs: emacs, eclipse, …

Handle full language, multiple modules, tests, ...

Faithful to layout and comments.

Build in Erlang and apply the tool to itself.

Under the hood

Parse

Analyse

Transform

Output

text

AST

AAST

AAST

text

Why should I trust my code to your refactoring tool?

Psychological and social issues

Open Source … confidence in the code … other committers.

The benefits outweigh the risk / cost …

	
 … might even be OK to introduce some faults?

Openness of the system …

	
 … you can check the changes that a refactoring makes,

	
 … and for the DSL can see which refactorings performed.

Benefit ≫ risk: removing bug preconditions

Scenario: building Erlang models for C code at Quviq AB.

For buggy code, want
to avoid hitting the
same bugs all the time.

Add bug precondition
macros …

… but want to remove
in delivered code.

DSL + API.

And you can see the
changes …

Pragmatic issues

GHC vs Haskell standards vs other Haskell implementations

Editor and IDE integration

Wider integration: comments, makefiles, tests, …

It does exactly what I said (or want?) … API and DSL.

Technical

Meaning has been preserved.

Appearance has been preserved.

The appearance hasn’t changed

my_list() ->
 [foo,
 bar,
 baz,
 wombat
]

my_funny_list() ->
 [foo
 ,bar
 ,baz
 ,wombat
]

data MyType = Foo |
 Bar |
 Baz

data HerType = Foo
 | Bar
 | Baz

{v1, v2, v3}

{v1,v2,v3}

f (g x y)

f $ g x y

Preserving appearance

Preserve precisely parts not touched.

Pretty print … or use lexical details.

Learn layout for synthesised code from existing codebase.

Preserving meaning

What are we preserving?

Where are we preserving it?

Individual results or the refactoring tool itself?

Equivalences

Testing equivalence: ∀ test data [finite]

PBT equivalence: ∀ random test data [finite, but unbounded]

Extensional equivalence: ∀ input data [infinite]

(Annotated) abstract syntax tree (with some quotient?)

Textual

Question: varieties of ↓: may be happy to converge on more inputs?

test or verify

to
ol

 o
r

re
su

lts

Testing

Testing the results of applying the tool …

Regression tests (and properties) for the system …

	
 … and at module and function level (modulo refactoring).

×

test or verify

to
ol

 o
r

re
su

lts

System, module and function

main

module1

module2

function1

function2

should be preserved

may be preserved

probably not preserved

System + unit testing … refactor tests too

main

module1

module2

function1

function2

should be preserved

should be preserved

should be preserved

System + PBT … refactor properties too

main

module1

module2

function1

function2

should be preserved

should be preserved

should be preserved

… or testing the refactoring tool itself.

Generate programs as test data for the tool …

	
 … together with refactorings and test data for the programs.

×
test or verify

to
ol

 o
r

re
su

lts

Testing two refactoring tools

module2

function1

function2

module2

function1

function2

Compare the results of tool1 and tool2 …

	
 … either by testing both, or directly comparing the code / ASTs.

Similar to compiler comparisons and Eclipse vs NetBeans (Dig et al).

Testing one tool

module2

function1

function2

module2

function1

function2

Compare the results of function1 and function1 (unmodified) …

	
 … using existing unit tests, or randomly-generated inputs

	
 … could compare ASTs as well as behaviour (in former case).

Fully random

moduleR

function1

function2

moduleR

function1

function2

Generate random modules,

	
 … generate random refactoring commands,

	
 … and check ≣ with random inputs. (w/ Drienyovszky, Horpácsi).

moduleR

Verification

Verification

Tool-level verification for little languages …

	
 … or for full scale tools (re-)using implemented meta-theory?

Individual verifications: proof or counterexample.

×
test or verify

to
ol

 o
r

re
su

lts

Tool verification (with Nik Sultana)

Deep embeddings of small languages:

	
 … potentially name-capturing λ-calculus

	
 … PCF with unit and sum types.

Isabelle/HOL: LCF-style secure proof checking.

Formalisation of meta-theory: variable binding, free / bound
variables, capture, fresh variables, typing rules, etc …

	
 … principally to support pre-conditions.

Figure 1. Automated refactoring process

2.1 Stages in refactoring
Li (2006, see Chapter 4) describes refactoring as being made up
of three stages. This is illustrated in Figure 1. The preprocessing
stage involves producing representations of the program that are
suitable for transformation – this stage involves lexing, parsing,
and possibly further processing to generate a representation of
programs that is more rich than their Abstract Syntax Tree (AST),
if required.
The second stage involves the actual refactoring. Applying a

refactoring involves two steps: checking the refactoring’s precon-
ditions and transforming the program if the preconditions are satis-
fied by the program.
The last stage involves printing the program representation into

the representation we usually manipulate – a list of characters. For
some programming languages, such as Erlang, it suffices to pretty-
print the program since there is a widely-accepted and adhered-to
layout for programs (Li et al. 2006, §3.1). For other languages, such
as Haskell, further processing is required to ensure that the printed
refactored program mimics the layout of the original program since
the language does not enforce a particular layout.

2.2 Preserving program appearance
Since the layout of Haskell programs can be idiosyncratic, transfor-
mation tools need to take this into account by restoring the original
program’s appearance in the transformed program. For Haskell pro-
grams one could choose between explicit delimitation using braces
and using a so-called offside structure: the delimitation of code
is inferred from the code’s indentation. This is described in the
Haskell Report (Jones et al. 2003, §9.3).
During manual refactoring the preservation of layout and com-

ments is straightforward, but automating this preservation can be
challenging. Li (2006, §2.4) describes the automatic preservation
of program appearance for refactored Haskell programs. Her ap-
proach uses two basic program representations: the token stream
and an AST annotated with type and scope information. These two
representations are kept consistent (Li 2006, §4.2.3) since trans-
formations are effected on both: the AST is transformed to effect
changes to the program, and the token stream is also modified to en-
sure that program layout rules are adhered to following the AST’s
transformation. Comments are also preserved – and moved together
with code deemed related – using information in the token stream
and heuristics used to associate comments to code.
Besides program layout and comments, names (of variables,

definitions, etc) are features that should be preserved too. Names
are typically chosen with care in order to improve the program’s
readability. Name information can be obtained from the AST. In the
work described in this paper we focus solely on the main (second)
stage in the refactoring process. Within this stage we concentrate
on the preservation of name information together with program
behaviour. From this point onwards whenever a reference is made
to refactoring we intend this second stage.

2.3 Correctness property

A refactoring is composed of a collection of preconditions and a
program transformation. When a refactoring is applied to a pro-
gram, the transformation is effected only if all the preconditions
are satisfied by the program. Otherwise the program is returned un-
changed. A refactoring with conjoined preconditions represented
by the effective predicate Q, and effecting program transformation
T , behaves thus:

λp. if (Qp) then (T p) else p

Let ! denote a behavioural equivalence over programs. Then in
order to verify the refactoring (establishing that it is behaviour-
preserving for arbitrary programs) one must prove that:

∀p. (Qp) −→ (T p) ! p

Apart from p, refactorings are usually parametrised by other
values required by transformation T and which might also be con-
sumed by Q. Let us assume that the parameters have already been
provided and that the refactoring is a curried function – so at this
stage we only see the last formal parameter: the program itself.
Together with the program, the parameter values are inputs to the
refactoring and the values themselves might influence whether the
preconditions are satisfied. For example, the rename a variable
refactoring is additionally parametrised by two variable names: the
name to change and the name to change it to. These parameters are
also provided to the refactoring’s preconditions since they include
provisions to ensure that name-clash does not occur as a result of
transformation.

2.4 Models of refactoring

As previously explained, if the preconditions of a refactoring are
not satisfied then the program is not transformed. In implementa-
tions of refactorings, if the preconditions are not satisfied then the
user may be prompted to provide different parameters to the refac-
toring and offered the choice to abandon the refactoring. Let us call
this the interactive model.
A different approach would involve endowing the refactorings

with more automation such that they can autonomously change
parts of the program in order to satisfy the preconditions. The user
is later informed of these changes and might need to effect further
corrective changes. For example, in the event of a name-clash the
refactoring might perform renamings such that the transformation
would still preserve program behaviour. By contrast, this model
involves compensating for preconditions that are not satisfied.
These two models have analogues in the λ-calculus; for exam-

ple, with regards to names a transformation can be defined in a
non-renaming or in a renaming manner. These lead to interactive
and compensating refactoring definitions respectively. We opt for
the interactive approach in the research described in this paper. The
two transformation definitions will be described further in the next
section and the effect each has on the complexity of proofs will be
discussed.
The interactive approach is illustrated by means of a transition

diagram in Figure 2.

2.5 Transformation operations
Transformations might simply replace an (sub)expression with an-
other, or else propagate changes in expressions by using substitu-
tion. Substitution is the canonical transformation operation for clas-
sical λ-calculi – other expositions of λ-calculi may use different
canonical operations. For example when using nominal techniques
(Urban and Tasson 2005) swapping is the canonical operation.
In order to facilitate reasoning about programs, programs are

usually identified ‘up to renaming of bound variables’. Moreover,

52

Variable capturing substitution
Substitution

ε[M/x]
def
= ε

(y := N)[M/x]
def
= if x = y then y := N

else y := (N[M/x])

(D1 ‖ D2)[M/x]
def
= if x ∈ DVTopd (D1 ‖ D2)

then (D1 ‖ D2)
else (D1[M/x] ‖ D2[M/x])

i[M/x]
def
= if x = i then M else i

(λi.N)[M/x]
def
= if x = i then λi.N

else λi.(N[M/x])

(N ·N′)[M/x]
def
= (N[M/x]) · (N′[M/x])

(letrec D in N)[M/x]
def
= if x ∈ DVTopd (letrec D in N)

then (letrec D in N)
else letrec (D[M/x]) in (N[M/x])

Mechanical Verification of Refactorings – p.21/38

Inductive definition of evaluation
Logic: inductively defining !

Fresh(z,M)
λx.M ! λz.M[z/x]

(α)

¬Captures(N,M)
(λx.M) N !M[N/x]

(β)

x ! FV(M)
λx.(M · x) !M

(η)

M !M
(R)

N !M

M ! N
(S)

M !M′ M′ ! N

M ! N
(T)

Mechanical Verification of Refactorings – p.22/38

Extract a (local) definitionExtract a definition
The composition of four steps
1. letrec f :=M in L is the original expression, and is

changed to
2. letrec f := letrec g :=N in M[g :N] in L by “declare a

definition”, then to
3. letrec g :=N in letrec f := letrec g :=N in M[g :N] in L

using “add a redundant definition”, and finally to
4. letrec g :=N in letrec f :=M[g :N] in L by using

“demote a definition”.

Mechanical Verification of Refactorings – p.23/38

Extract a (local) definition … formallyExtract a definition, formally
g ! FV L ∧
¬Rec (g :=N) ∧
g ! (f :=M) ∧
N ⊆Λ M ∧
¬Captures fix f ∧
¬Captures L g ∧
¬Captures N f ∧
¬Captures L M ∧
¬Captures N M ∧
¬Captures (letrec f := (letrec g :=N in M) in L) N ∧
¬Captures L (M[g :N]) ∧ ¬Captures N (M[g :N]) −→

letrec f :=M in L % letrec g :=N in (letrec f :=M[g :N] in L)

Mechanical Verification of Refactorings – p.24/38

PCF + union: expand type exampleEnlarge definition type
If
• Γ !N :: S ∧ Γ ! x :: T ∧ Γ, y : T′ ! L :: T ∧
Γ !M :: T

• ¬Captures N 〈x′ ⇐ x′〉x〈y⇒ L〉 ∧
¬Captures N M ∧ ¬Captures L M

• x′ ! FV M ∧ y ! FV M ∧ x ! FV L

Then
Γ ' let x :T :=M in N (

let x :T+T′ := inLT+T′ M in N[〈x′ ⇐ x′〉x〈y⇒ L〉/x] :: S

Mechanical Verification of Refactorings – p.31/38

Full tool verification revisited

Tool-level verification for full scale tools?

This requires, at least:

	
 Meta-theory for a real language

	
 Semantics for a real language

Idea (with Nik Sultana)

Prove the equivalence of a class of pairs of functions in a theorem
prover …

 … and extract the transformation function as
the refactoring using Haskell extraction facilities.

Again, will be a proof for a small language …

 … but what about a refactoring (for dependent types?)
written in a dependently typed language like Agda?

×

test or verify

to
ol

 o
r

re
su

lts

Automatically verify instances of refactorings

Prove the equivalence of the particular pair of functions / systems
using an SMT solver …

… SMT solvers linked to Haskell by Data.SBV (Levent Erkok).

Manifestly clear what is being checked.

The approach delegates trust to the SMT solver …

… can choose other solvers, and examine counter-examples.

Also possible for Erlang using e.g. McErlang model checker.

module Before where

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

f :: Integer->Integer

f x = x + 1

Example

module Before where

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

f :: Integer->Integer

f x = x + 1

Example: renaming

module After where

h :: Integer->Integer->Integer

h x y = k y + f (k y)

k :: Integer->Integer

k x = 3*x + f x

f :: Integer->Integer

f x = x + 1

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

import Data.SBV

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

import Data.SBV

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)

k :: Integer->Integer

k x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

import Data.SBV

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)

k :: Integer->Integer

k x = 3*x + f x

{-# LANGUAGE ScopedTypeVariables #-}

module RefacProof where

import Data.SBV

-- f can be treated as an uninterpreted symbol

f = uninterpret "f"

-- Properties

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

h :: Integer->Integer->Integer

h x y = g y + f (g y)

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)

k :: Integer->Integer

k x = 3*x + f x

-- f can be treated as an uninterpreted symbol

f = uninterpret "f"

-- Properties

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk
Q.E.D.
*Refac2> propertyh
Q.E.D.

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
 where
 g z = z*z

k :: Integer->Integer

k x = 3*x + f x

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
 where
 g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

h :: Integer->Integer->Integer

h x y = g y + f (g y)
 where
 g z = z*z

g :: Integer->Integer

g x = 3*x + f x

h' :: Integer->Integer->Integer

h' x y = k y + f (k y)
 where
 g z = z*z

k :: Integer->Integer

k x = 3*x + f x

f = uninterpret "f"

propertyk = prove $ \(x::SInteger) -> g x .== k x
propertyh = prove $ \(x::SInteger) (y::SInteger) -> h x y .== h' x y

*Refac2> propertyk
Q.E.D.
*Refac2> propertyh
Falsifiable. Counter-example:
 s0 = 0 :: SInteger
 s1 = -1 :: SInteger

Automatically verify instances of refactorings

Feasible … and open.

Compare with the task of general proofs, which requires …

	
 … semantics and meta-theory for a real language

Can we extract evidence in the positive case, too?

Guaranteeing API and DSL?

API provides a general transformation framework …

	
 … is there any way of ensuring that it can be restricted to
	
 support only correct transformations?

Even if not, users can write properties encapsulating the change …

	
 … system can generate proof obligations for the functions and
	
 modules affected (SCC and SCCs that use changed functions).

DSL - correctness is ensured by correctness of component
refactorings.

Is the approach functional or general?

Extended repertoire of expression-level refactorings.

These are local, and should be amenable to automated verification.

Structural refactorings similar for OO and other examples.

Proof of structural properties made easier by lack of side-effects.

Thank you

 www.cs.kent.ac.uk/projects/wrangler

