Lazy interactions — back to the future

Simon Thompson, University of Kent

System.I0.1interact :: (String -> String) -> 10 ()

System.I0.1interact :: (String -> String) -> 10 ()

interact f = do s <- getContents
putStr (f s)

f :: (Input -> Output)

The output of the program is a function of its input.

f Input

23
45
67

Output

(2,23)
(1,68)
(0,135)

.F

Input

23
(2,23)
45
(1,68)
o/
(0,135)

Output

f Input

3

23
(2,23)
45
(1,68)
67
(0,135)

Output

Interaction

input / output
interleaving

.F

Input

23
(2,23)
45
(1,68)
o/
(0,135)

Output

Interaction

input / output
interleaving

Interleaving
determined
by lazy evaluation

The essence of laziness

f L
= "type now" ++ L

f ("echo" ++ 1)
= .. ++ 'ohce" ++ 1

The essence of laziness

f 1
= "type now" ++ L

Lazy interactions are
determined by the

behaviour of the

f ("echo """" J-") function on partial data.
= .. ++ "ohce"” ++ L

Demo

“Seat of the pants?”

necho ys
= "Prompt:

++ [head ys] ++ "\n" ++ necho (tail ys)
VS

necho (Xx:xs)
= "Prompt:

++ [x] ++ "\n" ++ necho xs

“Seat of the pants?”

necho ~(x:xs)
= "Prompt: " ++ [x] ++ "\n" ++ necho xs

VS

necho (Xx:xs)
= "Prompt: " ++ [x] ++ "\n" ++ necho xs

“Seat of the pants?”

Let’s build 2 model
of interactions and

how to combine
them together ...

Back to the future?

_\ YEAR OF PROGRAMMING

~
The 1987 University of Texas Year of Programming was established early in 1986, in

! AT
response to a proposal by Profsf’fke.' Browne and ¥. Misra, with the following goals:

A\ \) to advapce the art and science of programming by bringing leading scientists together for
discussions and collaboration)'

r® 2) to disseminate among leading practitioners the best of what has been learned about the theory
and practice of programming-) For

\) YEAR OF PROGRAMMING
o
The 1987 University ot/'_’l_‘g_xga__s\ Year of Pr_qg‘ramming was established early in 1986, in
response to a proposal by Profsf’fke.' Browne and/b. Misra, with the following goals:

A\ \) to advapce the art and science of programming by bringing leading scientists together for
discussions and collaboration)'

r® 2) to disseminate among leading practitioners the best of what has been learned about the theory
and practice of programming-) For

The tutorial, which provided an introduction to lazy functional programming, consisted of
lectures interspersed with programming sessions (conducted with pencil and paper) attended by
the lecturers and several teaching assistants. Major topics included data types, polymorphism,

recursion and induction, lists, domain theory, program synthesis, and several case studies.

\ : YEAR OF PROGRAMMING
oy
The 1987 University ot/"'l_‘g_ga_g Year of Pr_qg‘ramming was established early in 1986, in
response to a proposal by Profsz.ke: Browne and 4. Misra, with the following goals:

A\ ‘) to advapce the art and science of programming by bringing leading scientists together for
discussions and collaboration)'

r® 2) to disseminate among leading practitioners the best of what has been learned about the theory
and practice of programming-) For

The tutorial, which provided an introduction to lazy functional programming, consisted of
lectures interspersed with programming sessions (conducted with pencil and paper) attended by
the lecturers and several teaching assistants. Major topics included data types, polymorphism,

recursion and induction, lists, domain theory, program synthesis, and several case studies.

This institute elicited particular enthusiasm among a group of UT graduate students, who
circulated among themselves, and subsequently presented to the UT Department of Computer
Sciences, a petition calling on the department "to make Functional Programming a more visible

priority in the department... {through] recruitment of faculty engaged in research in the field [and)
more formal contacts with private research and other departments...".

\

]

The 1987 U
response to & propos

early in 1986, in
oals:

A)) to advance the
discussions

ntists together for

. Do disseminate

\ ed about the theory
and practice ¢ Y

The tutorial

lectures intersperse

. ming, consisted of
| paper) attended by
\ \aaes. polymorphism,
x\case studies.

the lecturers and s

recursion and induc

This instit

circulated among {

\‘

\ luate students, who
‘ning a more visible
| ch in the field [and]

B Nz

ment of Computer
Sciences, a petitio
priority in the deps

more formal conta -

U I T AT

Back to the future?

Does it still make sense now?

Back to the future?

Does it still make sense now?

The power of retrospection ...

Back to the future?

Does it still make sense now!?
The power of retrospection ...

... how we can bring it up to date!

Back to the future?

Does it still make sense now!?
The power of retrospection ...
... how we can bring it up to date!

... and any missed opportunities?

Back to the future?

Does it still make sense now!?
The power of retrospection ...
... how we can bring it up to date!

... and any missed opportunities?

Transliterating

from Miranda
to Haskell

Back to the future?

Does it still make sense now?
The power of retrospection ...
... how we can bring it up to date!

... and any missed opportunities?

Transliterating
from Miranda
to Haskell

Building a
formal model of
interactions, with
some proofs ...

(Input,a) -> (Input,b,Output)

Functions with 1O side effects

Build by composition

(Input,a) -> (Input,b,Output)

Functions with 1O side effects

Build by composition

Interactions with states

State changes type between
steps ...

... can add, remove, and
modify what’s there.

(Input,a) -> (Input,b,Output)

Functions with 1O side effects Interactions with states
Build by composition State changes type between
steps ...

... can add, remove, and
modify what’s there.

\A A4

Basic types ...

type Interact a b
= (Input,a) -> (Input,b,Qutput)

type Condition a
= (Input,a) -> Bool

type Input
type Output

[String]
[String]

We assume that

How do we put these together?

all diagrams are
well-typed

) ()
— —

J . J

) ()
— —

J . J

(A4)

We assume that

How do we put these together?

all diagrams are
well-typed

) ()
— —

J . J

) ()
— —

J . J

par alt

(W4)

while pass_on_l1l

I

Sequencing ... key combinator

sq

sq interl interZ x
= make_Output outl (interZ2 (rest,st))
where (rest,st,outl) = interl x

Sequencing ... key combinator

sq

— = =

sq :: Interact a b -> Interact b ¢ -> Interact a c
sq interl interZ x

= make_Output outl (interZ2 (rest,st))
where (rest,st,outl) = interl x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece (input,st,out) = (input,st,piece++out)

Sequencing ... key combinator

sq

— = =

sq :: Interact a b -> Interact b ¢ -> Interact a c
sq interl interZ x

= make_Output outl (interZ2 (rest,st))
where ~(rest,st,outl) = interl x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece (input,st,out) = (input,st,piece++out)

Sequencing ... key combinator

sq

— = =

sq :: Interact a b -> Interact b ¢ -> Interact a c
sq interl interZ x

= make_Output outl (interZ2 (rest,st))
where ~(rest,st,outl) = interl x

make_Output :: Output -> (Input,a,Output) -> (Input,a,Output)

make_Output piece ~(input,st,out) = (input,st,piece++out)

Alternation and repetition

alt

<=

alt :: Cond a -> Interact a b -> Interact a b -> Interact a b

alt cond interl interZ x

| cond x = 1nterl Xx
| otherwise = 1interZ x
while While :: Cond a -> Interact a a -> Interact a a
KE\«fs’while cond 1inter
= whi
where
whi = alt cond (inter "sq whi) null

“Passing parameters”

pass_param :: Interact a b ->
(b -> Interact () d) ->

Interact a d

pass_param int f (input,st)
= (rest,final,outl++out)
where
~(interl,stl,outl) = int (input,st)
~(rest,final,out) (f stl) (interl,())

“Passing parameters”

pass_param :: Interact a b ->
(b -> Interact b d) ->

Interact a d

pass_param int f (input,st)
= (rest,final,outl++out)
where
~(interl,stl,outl) = int (input,st)
~(rest,final,out) (f stl) (interl,stl)

We assume that

And some primitives ...

all diagrams are
well-typed

apply

We assume that

And some primitives ...

all diagrams are
well-typed

apply
—_f

write.. read...

—(1l
Il —(

forget start change wait

We assume that

And some primitives ...

all diagrams are
well-typed

apply
—_f

write.. read...

—(1l
Il —(

forget start change wait

run :: Interact a b ->a -> I0 (O

And some primitives ...

i Write :: String -> Interact a a run :: Interact a b ->a -> 10 O
ﬁ write outstring (input,st) run inter st
= (input,st, [outstring]) = interact (\chs ->

case inter (split chs,st) of
(_,_,out) -> join out ++ "\n")

read.. readin :: Interact () String apply apply :: (a -> b) -> Interact a b
—{ f

readin (input,()) apply f (input,st)
= (tail input, head input,[]) = (input, f st , [])

Demo

Copy input

copy = while (_ -> True) (readin "sq writeout 1d)

Copy input

copy :: Interact (O O

while (_ -> True) (readin "sgq writeout 1d)

copy

copy :: Interact (O O

copy = readin 'sq writeout id "sq copy

Copy input

A little

meta-
circularity

copy :: Interact (O O

while (_ -> True) (readin "sgq writeout 1d)

copy

copy :: Interact (O O

copy = readin 'sq writeout id "sq copy

Input N then sum N numbers

collector
= getlnt sq

add_val_right 0 "sq

while ((>(@::Int)).fst.snd)
(add_val_left () 'sq
pass_on getInt "sq
apply (\(Cp,(m,s))->(m-1,s+p)) "sq
wait “sq
showkeep)

Input N then sum N numbers

collector
= getlnt sq counter

add_val_right 0 "sq

while ((>(@::Int)).fst.snd)
(add_val_left () 'sq
pass_on getInt "sq
apply (\(Cp,(m,s))->(m-1,s+p)) "sq
wait “sq
showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter
add_val_right 0 "sq (counter,sum)

while ((>(@::Int)).fst.snd)
(add_val_left () 'sq
pass_on getInt "sq
apply (\(Cp,(m,s))->(m-1,s+p)) "sq
wait “sq
showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter
add_val_right 0 "sq (counter,sum)
while ((>(0::Int)).fst.snd) (counter,sum)

(add_val_left () 'sq

pass_on getInt "sq

apply (\(Cp,(m,s))->(m-1,s+p)) "sq
wait “sq

showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter
add_val_right 0 "sq (counter,sum)
while ((>(0::Int)).fst.snd) (counter,sum)
(add_val_left () 'sq (O, (counter,sum))

pass_on getInt "sq

apply (\(p,(m,s))->(m-1,s+p)) "sq
wait “sq

showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter

add_val_right 0 "sq (counter,sum)

while ((>(0::Int)).fst.snd) (counter,sum)
(add_val_left () 'sq (O, (counter,sum))
pass_on getInt "sq (Int, (counter,sum))
apply (\(p,(m,s))->(m-1,s+p)) "sq
wait “sq

showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter

add_val_right 0 "sq (counter,sum)

while ((>(0::Int)).fst.snd) (counter,sum)
(add_val_left () 'sq (O, (counter,sum))
pass_on getInt "sq (Int, (counter,sum))
apply (\(p,(m,s))->(m-1,s+p)) 'sq (counter,sum)
wait “sq

showkeep)

Input N then sum N numbers

collector :: Interact () (Int,Int)

collector
= getInt sqg counter

add_val_right 0 "sq (counter,sum)

while ((>(0::Int)).fst.snd) (counter,sum)
(add_val_left () 'sq (O, (counter,sum))
pass_on getInt "sq (Int, (counter,sum))
apply (\(p,(m,s))->(m-1,s+p)) 'sq (counter,sum)
wait “sq i)

showkeep)

Input N then sum N numbers

Make the state
abstract, with

ACCESSOrs,
mutators etc.

collector :: Interact () (Int,Int)

collector
= getInt sqg counter
add_val_right 0 "sq (counter,sum)
while ((>(0::Int)).fst.snd) (counter,sum)
(add_val_left () 'sq (O, (counter,sum))
pass_on getlInt "sq (Int, (counter,sum))
apply (\(p,(m,s))->(m-1,s+p)) 'sq (counter,sum)
wait “sq i)

showkeep)

Input N then sum N numbers

collectNums
= addNum
“pass_param:
(\n -> start 0 "sg
seglist (replicate n addNum) “sqg°
write "finished")

Input N then sum N numbers

Leave the
internal state

and synthesise
a program.

collectNums :: Interact Int Int

collectNums
= addNum
“pass_param:
(\n -> start 0 "sg
seglist (replicate n addNum) “sqg°
write "finished")

Looking back

All the ingredients were there ...

Higher-order functions
Lazy evaluation
Pattern matching

Algebraic data types

... well, almost all

Miranda had no l1ambda, or let.

* A variant of “point-free” style:
the need to name abstractions.

Equality overloaded ... but not show, ...

Few established “design patterns”

The model mixes aspects of

- Monad
- Arrow
- Applicative

The linguistic turn ...

Can see this as a shallow
embedding of an
interaction language.

What would happen if we
made that deep!

The linguistic turn ...

Can see this as a shallow data Inter =
embedding of an While Cond Inter |
interaction |anguage. Alt Cond Inter Inter |

Seq Inter Inter |
What would happen if we

made that deep!

interpret ::
Inter -> Interact Int Int

The linguistic turn ...

Can see this as a shallow
embedding of an
interaction language.

What would happen if we
made that deep!

Questions of reflection,
dependent types etc.

data Inter =
While Cond Inter |
Alt Cond Inter Inter |
Seq Inter Inter |

interpret ::
Inter -> Interact Int Int

Types

The fundamental scope of values hasn’t changed ...
... but their classifications have.

Roles for e.g. GADTs, dependency here, especially with DSLs!?

Time to look at Fudgets again!?

o K, Fudget, et al

The Fudget type

Types

data F a b = F (FSP a b)
instance FudgetlIO F
instance StreamProcIO F
type Fudget a b = F a b
type FSP a b = SP (FEvent a) (FCommand b)
type TEvent = (Path, FResponse)
type TCommand (Path, FRequest)
type FEvent a Message TEvent a
type FCommand a = Message TCommand a

data SP a b

data Message a b = Low a | High b

Description

A fudget is a stream processor with high level streams and low level streams. The high level streams are used for communication between fudgets within a program.
The low level streams are for communication with the I/O system.

F hi ho is the Fudget type. hi is the type of high level input messages and ho is the type of high level output messages.

High level messages "/
Low level requests &

FESPONSES

[/0 system

http://www.altocumulus.org/Fudgets/

Compilation

Libraries
Interop e.g FFl
APls
20?
Tools Concurrency

Community

And what hasn’t happened?

Routine verification ... semantics.
Compilers derived from semantics.
The end of the program as text.

Special purpose parallel hardware.

https://github.com/simonjohnthompson/Interaction

