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Abstract
Current VM designs prioritise implementor freedom and
performance, at the expense of other concerns of the end pro-
grammer. We motivate an alternative approach to VM design
aiming to be unobtrusive in general, and prioritising two key
concerns specifically: foreign function interfacing and sup-
port for runtime analysis tools (such as debuggers, profilers
etc.). We describe our experiences building a Python VM in
this manner, and identify some simple constraints that help
enable low-overhead foreign function interfacing and direct
use of native tools. We then discuss how to extend this to-
wards a higher-performance VM suitable for Java or similar
languages.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—run-time environments, debug-
gers, compilers

General Terms Languages

1. Introduction
Virtual machines exist to support language implementa-
tions.1 As Cliff Click noted in last year’s workshop keynote,
a modern virtual machine (VM) is packed with services, cov-
ering most of what interests a language implementor: code
generation, memory management, linking, loading, optimi-
sation, profiling, and more.

End programmers care about languages and libraries, not
about virtual machines. While the languages a VM supports
can bring valuable abstractions to the programmer, virtual
machines themselves bring costly distractions. Each classof

∗Now with Rapportive, Inc.
1 We consider this one of two necessary properties of VMs. The other is that
they define some representation of executable code.
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VM brings its own set of invocation interfaces, configuration
mechanisms, foreign function interfacing (FFI) conventions,
and suite of tools for debugging and profiling. Developers
are familiar with VMs because their peculiarities are entan-
gled with practicalities of various languages. Ideally, how-
ever, VMs would be invisible: they would exist as libraries
silently supporting the languages and libraries required by
programmers, as unobtrusively as possible.

In this paper we argue that VMs may be made far less ob-
trusive than they currently are. Our conception of an “invisi-
ble” VM is neither fully achievable nor precisely defined, but
is intended to draw attention to a general phenomenon: that
the concerns of end programmers fail to align with those of
implementors. Implementors are usually motivated to build
a system which executes a single language (or a suite of
benchmarks) as fast as possible. By contrast, end program-
mers want a system which isfast enough(which varies ac-
cording to deployment scenario), which lets them analyse
their code using familiar and powerful tools, and which lets
them re-use whatever existing code will shorten their task.

For most of this paper we focus on two specific issues
where current VMs are especially obtrusive: foreign func-
tion interfacing and run-time tool support. By the latter, we
refer to debuggers, profilers, race detectors and similar dy-
namic analysis tools. For the former problem, our goal is
to give programmers the ability to treat language as aper-
function implementation choice, with negligible interfacing
effort in most common cases. For the latter, our goal is a de-
sign that bestows on existingwhole-program analysis tools,
given only minor modifications, a first-class understanding
of code running on our VMs.

Our approach is to consider a minimal set of “reasonable
constraints” on VM authors, in the form of conventions and
skeleton structures, that can allow cooperation across native–
VM and VM–VM boundaries. This includes sharing of code,
data and metadata, and a shared metamodel. Where possi-
ble, we “embrace and extend” existing facilities in operating
systems and native-code compilers in preference to reinvent-
ing them at the VM level. By contrast, current designs have
arisen from giving implementors free rein to reinvent, cus-
tomise and optimise.



Specifically, this paper presents the following contribu-
tions.

• We describe our efforts implementing the Python lan-
guage in invisible fashion, detailing various techniques
for minimising FFI overhead and cooperating with de-
bugging tools.

• We generalise these experiences to identify three design
invariants: supporting linkage, data representation, and
runtime metadata. Together these allow VMs to share a
core object model and descriptive framework with native
code, while retaining freedom to support diverse source
languages, intermediate representations, and code gener-
ation.

• We discuss the evolution of our design towardswhole-
program dynamic optimisation, arguing that the wealth
of code transformations within modern VMs should be
broken out into a system-wide service integrated into the
dynamic linker.

2. Building an invisible Python
Predating the grandiose ideal of invisible VMs, our orig-
inal goal was to build an implementation of our chosen
dynamic language, Python, which could be used to write
scripts against native libraries interactively and dynami-
cally. Whereas conventional wisdom was that interfacing
with native libraries required glue code, generated either
from annotated header files (the approach of Swig [1]) or
metaprogramming (as with other tools such as the approach
of Boost.Python), we considered how to make our imple-
mentation less obtrusive by dispensing with this step.

2.1 Parathon

Our insight was that compiled-generated debugging infor-
mation necessarily offers descriptions of native libraries’ in-
terfaces at run time. The burden of interpreting native objects
could be shouldered by the interpreter itself, dynamicallyin-
terpreting this information much like a debugger, rather than
by ahead-of-time glue coding. We adopted the DWARF for-
mat [6], de factostandard on Unix platforms, and include a
brief introduction as an Appendix.

The result was Parathon, an implementation of a usable
subset of Python which understands two kinds of object:
those it created, described by an internal metamodel, and
those created by native code, described by DWARF. Garbage
was collected by the conservative Boehm collector [2], co-
existing well with the C library’s heap.

Numerous limitations remained: a Pythonic rendering of
functions’ output parameters was impossible without ex-
tra annotation; lists and arrays remained largely incompat-
ible; Pythonic structural treatment of objects was conspic-
uously unsupported when making native calls. However,
Parathon was sufficient to prove the concept of supporting
native Python coding using debugging information. Fig. 1

typedef struct buffer_s { – data type definition

char* string;

unsigned int length;

unsigned int used;

} Buf;

Buf* buffer_new(); – creates an empty buffer
/* ... + more calls to get/put data into the buffer... */

/* Using CPython (but not Parathon) we would have to write: */

static PyObject* Buf_new( – constructor function
PyTypeObject* type, PyObject*

args, PyObject* kwds) {

BufferWrap* self;

self = (BufferWrap*)type-> – allocate type object (1)
tp_alloc(type, 0);

if (self != NULL) {

self->b = new_buffer(); – call underlying function (2)
if (self->b == NULL) {

Py_DECREF(self); – adjust refcount (3)
return NULL;

}

}

return (PyObject*)self; }

}

Figure 1. Example API and a now-redundant CPython
wrapper

show a simple C API that became an early test-case, and
the CPython wrapper code that would ordinarily be used.
In Parathon, our interpreter performs these operations, or
their analogues, without any such direction, using only the
DWARF information: a DWARF database replaces explic-
itly managed type objects (comment 1); underlying func-
tions are called throughlibffi2 (2), and garbage collection
makes reference count adjustments unnecessary (3). Argu-
ments are extracted directly from the calling stack frame,
and marshalling is either unnecessary or inferred by com-
paring DWARF types. Fig. 2 shows a sample session, which
runs without any wrapper code generation.

However, Parathon was not entirely satisfactory. There
was no way to debug code at the Python source level. Back-
traces did not exhibit the Python call stack. Internally, a lot of
complexity derived from the split between the two kinds of
object. Passing callbacks to native code involved allocating
closures generated bylibffi, but it was not clear when these
could be deallocated. Native objects were not first-class: for
example, Python-style dynamic field insertions or removals
could not be performed on them. To build a proper Python
without huge escalation in complexity, a more uniform ap-
proach was required.

2.2 Towards DwarfPython

Our next insight was that the same DWARF metamodel
used to describe native code and its data could also de-

2 http://sourceware.org/libffi/



>>> import c – ensure libc (+DWARF) loaded

>>> s = stat() – construct a stat object
>>> stat("/etc/passwd", s) – call through libffi
>>> print s

{ .st_dev = 42, ... (snipped) } – access fields using DWARF
>>> def bye(): – defining a Python function
... print "Goodbye, world!"

...

>>> atexit(bye) – construct libffi closure
>>> import m – import another library
>>> print log2(s.st_size) – call some more functions
10.6465587102

>>> exit(0)

Goodbye, world!

Figure 2. A trivial Parathon session

// original Parathon version −− ”standard design” ց
ParathonValue∗ FunctionCall :: evaluate(ParathonContext& c)
{ return call function ( this−>base phrase−>evaluate(c),

this−>parameter list−>asArgs(c)); }

// less obtrusive DwarfPython version
val FunctionCall :: evaluate () // ← context is the call stack
{ return call function ( this−>base phrase−>evaluate(),

this−>parameter list−>asArgs()); }

Figure 3. Using process context as interpreter context

scribe Python code and its data. Moreover, the dynamism of
the Python language could be supported modern operating
systems’ and compilers’ existing debugging infrastructure.
(Any gaps in this would also be weaknesses encountered
during debugging, hence worth fixingwithin DWARF). In
other words, Python’s main distinction is not its machine
model but its language semantics, and this can be isolated
within our Pythoninterpreter, where it is invisible to other
code in the process—Python becomes an implementation
detail that can be hidden inside a function’s implementation.

One illustration of the shift from Parathon to Dwarf-
Python is in its notion of execution context. Like many
interpreters, Parathon threads an environment and other
shared state through its internal calls, by aParathonCon-
text* pointer. In DwarfPython, there is no such environ-
ment; to a first approximation, “the process context is the
context”.3 The local name environment is discovered by ex-
amining the stack, looking up the DWARF information for
the current frame, and discovering the bindings recorded for
frames of this type. Fig. 3 illustrates this contrast.

Another key difference is our notion of data. In Parathon,
we had a classParathonValue representing all objects in the
program, comprising 9 fields and 25 methods, andParathon-
Value* pointers were ubiquitous. When modifying Parathon
towards DwarfPython, one of our first changes replaced this
with typedef void ParathonValue;—instead of defining our

3 The only significant exception is the list of top-level imported namespaces.

own notion of object, now an “object” is simply the referent
of any pointer, and we rely on run-time availability of debug-
ging information to support interaction with these objects.

A key property of the DWARF metamodel is its inher-
ent flexibility, arising from the need to accommodate diverse
compilers and peculiar architectures. This allows it to ac-
commodate quirky structures, such as noncontiguous objects
and functions with multiple start addresses, which turn out
to prove useful. Most importantly, however, DWARF is un-
derstood by debuggers and other tools, so by maintaining
a dynamic metamodel of our program as it executes, these
tools are able to understand our program’s state with only
minor modifications.

2.3 Unifying object models (and metamodels)

A key property of our design is that it unifies the “native”
object model with that adopted by a VM (DwarfPython in
this case). It does so using several techniques, and these also
contribute towards the debuggability of DwarfPython using
native tools.

Native entry points All functions defined in Python have
one or morenative entry pointsgenerated for them. This
makes them indistinguishable from native functions in a
backtrace (assuming that symbols can be located—we dis-
cuss this in§3.2). In fact,all calls made by our interpreter,
regardless of target, are implemented the same way: using
libffi to call a native entry point.

Heap instrumentation We instrument the C library’s allo-
cator to record the allocation site of each heap block. Using
heuristics, we map this to the DWARF type allocated by a
particular site.4 This is sufficient to recover a precise DWARF

description of dynamically allocated objects, without rely-
ing on imprecise static type information. For objects allo-
cated by Python, type information (not the allocation site)is
stored directly in the heap metadata, but treatment is other-
wise similar.

Tree-structured object storage Python has an atomic no-
tion of objects, where substructure is pushed out into the
heap using references to other objects. By contrast, the na-
tive world, exemplified by C and C++, adopts a more gen-
eral model where objects are tree-structured: they may be
contained recursively within another object. We unify these
models by considering a tree-structured object to contain
implicit references to its subobjects. In languages with a
Python-like flat object model, these fields have the seman-
tics (but not the representation) of read-only pointers to the
contained objects. This means our Python implementation
must hide the distinction between these “implicit pointers”
and the usual kind. Fig. 4 illustrates the two views.

4 These could more properly be implemented as an extension to compiler-
generated DWARF information, perhapsDW TAG allocation site,
recording the source-level type allocated by a particular call in the text.
This would also allow debuggers to perform dynamic type identification.



struct ellipse {

double maj;

double min;

struct point {

double x, y;

} ctr;

}
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Figure 4. Viewing tree-structured objects as heaps

2.4 Making it dynamic

Debugging implements read-only dynamism over native ob-
jects, butmutabilityof those objects is lacking. (This is es-
sentially the same problem as both edit-and-continue debug-
ging and dynamic software update.) DwarfPython uses some
additional techniques and runtime infrastructure to fill this
gap. These aspects are a work-in-progress. (Henceforth in
the paper we do not claim a working implementation of sys-
tems we describe, unless stated otherwise.)

Dynamic DWARF information Just as dynamic and reflec-
tive languages keep amutablemodel of their own objects’
structures, so DwarfPython keeps a mutable database of de-
bugging information. To accommodate dynamic code def-
inition, we require a protocol much like that for notifying
debuggers of code generated by a JIT compiler5, notifying
the debugger of accommodate dynamic updates to the avail-
able metadata. We have developed a cleaner approach to this
than current protocols, and describe it in§3.2. To allow per-
object layout changes, such as field additions and removals,
data types are treated in a copy-on-write fashion: modifica-
tions to an object’s schema fork its descriptive information.
This allows sharing in the common case, but allows unique
objects to be treated uniformly.

Non-contiguous objects To support field addition even on
native objects, we must supporttied storage. This is sepa-
rately allocated heap storage whose lifetime is linked with
that of a pre-existing object. Tying to manually-managed
heap objects is easily implemented by interposing onfree().
For GC’d heap objects, some cooperation with the collec-
tor may be required to prevent early reclamation of parts of
an object (since there is no reference from the tied-to object
to later-added storage). We can tie storage to stack alloca-
tions by redirecting their on-stack return address to a special
handler. Since DWARF allows object locations to be non-
contiguous, the resulting object layouts remain describable.6

DWARF extensions DWARF is not always expressive enough
for our needs. One example is source code locations: DWARF

5 A notable example is the LLVM–gdb jit debug register code proto-
col, http://llvm.org/docs/DebuggingJITedCode.html
6 Another implementation of non-contiguous objects is virtualinheritance
in C++, although lacking thegradualandobliviousproperties of ours.

encodes a mapping from program counters to source code
coordinates, but this is insufficient since any location in the
interpreter might map to any Python source file. A small
extension to DWARF solves this by effectively pushing addi-
tional arguments (in our case the current AST node pointer)
into the line-number lookup key. Another extension is re-
quired to capture output parameters written through stack
pointers. In general, this kind of DWARF extension (which
we envisage exploiting through programmer-supplied anno-
tations) invariably helps debugging use-cases too. For ex-
ample, an extended line-number lookup assists with source-
level debugging across code generators (e.g. generalising
yacc’s use of#line directives), while capturing output pa-
rameters enables more meaningful “value returned” reports
when stepping through a function exit.

3. Generalising the approach
DwarfPython is an ongoing effort, but seems promising
enough that we may wonder whether it transfers to other
settings. We consider a Java-like setting. Clearly, the same
benefits of a low FFI coding overhead and native debug-
gability could be useful here. This raises several questions
which we consider in this section.

• What are the principles underlying the approach?

• What generic shared infrastructure is required?

• How can we deal with the constrained object models of-
fered by Java-like languages, e.g. the requirement that
each object implements a monitor and a suite of virtual
calls? Can we share the resulting objects across VM–VM
boundaries? What happens to statically-enforced invari-
ants on such objects?

• What are the implications for garbage collection? Can
we still obviate the need for FFI code in the presence
of higher-performance, less conservative garbage collec-
tion?

• What are the implications for traditional (dynamic) op-
timisations done by VMs? Can we optimise code across
VM–VM and VM–native boundaries?

3.1 Principles

In essence, the whole design of DwarfPython rests on a few
simple invariants.

Invariant 1. There is a shared concept of functions.

This is embodied in the fact that all functions have at
least onenative entry point. Functions arenamed, belong
to a loaded module, and may have multiple entry points
corresponding to alternative calling conventions (such asC
versus Pascal versusfastcall). There is no separate concept
of “foreign” functions.

(Confusingly, “foreign” and “native” are often used syn-
onymously. We will use “native” to mean code compiled



ahead-of-time to the host architecture, and “foreign” as a rel-
ative term: to a given VM, both native code andotherVMs’
code are foreign.)

Multiple entry points may arise not only from alterna-
tive calling conventions, but alternative signatures (such as
pass-by-reference or pass-by-value of a given argument) and
contracts (such as “arg0 is not null” or “arg1 points to at
least aWidget”). Multiple signatures and contracts accom-
modate differing expectations of diverse callers. Dynamic
code naturally accepts arguments by reference, using this
run-time indirection to dynamically discover the concrete
objects pointed to, and assuming minimal precondition (in-
stead raising exceptions dynamically when errors occur).
Static-typed and/or optimised callers, by contrast, may wish
to pass arguments immediately on the stack (for speed) and
to call through a faster path which elides dynamic checks on
the strength of static reasoning (such as Java-style bytecode
verification enforcing type bounds on particular arguments).
Our approach relies on dynamically generating distinct entry
points to suit such diverse callers.

Invariant 2. There is a shared descriptive metamodel span-
ning native code and all VMs.

This is embodied in our pervasive use of DWARF, and is
necessary for tool support to span VMs and native code. It is
also an enabler of the final invariant.

Invariant 3. An implementation of a particular language
on a particular VM will define mappings between its data
types and their representations in the common DWARF-
based metamodel.

This is an obligation on language implementations, in or-
der to preserve the usefulness of a shared metamodel. In the
Python case, the mapping is straightforward, since essen-
tially any native object may be interpreted as a Python ob-
ject (modulo the nontrivial treatment of tree-structured ob-
jects). We must consider how to apply our approach to more
constrained scenarios, e.g. in Java wherejava.lang.Object
brings certain requirements.

3.2 Shared infrastructure

Each of our invariants is maintained by some piece of run-
time infrastructure. Encouragingly, each piece generalises
from some familiar infrastructure.

Dynamic loader The first invariant entails a run-time ser-
vice for tracking what code is loaded. This already exists; it
is the dynamic loader provided (essentially) by the operating
system, such aslibdl on Unix platforms. We extend this in
the same spirit as other extensions, such asdlvsym() (which
adds symbol versioning on GNU and Solaris systems). Our
dlcreate(), dldestroy() anddlbind() calls allow guest VMs
to dynamically manage named “objects” containing entry
points. We also define a four-argumentdldsym() analogous
to dlsym() but providing also for a token describing call-
ing convention and signature requirements, and for multi-

ple namespaces. This extended dynamic loader obsoletes the
ad-hoc protocols for registering dynamically generated code
as described in§2.4, since debuggers already track dynamic
changes to the link map ondlopen() anddlclose() events;
our extensions generalise this support in minimally invasive
fashion.7 We have a prototype oflibld for GNU/Linux which
can create new objects with a fixed-size text segment and
dynamically populate them (using Linux-specificlibdl op-
tions). This is sufficient for backtraces to show symbols for
dynamic code. (A full implementation would lift the fixed-
size constraint, likely requiring a modifiedld.so.)

Metadata interface We have described DwarfPython’s use
of heap instrumentation and run-time debugging information
to understand the running program (§2.4). Our core inter-
face for this is implemented by a librarylibpmirror, which
we had already created for an earlier project. As its name
suggests, this library conforms (mostly) to the design prin-
ciples ofmirrors [4], but reflects a whole process rather than
a single VM. It is separately encapsulated from the pro-
cess it describes; like DWARF debugging information gen-
erally, isstratified in that it may be omitted from processes
not requiring it; and inherits the DWARF metamodel’s fairly
direct structural correspondence with the code it models.
(This meanslibpmirror is a cross-language reflection facil-
ity, although predictably, it only unifies multiple languages
to the extent that DWARF does, which is limited—see the
Appendix.)

Memory infrastructure For tracking heap metadata, we
have implemented a fast associative data structure called
a memtable, which resembles a hash table but uses avery
large linear region of lazy-committed virtual address space,
rather than an array indexed by low-order hash bits, as its
primary look-up. This exploits underlying virtual memory
hardware’s implementation of sparse, clustered address-
keyed mappings; it is both more space-efficient and faster
than a hash table in our experience.8 Entries are chained by
threading a list through heap blocks (but could be kept less
invasively in a separate shadow heap, or more efficiently in
reclaimedmalloc header space). Chains are short since each
lookup entry covers a small (1KB) region of address space.
Memtables are also used for trackingtied storage regions;
a small librarylibmemtie provides a runtime interface for
this, and adds the necessary instrumentation to the host C
library’s free() call (but currently no collector cooperation,
cf. §2.4).

Language implementations The third invariant is han-
dled by the language implementations themselves. The ap-

7 We note that standard library interfaces to code loading, such as classload-
ers in Java, may fulfil three distinct functions: dynamic loading (including
from network and other disparate sources), namespacing, andrun-time code
transformation. Only the first two of these are handled by ourlibdl exten-
sion; the third, being a metaprogramming facility, is best handled in VMs’
code generation subsystems.
8 We hope to detail this experience in a future paper or technical report.
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Figure 5. Language implementations may extend objects

proach of mapping languages’ data-types to and from the
shared metamodel is what allows separate VMs to share
data. Rather than marshalling data between separate objects,
as done by traditional FFI wrapper code, we can use sup-
port for non-contiguous objects to dynamically extend ob-
jects with additional data required to satisfy per-language
requirements. We consider this in more detail in the next
subsection.

3.3 Object layout, and other constraints

In contrast to Python, languages such as Java place specific
requirements on objects: every object owns a monitor and
holds a vtable pointer (or other means to dispatch a par-
ticular set of calls). It is the language implementation’s re-
sponsibility to resolve these requirements by generating a
hybrid layout. As with field addition in Python, these may
be noncontiguous by exploiting tied storage. This results in
object layouts akin to C++ virtual inheritance, but constructed
lazily.9 Fig. 5 illustrates this for our ellipse data-type being
made Java-accessible. Two logicalObject instances result,
because of the internal tree structure, but we consider these
one single non-contiguous tree-structured object. This ex-
tension is bootstrapped by the entry point of “most liberal”
contract (§3.1): objects received through this code path are
dynamically checked and extended as necessary, whereas a
more restricted entry point assumes that this has already hap-
pened.

Since Java has a nominal typing, interfaces for foreign
objects will have to be generated at compile-time. This may
be done transparently from the user, given a Java compiler
which can locate and load debugging information and map it
to Java classes and interfaces, which is intended by Invariant
3.

9 Since earlier parts of the structure reserve no space for forward pointers,
“forward” navigation between non-contiguous parts of an object can be
supported by associative look-up through a memtable, the same structure
used for heap metadata.

Language implementations are also concerned with se-
lecting which function to call, i.e. with dispatch. Dispatch
occurs through data structures; we consider these structures
logically part of an object layout. Moreover, their contents
may logically be defined by queries over the DWARF meta-
model. For example, “the vtable for classC contains all
functions declared lexically withinC, left-merged with like-
signature methods in inherited classes, transitively, exclud-
ing methods with thefinal attribute”. Although this elides
some details (e.g. allocation of vtable slots), in general such
queries can embody the overriding rules of a particular lan-
guage, while subtly separating them from the data struc-
ture’s core definition. Imagine that the debugging informa-
tion for ourellipse data type lexically includes some nonvir-
tual C++ method declarations. Our Java query would popu-
late a vtable with these methods, whereas in C++ these calls
would be early-bound. (This seems reasonable in preserving
the dynamism trade-offs of different languages, but arguably
weakens encapsulation by risking misuse of the originalel-
lipse implementation. We would welcome discussion of this
issue in the workshop.)

We discussed the illusion of internal references within
tree-structured objects in§2.3. In Python this entailed run-
time overhead to distinguish an implicit pointer from a
stored field. In languages with nominal subtyping it incurs
no such overhead because the distinction is apparent stati-
cally in the defining type’s layout.

3.4 FFI coding and garbage collection

As in DwarfPython, our design pushes the load of foreign
function interfacing away from hand-coding done by the end
programmer, and towards code generation done by the VM.
We believe this to be appropriate: whereas APIs such as JNI
are invariably convoluted by the desire to accommodate all
conceivable implementations of the VM, VM implementors
are uniquely aware of their own implementations, so are best
placed to bear this effort. We have considered already the
construction and accessing of VM-specific data representa-
tions. The other major source of FFI code is interaction be-
tween garbage collection and foreign code.

In JNI [10], several calls exist to cooperate with mov-
ing collectors, namely calls to “get” and “release” array con-
tents and manage long-lived references (GlobalRef) to ob-
jects. Several techniques allow relieving the programmer of
this burden. In the simplest, for deployments (such as Dwarf-
Python) where a moving collector is not used, these opera-
tions are simply redundant. In a semi-conservative approach,
we may sweep a widened set of roots (e.g. including themal-
loc-managed heap) and only move objects having no am-
biguous references (at some cost in fragmentation). Alter-
natively we may dynamically trap the escape of these point-
ers into imprecise roots, by memory-protecting these regions
before calling out to native code. To optimise this, we may
accept annotations (perhaps derived by analysis) that a given
function saves no pointers, then omit memory protection on



such calls. Without experimental results we cannot propose
a definitive technique; we are arguing that some combina-
tion of these techniques is likely to allow VMs to shoulder
the burden at reasonable cost. (If this seems unpalatable, we
remind the reader that this is, after all, the spirit of garbage
collection: using dynamic analyses to take the place of bur-
densome programmer effort.)

This meshes well with generational approaches. For ex-
ample, we might have a conservatively- or semiconservatively-
collected heap shared with C and C++ code, but then use a
single precise compacting collector for objects that have not
been shared, so can still be relocated. Since foreign code
is typically “distant” code, we hypothesise that objects that
need to be moved into the conservative heap are probably
long-lived; short-lived objects may stay in heaps that are
collected precisely.

3.5 Optimisation

Most intraprocedural optimisations are unaffected by our ap-
proach because they are hidden by the implementation of
a particular language. Meanwhile, most interprocedural op-
timisations are also unaffected (or triviallyuneffected) be-
cause JITs only optimise across code which they themselves
generated. We consider two “interesting” cases as (unim-
plemented) thought experiments. Firstly, there are optimisa-
tions which are textually intraprocedural, but whose correct-
ness relies on program-wide knowledge. Secondly, there are
optimisations which we would like to support but currently
do not: those that cross VM–VM and VM–native bound-
aries.

Program-wide knowledge Consider devirtualization by
class hierarchy analysis. This relies on whole-program
knowledge (namely the value set of a vtable entry). Since
these optimisations are performed on a per-call-site basis,
using a particular dispatch infrastructure, they appear tobe
local to a VM. However, recalling our approach (§3.3) to
generating dispatch structures from shared DWARF informa-
tion, the queries which were used to generate these struc-
tures are open to invalidation by code loading. This forces
our shared dynamic loading infrastructure (§3.2) to get in-
volved: queries must be persistent, and when their results are
affected by code loading events, this should trigger reopti-
misation.

Whole-program dynamic optimisation In last year’s keynote,
Cliff Click observed that profile-guided optimization in
ahead-of-time compilers is trapped in a cycle of under-
use and immaturity. In stark contrast, many JVMs contain
a wealth of complex dynamic compilation techniques which
are continuously exercised and improved. The infrastruc-
ture we have outlined is an ideal platform for breaking out
this complexity into a shared service of profile-guided dy-
namic optimization acrosswhole programs. Our dynamic
loader tracks loaded code; a whole-program profiler built
on this can track hot paths across multiple VMs and native

code. For example, consider optimising some native code
by inlining some VM-generated code which itself rests on
some change-prone class hierarchy analysis. It would not
normally be safe to perform this inlining because if the anal-
ysis is invalidated, the native optimiser will not be notified.
Given persistent queries, we can solve this bypropagation of
dependencies: the native-code optimiser registers (with the
dynamic loader) a dependency on the VM-generated code.
When the analysis underlying the latter is invalidated, the
native optimiser is also notified, and can replace the now-
unsafe inlined code. At the heart of this approach is the
separation of whole-program facts (query output, and data
gathered by analysis and profiling), which are concerns man-
aged by the shared infrastructure, from language and code
generation, which remain concerns of individual VMs. To
dynamically optimise native code we may build on the link-
time optimisation and low-level JIT compilation pioneered
by the LLVM project [8]. Finally, by discouraging premature
optimisation of native code, this may help with the currently
poor deoptimisation support in native toolchains—familiar
to gdb users as frustrating “value optimized out” messages.

4. Related work
Many tools exist for making FFI code easier to write, but few
provide direct sharing of data, and none addresses debugging
the results. Swig [1] is a popular tool for generating wrappers
from C APIs; Boost.Python10 and SIP11 are similar Python-
specific tools focussing more on C++. Java Native Access12

offers lower overheads but still requires programmers to
transcribe native interfaces into Java (rather than generating
them from a unified metamodel).

The GNU implementation of Java [3] integrates Java into
an existing compiler infrastructure, and allows native li-
braries to be accessed using a much more usable interface
(CNI) than Java’s usual JNI. Roughly, our approach gener-
alises this towards multiple VMs and dynamic languages.

One implementation of Scheme [12] is an interesting
relative of DwarfPython. It provides a similar degree of
wrapper-free integration, but no specific contribution to tool
support, is C-specific, and does not support dynamism such
as object schema update.

Cross-language debugging tools overlap somewhat with
our goals. Blink [9] uses a controlling master process to
provide a consistent interface onto multiple runtime-specific
debuggers, at a cost of per-environment integration effort
(since each new environment brings another debugger which
must be integrated by hand). In essence, Blink embraces
diversity of environments, whereas we attempt to synthesise
a single underlying environment.

10http://www.boost.org/doc/libs/1 35 0/libs/python
11http://riverbankcomputing.co.uk/software/sip/
12http://github.com/twall/jna



There is a clear demand for cross-language and cross-VM
tool support, as witnessed by extant patches to Valgrind13,
and gdb14, machine-level Python heap profiling15, cross-
language Java debugging information16, per-VM “providers”
for the DTrace tool [5] and many others. These approaches
are “point fixes” for some pairing of tool and VM, rather
than direct solutions.

There is also considerable demand for sharing objects
across VMs; the most relevant existing system is CoLoRS
[13]. This extends stock VMs with shared objects, but does
not support sharing with native code, nor unifying run-time
tool support.

VMKit [7] has a similar approach of factoring managed
runtimes, but instead of providing for sharing across multi-
ple colocated VMs, considers constructing and experiment-
ing with individual specialised VMs.

A philosophically similar approach is that of subject-
oriented composition [11], which considers reconciling mul-
tiple overlapping views of the same application domain
model. Our approach is essentially its analogue at machine-
rather than application-level.

5. Concluding remarks
We have argued that virtual machines can and should be
made far less obtrusive for end programmers to use. We have
focused on FFI and debugging issues; there remain other
ways in which VMs are obtrusive, especially their configu-
ration (e.g. code search paths, resource limits, security mod-
els), which are worth rethinking. In any case, our immedi-
ate plans are: to produce a complete, optimised implementa-
tion of DwarfPython; then to apply our techniques within
VMKit’s j3 JVM [7], including whole-program dynamic
optimizations. We are also interested in embracing func-
tional languages (especially with lazy evaluation, which re-
main difficult to debug), moving a wide range of VMs closer
to the invisible ideal.
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A. A brief introduction to DWARF

Debugging information describes compiled code in suffi-
cient detail to recover a source-level abstraction of a run-
ning program. This includes the ability to resolve source-
level names, decode values, traverse data structures, walk
the stack, and map instruction addresses back to source loca-
tions. Since it must support many machine architectures and
compiler implementations, it is a rich and flexible medium.
In this paper we focus on the DWARF format [6], which is
common on contemporary Unix platforms.

Overall structure DWARF information is presented as a
heterogeneous tree whose structure generally reflects the
nesting relation in the source code. The top level records
compilation units; under these are file-level definitions (e.g.
classes and functions); similarly fields, formal parameters,
variables, nested data types and nested functions all fall in
the expected positions. Tree nodes are decorated with at-
tributes which carry the descriptive payload: name, size and
layout in memory, position in memory (relative to some im-
plied base address such as a frame pointer or start-of-object),
source code coordinates of their declaration, types of fields
or variables, and so on. Although presented as a tree, the
structure encodes cross-references (most commonly to data-
type definitions, from definitions which instantiate them).It
is therefore a graph and is frequently cyclic (e.g. for a recur-
sive data type). Fig. 6 shows a skeleton C++ program together
wiwth a schematic overview of its DWARF description.

Language features DWARF is mostly independent of lan-
guage, and DWARF-emitting compilers exist for many lan-
guages including C, C++, Fortran, Objective-C, Java and oth-
ers. Compilation units are tagged with their originating lan-
guage. Most obvious deduplications among languages have
been effected (e.g.structure type includes Cstructs, Pas-
cal Records and so on), but there is no deeper unification
(e.g.interface type is currently particular to Java-generated
code).

Location descriptions DWARF is particularly flexible in
mapping objects (including arguments, local variables, fields
within objects, etc.) to memory locations. This is done with
“location expressions” defined abstractly in terms of a stack
machine. The expressions can source values from the run-
ning program (most typically register contents) and do ar-
bitrary computations on them. Our implementation relies
heavily on these expressions, notably to support objects split
across multiple storage locations.

compile_unit
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const char ∗message = ”Hi”;
class blah
{

public :
const char ∗hello () const
{ return message;}

};

const char ∗run()
{

blah local ;
return local . hello ();
}

Figure 6. Simple C++ code and schematic DWARF descrip-
tion


