
Lazy interactions – back to the future

Simon Thompson, University of Kent

System.IO.interact :: (String -> String) -> IO ()

System.IO.interact :: (String -> String) -> IO ()

interact f = do s <- getContents
 putStr (f s)

f :: (Input -> Output)

The output of the program is a function of its input.

3
23
45
67

(2,23)
(1,68)
(0,135)

f :: (Input -> Output)

3
23

45

67

(2,23)

(1,68)

(0,135)

f :: (Input -> Output)

3
23

45

67

(2,23)

(1,68)

(0,135)

f :: (Input -> Output)

Interaction  
=  

input / output  
interleaving

3
23

45

67

(2,23)

(1,68)

(0,135)

f :: (Input -> Output)

Interaction  
=  

input / output  
interleaving

Interleaving  
determined  

by lazy evaluation

The essence of laziness

f ⊥
 = "type now" ++ ⊥

f ("echo" ++ ⊥)
 = … ++ "ohce" ++ ⊥

The essence of laziness

f ⊥
 = "type now" ++ ⊥

f ("echo" ++ ⊥)
 = … ++ "ohce" ++ ⊥

Lazy interactions are
determined by the
behaviour of the

function on partial data.

Demo

“Seat of the pants?”

necho ys
 = "Prompt: " ++ [head ys] ++ "\n" ++ necho (tail ys)

vs

necho (x:xs)
 = "Prompt: " ++ [x] ++ "\n" ++ necho xs

“Seat of the pants?”

necho ~(x:xs)
 = "Prompt: " ++ [x] ++ "\n" ++ necho xs

vs

necho (x:xs)
 = "Prompt: " ++ [x] ++ "\n" ++ necho xs

“Seat of the pants?”

necho ~(x:xs)
 = "Prompt: " ++ [x] ++ "\n" ++ necho xs

vs

necho (x:xs)
 = "Prompt: " ++ [x] ++ "\n" ++ necho xs

Let’s build a model  
of interactions and  
how to combine  
them together …

Back to the future?

Back to the future?

Does it still make sense now?

Back to the future?

Does it still make sense now?

The power of retrospection …

Back to the future?

Does it still make sense now?

The power of retrospection …

 … how we can bring it up to date?

Back to the future?

Does it still make sense now?

The power of retrospection …

 … how we can bring it up to date?

 … and any missed opportunities?

Back to the future?

Does it still make sense now?

The power of retrospection …

 … how we can bring it up to date?

 … and any missed opportunities?

Transliterating 
from Miranda 

to Haskell

Back to the future?

Does it still make sense now?

The power of retrospection …

 … how we can bring it up to date?

 … and any missed opportunities?

Transliterating 
from Miranda 

to Haskell

Building a  
formal model of 
interactions, with  
some proofs …

(Input,a) -> (Input,b,Output)

Functions with IO side effects

Build by composition

(Input,a) -> (Input,b,Output)

Interactions with states

State changes type between
steps …

 … can add, remove, and
modify what’s there.

Functions with IO side effects

Build by composition

Functions with IO side effects

Build by composition

(Input,a) -> (Input,b,Output)

Interactions with states

State changes type between
steps …

 … can add, remove, and
modify what’s there.

type Interact a b
 = (Input,a) -> (Input,b,Output)

type Condition a
 = (Input,a) -> Bool

type Input = [String]
type Output = [String]

Basic types …

How do we put these together? We assume that
all diagrams are

well-typed

How do we put these together?

sq

par alt

while pass_on_l

We assume that
all diagrams are

well-typed

sq :: Interact a b -> Interact b c -> Interact a c

sq inter1 inter2 x
 = make_Output out1 (inter2 (rest,st))
 where (rest,st,out1) = inter1 x

Sequencing … key combinator

sq :: Interact a b -> Interact b c -> Interact a c

sq inter1 inter2 x
 = make_Output out1 (inter2 (rest,st))
 where (rest,st,out1) = inter1 x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece (input,st,out) = (input,st,piece++out)

Sequencing … key combinator

sq :: Interact a b -> Interact b c -> Interact a c

sq inter1 inter2 x
 = make_Output out1 (inter2 (rest,st))
 where ~(rest,st,out1) = inter1 x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece (input,st,out) = (input,st,piece++out)

Sequencing … key combinator

sq :: Interact a b -> Interact b c -> Interact a c

sq inter1 inter2 x
 = make_Output out1 (inter2 (rest,st))
 where ~(rest,st,out1) = inter1 x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece ~(input,st,out) = (input,st,piece++out)

Sequencing … key combinator

Alternation and repetition

alt :: Cond a -> Interact a b -> Interact a b -> Interact a b

alt cond inter1 inter2 x
 | cond x = inter1 x
 | otherwise = inter2 x

while :: Cond a -> Interact a a -> Interact a a

while cond inter
 = whi
 where
 whi = alt cond (inter `sq` whi) null

pass_param :: Interact a b ->
 (b -> Interact () d) ->
 Interact a d

pass_param int f (input,st)
 = (rest,final,out1++out)
 where
 ~(inter1,st1,out1) = int (input,st)
 ~(rest,final,out) = (f st1) (inter1,())

“Passing parameters”

pass_param :: Interact a b ->
 (b -> Interact b d) ->
 Interact a d

pass_param int f (input,st)
 = (rest,final,out1++out)
 where
 ~(inter1,st1,out1) = int (input,st)
 ~(rest,final,out) = (f st1) (inter1,st1)

“Passing parameters”

And some primitives …

apply

write… read…
f

We assume that
all diagrams are

well-typed

And some primitives …

apply

write… read…

forget start change wait

f

We assume that
all diagrams are

well-typed

And some primitives …

apply

write… read…

forget start change wait

f

run :: Interact a b -> a -> IO ()

We assume that
all diagrams are

well-typed

write :: String -> Interact a a

write outstring (input,st)
 = (input,st,[outstring])

readin :: Interact () String

readin (input,())
 = (tail input, head input,[])

And some primitives …

run :: Interact a b -> a -> IO ()

run inter st
 = interact (\chs ->
 case inter (split chs,st) of
 (_,_,out) -> join out ++ "\n")

apply :: (a -> b) -> Interact a b

apply f (input,st)
 = (input, f st , [])

Demo

copy :: Interact () ()

copy = while (_ -> True) (readin `sq` writeout id)

Copy input

copy :: Interact () ()

copy = while (_ -> True) (readin `sq` writeout id)

copy :: Interact () ()

copy = readin `sq` writeout id `sq` copy

Copy input

copy :: Interact () ()

copy = while (_ -> True) (readin `sq` writeout id)

copy :: Interact () ()

copy = readin `sq` writeout id `sq` copy

Copy input
A little  
meta-  

circularity

collector :: Interact () (Int,Int)

collector
 = getInt `sq`
 add_val_right 0 `sq`
 while ((>(0::Int)).fst.snd)
 (add_val_left () `sq`
 pass_on getInt `sq`
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq`
 while ((>(0::Int)).fst.snd)
 (add_val_left () `sq`
 pass_on getInt `sq`
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd)
 (add_val_left () `sq`
 pass_on getInt `sq`
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq`
 pass_on getInt `sq`
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq` ((), (counter,sum))
 pass_on getInt `sq`
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq` ((), (counter,sum))
 pass_on getInt `sq` (Int,(counter,sum))
 apply (\(p,(m,s))->(m-1,s+p)) `sq`
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq` ((), (counter,sum))
 pass_on getInt `sq` (Int,(counter,sum))
 apply (\(p,(m,s))->(m-1,s+p)) `sq` (counter,sum)
 wait `sq`
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq` ((), (counter,sum))
 pass_on getInt `sq` (Int,(counter,sum))
 apply (\(p,(m,s))->(m-1,s+p)) `sq` (counter,sum)
 wait `sq` :-)
 showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
 = getInt `sq` counter
 add_val_right 0 `sq` (counter,sum)
 while ((>(0::Int)).fst.snd) (counter,sum)
 (add_val_left () `sq` ((), (counter,sum))
 pass_on getInt `sq` (Int,(counter,sum))
 apply (\(p,(m,s))->(m-1,s+p)) `sq` (counter,sum)
 wait `sq` :-)
 showkeep)

Input N then sum N numbers
Make the state  
abstract, with  

accessors,  
mutators etc.

collectNums :: Interact Int Int

collectNums
 = addNum
 `pass_param`
 (\n -> start 0 `sq`
 seqlist (replicate n addNum) `sq`
 write "finished")

Input N then sum N numbers

collectNums :: Interact Int Int

collectNums
 = addNum
 `pass_param`
 (\n -> start 0 `sq`
 seqlist (replicate n addNum) `sq`
 write "finished")

Input N then sum N numbers
Leave the  

internal state  
and synthesise  

a program.

Looking back

All the ingredients were there …

Higher-order functions

Lazy evaluation

Pattern matching

Algebraic data types

… well, almost all

Miranda had no lambda, or let.

• A variant of “point-free” style:  
the need to name abstractions.

Equality overloaded … but not show, …

Few established “design patterns”

The model mixes aspects of  
 

- Monad  
- Arrow  
- Applicative

The linguistic turn …

Can see this as a shallow
embedding of an
interaction language.

What would happen if we
made that deep?

  

The linguistic turn …

Can see this as a shallow
embedding of an
interaction language.

What would happen if we
made that deep?

  

data Inter =
 While Cond Inter |
 Alt Cond Inter Inter |
 Seq Inter Inter |
 …

interpret ::
 Inter -> Interact Int Int

The linguistic turn …

Can see this as a shallow
embedding of an
interaction language.

What would happen if we
made that deep?

Questions of reflection,
dependent types etc.

data Inter =
 While Cond Inter |
 Alt Cond Inter Inter |
 Seq Inter Inter |
 …

interpret ::
 Inter -> Interact Int Int

Types

The fundamental scope of values hasn’t changed …

 … but their classifications have.

Roles for e.g. GADTs, dependency here, especially with DSLs?

Time to look at Fudgets again?

http://www.altocumulus.org/Fudgets/

Tools

Libraries

APIs

Compilation

Interop e.g FFI

Concurrency

???

Community

And what hasn’t happened?

Routine verification … semantics.

Compilers derived from semantics.

The end of the program as text.

Special purpose parallel hardware.

https://github.com/simonjohnthompson/Interaction

