
The Primitive Recursive Functions are

Recursively Enumerable

Stefan Kahrs

University of Kent at Canterbury
Department of Computer Science

Canterbury CT2 7NF
smk@kent.ac.uk

Abstract. Meta-operations on primitive recursive functions sit at the
brink of what is computationally possible: the semantic equality of prim-
itive recursive programs is undecidable, and yet this paper shows that
the whole class of p.r. functions can be enumerated without semantic du-
plicates. More generally, the construction shows that for any equivalence
relation ≈ on natural numbers, N/ ≈ is r.e. if ≈ is co-semi-decidable.
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1 Introduction

Starting point for this rather theoretical work were practical considerations in
the areas of program testing, program generation [6] and genetic programming
[4].

Primitive Recursive programs are in these areas an attractive tool, because
(i) they always terminate, (ii) terminating programs that are not expressible
through primitive recursion are of little practical interest, and (iii) Primitive
Recursive programs can be expressed with a relatively sparse abstract syntax
that keeps semantic redundancies at bay.

The latter is important when we want to search through the space of primi-
tive recursive functions, e.g. to test higher-order functions. The bigger programs
get, the rarer are the ones that could not be expressed more concisely. The fun-
damental question this paper addresses is: can we list all the primitive recursive
functions without semantic duplicates, and perhaps in such a way that only the
shortest ones of each equivalence class appears in the list?

Surprisingly, the answer to this question is “yes!”. It surprised me, because
the equality relation between primitive recursive functions is not recursive — it
is undecidable whether two p.r. functions have the same input/output behaviour.
Section 3 goes through the fundamental arguments why that is the case. This
has implications on the kind of enumerations of p.r. functions that are possible.
In particular, although it is possible to list only the shortest p.r. program of each
equivalence class, it is impossible to overall list the different programs by size.



Viewing the natural numbers as Gödel numbers of p.r. functions, the se-
mantic equality between p.r. functions can be interpreted as an equivalence
relation ≈ on natural numbers, and our question can be expressed as: is the
set {min [n]≈ | n ∈ N} recursively enumerable, i.e. the set of the smallest
Gödel-numbers of all equivalence classes. It turns out that this question can
be answered generically, without reference to primitive recursion: to construct
an enumeration of {min [n]⊲⊳ | n ∈ N} it suffices that the equivalence relation ⊲⊳
is co-semi-decidable.

2 Basics: What is Primitive Recursion?

Primitive Recursion was first introduced as a method by Richard Dedekind in
1888 [3], and its expressiveness was explored in much more detail by Skolem,
Ackermann and Péter in the 1920s and 1930s [1, 9, 8]; Rósza Péter’s article was
apparently the first to use the term “Primitive Recursion”. Primitive Recursion
is a scheme that permits to define a function by descending recursion in one
variable, or to phrase it in the imperative paradigm: it has for-loops as the only
iterative control structure. One very special property of Primitive Recursive
programs is that they always terminate.

This paper uses a fairly natural representation of Primitive Recursion taken
from [2]. This is based on two connectives, (generalised) composition Cn and
the Primitive Recursion operator Pr, and as primitives the constant-0 function
Z, the successor function S, and the argument selectors idm

n which select the
n-th argument out of m. The primitive recursive functions are all those express-
ible through these combinators. For example, the addition operation would be
represented by the expression Pr[id1

1,Cn[S,id
3
1]].

The semantics of generalised composition is as follows:

Cn[f, g1, . . . , gn](x) = f(g1(x), . . . , gn(x))

where x is an argument tuple of the length expected by the gi functions. In cate-
gory theory the construction Cn[f ,g1, . . . , gn] is usually expressed by separating
composition from tuple formation, as f ◦ 〈g1, . . . , gn〉.

The semantics of the primitive recursion operator Pr[f ,g] can be given as:

Pr[f, g](0, x) = f(x)

Pr[f, g](n + 1, x) = g(Pr[f, g](n, x), n, x)

It follows from the definition that if f has arity k then g must have arity k+2, and
the newly defined Pr[f, g] has arity k + 1, though it is fairly straightforward to
relax these conditions. The reason this form of recursion corresponds to for-loops
is that we can compute Pr[f, g](n, x1, . . . , xk) as follows:

int s=f(x1,...,xk);

for(int i=0; i<n, i++) s=g(s,i,x1,...,xk);

return s;



The next section shows that the Primitive Recursive functions on their own are
already very expressive. We can express all partially recursive functions if we
combine them with the minimisation operator Mn: Mn[f ](x) is defined to be the
smallest n such that f(n, x) = 0 if such an n exists, and undefined otherwise.

3 Primitive Recursion and the Halting Problem

One of the most fundamental results in Computability is Kleene’e normal form
theorem [5]. This states that any computable function can be expressed with
just a single use of the minimisation operator, using otherwise only the Primitive
Recursive primitives and connectives. Moreover this is constructive in the sense
that we can construct such a normal form from the description of the function.
This works because the configuration of a Turing machine can be encoded as a
number, the state transition operation on the encoding is Primitive Recursive
and we only need one unbounded loop to iterate state transition to simulate a
running Turing machine.

This theorem has several consequences for Primitive Recursive functions.
Notice first that we can also normalise the loop bodies, because minimisation
only looks for the first non-zero value. In the following, let ≡ denote observational
equivalence between computable functions.

Lemma 1. There is a normalisation operation norm on the Primitive Recursive

functions with the following properties:

Mn[f ] ≡ Mn[norm[f ]]

Mn[norm[f ]] ≡ Mn[norm[g]] ⇒ norm[f ] ≡ norm[g]

Proof. We can specify norm[f ](x1, . . . , xn) to return 0 if f(m, x2, . . . , xn) = 0
for any m ≤ x1, and to return 1 otherwise. This matches the requirements and
is clearly expressible through primitive recursion. For example, for binary f , we
can define norm[f ] as follows:

norm[f ] = Pr[Cn[f, Z, id1
1], Cn[Pr[Z, id

3
3], Cn[f, Cn[S, id3

2], id
3
3], id

3
1]

⊓⊔

Proposition 1. Semantic equality between Primitive Recursive functions is un-

decidable.

Proof. We can reduce the halting problem of any program p to the halting
problem of its Kleene normal form, which in turn reduces to the halting problem
for Mn[f ], the sole application of minimisation in the Kleene normal form of p.
Lemma 1 reduces this further, first to the halting problem for Mn[norm[f ]]. For
k1 = Cn[S, Z], the function that constantly returns 1, we have that Mn[k1] is
not halting. Thus the halting problem for Mn[norm[f ]] can be reduced to the
problem whether norm[f ] and norm[k1] are equivalent. Those two functions are
both Primitive Recursive, and hence deciding semantic equality of Primitive
Recursive functions would provide a way to deciding the halting problem. ⊓⊔



Another consequence of Kleene’s normal form theorem tells us something about
the runtime complexity of functions not expressible through Primitive Recur-
sion. If there is a Primitive Recursive function that computes an upper bound
for the number of times the body of the sole unbounded loop of the Kleene
normal form needs to be performed then we can replace the unbounded loop by
a bounded one and have overall a Primitive Recursive construction. Hence, the
runtime complexity for any function not expressible through Primitive Recursion
is outside O(f) for any Primitive Recursive function f — which is dramatically
worse than the standard “infeasibility” criterion in complexity theory.

This explains why one should not aim to go beyond the universe of Primitive
Recursive functions in approaches for program testing or genetic programming.

4 Limits to Enumerability of Equivalence Classes

Let ⊲⊳ be an equivalence relation on N. A function f : N → N is called a canonical

enumeration of N/⊲⊳ if the following properties hold:

– ∀n, m. n ⊲⊳ f(m) ⇒ f(m) ≤ n (i.e. f returns only canonical representatives
of equivalence classes);

– ∀n. ∃m. f(m) ⊲⊳ n (f finds all equivalence classes)

The function f is called a strong canonical enumeration if it is in addition mono-
tonic, i.e. if it enumerates the equivalence class representatives in order. In ad-
dition, one could require that f should be injective, but this exclude the case
that ⊲⊳ only has finitely many equivalence classes.

Co-semi-decidabilty of a relation means that there is a computable procedure
which will terminate with the answer “false” for all non-members of the relation,
and fail to terminate otherwise. This also means that one can stratify such a
relation as follows.

Proposition 2. If R is an n-ary co-semi-decidable predicate then there is a

computable sequence of recursive n-ary predicates Ri such that

∀x1, . . . , xn. (R(x1, . . . , xn) ⇐⇒ ∀i. Ri(x1, . . . , xn))

Proof. We can turn the co-semi-decision procedure for R into a decision proce-
dure for each Ri by limiting its number of computation steps to i, interpreting
the state “I have not finished yet” of R as “true” for Ri. ⊓⊔

Clearly, the semantic equivalence of Primitive Recursive functions (of any given
arity) is co-semi-decidable, because we can enumerate all possible inputs and
apply the functions to them until a difference emerges. Because Primitive Re-
cursive functions can only differ by return values (not by termination behaviour)
different functions will be found out.

Proposition 3. If ⊲⊳ is a co-semi-decidable equivalence relation and f a com-

putable strong canonical enumeration for N/ ⊲⊳ then ⊲⊳ is decidable.



Proof. Take any n ∈ N. Because f is monotonic the finite set A = {f(k) | f(k) ≤
n} can effectively be computed by finding the first k with f(k) > n. Because f
enumerates all equivalence classes n must belong to [a]⊲⊳ for some a ∈ A, and it
cannot be in any of the other classes. We can now compute a sequence of sets
Ai as follows: A0 = A, Ak+1 = {a | a ∈ Ak, a ⊲⊳k n}, where the relations ⊲⊳k are
recursive relations approximating ⊲⊳ as given by proposition 2. For some p, Ap

must be a singleton set {q} and we must have that q is the minimum element of
[n]⊲⊳. Thus, to decide whether m ⊲⊳ n holds we can use this procedure to compute
the minimum elements of [m]⊲⊳ and [n]⊲⊳ and compare them for equality. ⊓⊔

Corollary 1. There is no computable strong enumeration for N/ ≈.

Thus to enumerate the Primitive Recursive functions we have to aim for some-
thing weaker, either a non-canonical or a non-strong enumeration.

5 How to construct the enumeration

For our application domain of Primitive Recursive functions (technically, this is
used here for p.r. functions in one argument only — but the construction is not
substantially different for other arities), we can define suitable approximants ≈k

of ≈ as follows:
n ≈k m ⇐⇒ 〈n〉(k) = 〈m〉(k)

The notation 〈m〉 stands here for the m-th unary Primitive Recursive func-
tion w.r.t. an enumeration that is allowed to contain semantic duplicates, e.g.
a straightforward interpretation of numbers as encodings of syntax trees. Thus,
〈n〉(k) stands for applying the n-th p.r. function (relative to that encoding) to
the number k. Clearly, the conjunction of all ≈k gives the full ≈ relation.

We can approximate the quotient N/ ≈ through the sequence A0 = N/true,
An+1 = An⋆ ≈n, where the operation ⋆ is refinement of equivalence classes:
(A/R) ⋆ S = A/(R ∩ S). Operationally, this can be realised by quotienting each
equivalence class of A/R by S and then flattening the result.

One fundamental observation is that this process only splits equivalence
classes, it never amalgamates them. This means each minimum of an equiva-
lence class at stage An will remain the minimum of a class throughout and thus
be a minimum of an equivalence class of N/ ≈. Therefore, all such minima will
necessarily be in the range of the enumeration; slight caution is necessary, be-
cause A1 is already infinite for p.r. functions and enumerating all these classes
first would not constitute an exhaustive enumeration of all p.r. functions. Al-
though for our application domain it is relatively straightforward to diagonalise
through these infinite sets, in the general case it becomes an issue whether the
quotient by ⊲⊳i splits each equivalence class of Ai into infinitely many new ones
— if it does not the diagonalisation could deadlock. In any case, this problem
can be avoided:

Theorem 1. There is a computable canonical enumeration of N/≈.



Proof. We can compute finite and finitely sized sets of equivalence classes Bk =
{0, . . . , k}/ ≡k where t ≡k u ⇐⇒ t ≈0 u∧ · · · ∧ t ≈k u. Again, the minimum of
each class in each Bk is a minimum of a class in N/ ≈.

Using this, the n-th primitive recursive function can be found as follows:

– find the smallest k such that Bk has at least n equivalence classes;
– let p be the number of equivalence classes in Bk−1;
– the result is the (n − p)-th smallest equivalence representative of Bk that

was not already an equivalence representative in Bk−1.

This construction is guaranteed to find all equivalence classes, because (i) N/ ≈
is infinite and thus there is always a Bk of sufficiently large cardinality; (ii) each
≈-equivalence class has a minimum, say p; (iii) that value is introduced to the
process at Bp, though at that stage not necessarily as the minimum of a class;
(iv) there is a minimum value q such that ¬(n ≡q p) for all n < p; (v) thus
p becomes an equivalence class representative at Bmax(p,q), and therefore (vi)
the number of equivalence classes of Bmax(p,q) is an upper bound for when the
enumeration would list p, and thus its class. ⊓⊔

The argument also generalises beyond the equivalence between p.r. functions:

Theorem 2. Any co-semi-decidable equivalence relation ⊲⊳ on N gives rise to a

computable canonical enumeration of N/⊲⊳.

Proof. The construction is similar as for ≈ except for two points: (i) the ⊲⊳k

relations taking the place of ≈k can be constructed by proposition 2; (ii) in
general, there may be no smallest k such that Bk has at least n equivalence
classes, because N/⊲⊳ may be finite. However, this can be mended by allowing
the enumeration f to repeat values: let

Ck = {min(s) | s ∈ Bk} \ {f(0), . . . , f(k − 1)}.

Thus Ck is the set of all equivalence representatives in Bk that have not been
listed by the enumeration f at smaller inputs. If Cn is non-empty, we define f(n)
to be its minimum, otherwise f(n) = f(n − 1). ⊓⊔

Remark: what fails to work with the original construction when the relation
⊲⊳ has finitely many equivalence classes, is that the algorithm cannot produce
arbitrarily many numbers. In this case, if we know the number of classes then
the construction can again be turned into a decision procedure; but if this exact
number is not known then at some point the process will have produced all
classes without knowing that it has. An example of an equivalence relation of
that kind is semantic equality (at sufficiently complex types) in finitary PCF [7].

6 Conclusion

The paper proves the theorem that any co-semi-decidable equivalence relation
gives rise to a construction that exhaustively enumerates canonical representa-
tives of all equivalence classes of the relation — in particular allowing to enu-
merate the Primitive Recursive functions without semantic duplicates.



However, it is impossible to enumerate these representatives in order — unless
the equivalence relation in question is decidable.

From a pragmatic point of view the result is not hugely significant, because
the enumeration procedure is itself hugely inefficient; still, a pre-computation of
some finite segment of the enumeration could be used to compactify the search
space for all p.r. functions, for instance for a testing tool. This inefficiency of
the enumeration is ultimately inevitable, but some improvements can still be
made to accelerate the search for equivalence class representatives, essentially
by decelerating the equivalence class refinement; for example, Bk in the proof of
theorem 1 could be defined as {0, . . . , 2k}/ ≡k.
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A Haskell Code

Here is the Haskell code that generates the list of all non-equivalent p.r. pro-
grams. This code is not meant to be optimal, just a proof of concept. First, the
data type and its semantic interpretation:

data Prog = Proj Integer | Z | S |

Rec Prog Prog | Comp Prog Prog [Prog]

The type is used for p.r. functions of all arities. The GADT feature of the GHC
compiler would allow to specify the programs with their arity, but such a type
is not easy to work with when it comes to enumerate its values. Instead, the
interpretation permits to use any values of type Prog for any arity, taking a list
of integers as input for an interpreted program.



interpret :: Prog -> [Integer] -> Integer

interpret Z _ = 0

interpret S [] = 1

interpret S (x:_) = x+1

interpret (Proj n) [] = 0

interpret (Proj 0) (x:_) = x

interpret (Proj n) (_:y) = interpret (Proj (n-1)) y

interpret (Rec f g) (n:xs) =

| n==0 = interpret f xs

| otherwise = interpret g (interpret (Rec f g) ys:ys)

where ys=(n-1):xs

interpret (Rec f g) [] = interpret f []

interpret (Comp f g1 gs) arg =

interpret f [interpret g arg | g<-g1:gs]

For the purpose of defining all p.r. functions of arity 1 it would suffice to limit
projections and parallel compositions up to certain arities (3 and 2, respectively),
because that would suffice to define Gödelisation functions which can encode
(and decode) tuples of numbers as single numbers. Such a restriction would also
help to search through the space of all functions more effectively.

However, the priority is here to show the principle. Thus that part of the
code is kept simple, using a straightforward 1-to-1 mapping between unbounded
integers and the type of unary p.r. functions:

enumerate :: Integer -> Prog

enumerate 0 = Z

enumerate 1 = S

enumerate n =

let m=n-2; k=div m 3; (a,b)=twosplit k; (b1,b2)=twosplit b

in case mod m 3 of

0 -> Proj k

1 -> Rec (enumerate a)(enumerate b)

2 -> Comp (enumerate a)(enumerate b1)(enumerateL b2)

enumerateL :: Integer -> [Prog]

enumerateL 0 = []

enumerateL m = enumerate a : enumerateL b

where (a,b)=twosplit (m-1)

twosplit :: Integer -> (Integer,Integer)

twosplit 0 = (0,0)

twosplit n =

let (a,b)=twosplit (div n 4); l=mod n 2; r=div (mod n 4) 2

in (2*a+l,2*b+r)

Instead of operating on equivalence classes of integers, the code operates on
equivalence classes of programs, avoiding the indirection through the function



enumerate. The approximation equivalence classes are given through the func-
tions equivalence and fullequivalence, where an expression of the form
equivalence(enumerate k)(enumerate j) n would correspond to the nota-
tion k ≈n j used in the paper, and fullequivalence has a similar relationship
to ≡n.

equivalence :: Prog -> Prog -> Integer -> Bool

equivalence m n p = interpret m [p] == interpret n [p]

fullequivalence :: Prog -> Prog -> Integer -> Bool

fullequivalence m n p = all (equivalence m n) [0..p]

Now, the inifinite list of all p.r. programs is assigned to the constant allProg.
The function develop has two parameters, the first is the list of equivalence
classes Bn−1 (or rather, their images under enumerate), the second the number
n. The function operates in two stages: first, putin places the program corre-
sponding to n in these equivalence classes w.r.t. equivalence relation ≡n−1; this
can at most find one new equivalence class, [n] itself. Secondly, testfor refines
the so-obtained classes with ≈n; this has two results: the list of all newly-found
equivalence class representatives and Bn.

allProg :: [Prog]

allProg = develop [] 0

develop :: [[Prog]] -> Integer -> [Prog]

develop classes n =

[ p | b ] ++ newclasses ++ develop nclasses (n+1)

where

p = enumerate n

(b,iclasses) = putin classes p (n-1)

(newclasses,nclasses) = testfor n iclasses

putin :: [[Prog]] -> Prog -> Integer -> (Bool,[[Prog]])

putin [] p _ = (True,[[p]])

putin ((xs@(c:_)):xss) p n =

if fullequivalence p c n then (False,(xs++[p]):xss)

else let (b,cs)=putin xss p n in (b,xs:cs)

testfor :: Integer -> [[Prog]] -> ([Prog],[[Prog]])

testfor n xss =

let aux=map (testfor1 n) xss

in (concat (map fst aux),concat (map snd aux))

testfor1 :: Integer -> [Prog] -> ([Prog],[[Prog]])

testfor1 n xs =

let zs = quotient [ (p,interpret p [n]) | p<-xs ]

in (map head (drop 1 zs),zs)



quotient :: Eq a => [(b,a)] -> [[b]]

quotient [] = []

quotient ((x,y):rest) =

let (a,b)=partition ((==y).snd) rest

in (x:map fst a):quotient b


