
The JVM is Not Observable Enough (and What To Do About It)

Stephen Kell Danilo Ansaloni Walter Binder
University of Lugano

firstname.lastname@usi.ch

Lukáš Marek
Charles University

lukas.marek@d3s.mff.cuni.cz

Abstract
Bytecode instrumentation is a preferred technique for build-
ing profiling, debugging and monitoring tools targeting the
Java Virtual Machine (JVM), yet is fundamentally danger-
ous. We illustrate its dangers with several examples gath-
ered while building the DiSL instrumentation framework.
We argue that no Java platform mechanism provides simul-
taneously adequate performance, reliability and expressive-
ness, but that this weakness is fixable. To elaborate, we con-
trast internal with external observation, and sketch some ap-
proaches and requirements for a hybrid mechanism.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—run-time environments

General Terms Measurement, Reliability, Performance

Keywords bytecode, instrumentation, DiSL, dynamic anal-
ysis, JPDA, JVMTI, profilers, debuggers

1. Introduction
Developers working with a virtual machine (VM) depend
critically on its observability, meaning the ability to monitor
and analyse the guest program’s execution. Debuggers, pro-
filers and other dynamic analysis tools are the programmer’s
interface to observability. In turn, the authors of these tools
rely on VM-level mechanisms to build these tools; essen-
tially every virtual machine provides some such facilities.

The Java Virtual Machine (JVM) is the target of many
tools, developed by product engineers and researchers alike.
It provides two basic observation facilities: the Java Platform
Debug Architecture, a set of interfaces for interrogating a
debug server running inside the VM; and the JVM Tool In-
terface, an interface for interposing an “agent” library which
is commonly used to instrument bytecode at load time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VMIL’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c⃝ 2012 ACM 978-1-4503-1633-0/12/10. . . $10.00

These mechanisms are inadequate. JPDA1 is a usable ba-
sis for debuggers, but for dynamic analyses offers inherently
limited performance and expressiveness. Meanwhile, our ex-
periences building the DiSL instrumentation framework [11]
using JVMTI-supported bytecode instrumentation show that
common use cases cannot be realised without risking the in-
troduction of show-stopping bugs, including deadlock and
VM crashes. These problems can be worked around only by
reducing the scope of observation.

We do not claim to be the first to observe these diffi-
culties. In this paper our intention is to highlight them as
a deeper issue. They are not simply quirks or “gotchas” for
tool authors to be aware of; they are real obstacles to ex-
panding the range and quality of tools available to program-
mers. By collecting the problems, underlining their severity,
and characterising the requirements and design space for an
eventual solution, we hope to advance the agenda of high-
quality tool construction for managed runtimes. In summary,
our contributions are:

• to identify seven design problems with instrumentation-
based tools, illustrated with practical examples gathered
during the development of DiSL;

• to survey the spectrum between internal and external
observation, considering the JVM’s relative strengths in
these two modes;

• to sketch a set of requirements and possible approaches,
motivated by existing literature, for a safe, efficient ob-
servability mechanism combining the benefits of internal
and external observation.

Our latent position is that the JVM is not sacred. Con-
siderable effort among researchers—ourselves included—is
expended on building tools which exhibit good properties
using only standard JVM interfaces. Much of this effort is
wasted, because it ignores the real problem: the design of
general, high-performance observability mechanisms is an
open research challenge.

We begin by reviewing the JVM’s observability facilities.

1 Our canonical references for JPDA and JVMTI are the guides supplied by
Oracle, as retrieved on 2012/8/16 from http://docs.oracle.com/javase/
6/docs/technotes/guides/jpda/. Note that strictly speaking, JVMTI is
part of JPDA; when we refer to JPDA, we are more precisely referring to
its other two constituent interfaces: JDI and JDWP.

Figure 1. Internal observation by instrumentation (top) ver-
sus JPDA-based external observation (bottom)

2. Observability on the JVM
Like physical systems, software systems exhibit a tension
between observation and perturbation: one cannot observe
a system without affecting it somehow. This informs the de-
sign of VM-level observation mechanisms. The two mech-
anisms offered by the JVM platform—JVMTI and JPDA
(contrasted in Fig. 1)—approach perturbation differently.

JVMTI allows construction of tools by linking a native li-
brary, called an “agent”, into the VM. This library interposes
on various VM events. Significant among these is class load-
ing, where replacement code may be supplied by the agent.
JVMTI’s design deliberately emphasises tool construction
by bytecode instrumentation: its documentation2 notes that
“this interface does not include some events that one might
expect. . . [but] instead provides support for bytecode in-
strumentation, the ability to alter [the] bytecode instructions
which comprise the target program”. To minimise perturba-
tion, the same document also suggests that agents should be
“controlled by a separate process which implements the bulk
of a tool’s function without interfering with the target appli-
cation’s normal execution”. Avoiding perturbation therefore
becomes the tool author’s problem.

Meanwhile, JDPA3 “goes to great pains to avoid the exe-
cution of any code in the debuggee virtual machine” because
in-process analysis “interferes with the behavior being ana-
lyzed. . . for example: . . . competition for resources [means

2 Retrieved on 2012/8/16 from http://docs.oracle.com/javase/6/
docs/platform/jvmti/jvmti.html.
3 Quotations are from Sun’s Frequently Asked Questions on the Java Plat-
form Debugger Architecture, retrieved on 2012/8/16 from http://java.
sun.com/javase/technologies/core/toolsapis/jpda/faqs.jsp.

that] deadlock can occur” and that “many operations can
only be reliably performed in a suspended virtual machine”.
As a result, the interface is relatively constrained in both
expressiveness and performance: the wire protocol supports
only a fixed set of queries, many of which execute only on
suspended threads or a suspended VM. Although arbitrary
analysis computations could be performed externally in the
debugging process (and effectively this is what debugger-
based Java expression evaluators do), implementing such an
evaluator is a nontrivial undertaking, and the continual need
to suspend and resume parts of the VM severely reduces
overall performance. Most JVMs fall back to unoptimised or
deoptimised execution of code observed by a debug client.

We first discuss various practicalities of bytecode instru-
mentation; JPDA is discussed subsequently.

3. Current practice
Most dynamic analysis tools for the JVM work by bytecode
instrumentation, using JVMTI (or, rarely, performing the
instrumentation offline). We call this internal observation:
a single process contains both program and analysis.4 Al-
though JVMTI’s documentation endorses a separate-process
approach to minimise perturbation, to our knowledge only
a small minority of instrumentation-based tools actually fol-
low such a design. Simplicity and performance are likely ex-
planations; certainly, these motivated DiSL’s initial single-
process design. Remote processes require marshalling and
copying code, with its associated development and runtime
overheads. In contrast, processing within local instrumenta-
tion does not incur these overheads, and benefits from JIT
optimisations. In this section we review a series of problems
encountered while building and using DiSL, which we be-
lieve are inherent to internal observation on today’s JVM.

3.1 An example analysis
Consider a simple tool for identifying fields that are im-
mutable (or likely to be) in a Java program, suggesting
to the programmer that they could be made final. Clearly,
we should instrument bytecode performing field writes, and
record them as a set of per-field per-class “mutable” flags.
Fields whose flag remains unset are likely to have immutable
semantics, so could be made final. Such a tool was con-
structed in DiSL and has been used in published work [16].
Unfortunately, even simple instrumentations exhibit subtle
problems; in the remainder of this section we describe sev-
eral problems that this example and/or comparably simple
instrumentation-based analyses easily encounter.

3.2 Deadlock of non-wait-free analyses
Fig. 2 shows a simplified set of stack traces that we have
observed while using our immutability analysis. The analy-
sis data structure, a WeakKeyIdentityHashMap, is protected

4 We note that often, as with DiSL, the instrumentation itself is done in a
separate process spawned by the agent.

Figure 2. Deadlock between instrumentation and program.
Purple (darker) boxes represent calls resulting from instru-
mentation; beige (lighter) boxes are in the base program.

by a lock, for which at least two threads are contending.
Thread-3 is running user code that performs a field access,
so the instrumentation locks the analysis structure. It then
queries the target object’s java.lang.Class to allocate some
per-class state. In turn, this queries the class loader., which
makes calls to the I/O library, requiring a lock on a Handler
object. Unfortunately, Thread-2 has acquired a lock on the
same Handler object and, owing to a field access in the same
critical section, has itself called into the analysis and is wait-
ing on the analysis lock. This is a classic deadlock: the two
threads are contending for the same pair of locks but in op-
posite orders. Under instrumentation there is no way to en-
force a global locking order, because the emergent ordering
of locking operations depends on the implementation details
of the instrumented code—which the tool author cannot rea-
sonably know. One solution is to use only wait-free code in
instrumentation, or to ensure that any lock taken out by in-
strumentation is a leaf lock (not held during any other lock-
ing operation). However, this requirement is even stronger
than it first appears; we consider it shortly.

3.3 State corruption of non-reentrant code
Instrumentation can cause non-reentrant code to be invoked
reentrantly, leading to state corruption. Consider a common
requirement in instrumentation: to print out a message to the
console. Normally a println() implementation avoids calling
itself, so need not be reentrant. Suppose that it models a state
machine, as in the sketch of Fig. 3. This code is perfectly
correct; however, if we introduce some instrumentation to
the definition of copySome() which prints out a message, the
state machine will be advanced prematurely by a reentrant
println() invocation, only to resume the first println() in the
wrong state (causing an assertion failure at line 7). Note that
the problem arises from interleaving within a single thread,
so thread-safe code still exhibits this problem.

3.4 Calling methods
Our last two problems suggest that perhaps any method
called on base program state from instrumentation is dan-
gerous. We might therefore say: don’t make any such calls!

1 /∗ inside a non−reentrant method,
2 perhaps java . io .PrintStream. println ()... ∗/
3 try {
4 this . state = PENDING; // non−reentrant state machine
5 while (pos != len) pos = copySome(in, out, pos, len);
6 } finally { /∗ ↖ now makes reentrant call ! ∗/
7 assert this . state == PENDING; // fails following reentrant call
8 this . state = CLEAR;
9 }

Figure 3. Non-reentrant code corrupted by instrumentation

Indeed, to avoid deadlock (by wait-free instrumentation or
“only leaf locking”, as in §3.2) we must enforce this rule,
because the waiting and locking behaviour of arbitrary meth-
ods is unknown. Unfortunately, enforcing this rule severely
limits our expressiveness, because calling methods is in-
dispensible in many circumstances. Suppose we want to
analyse use of a library API making pervasive use of a
user-defined type like Date or Currency as a method ar-
gument. Collecting contextual information about an event
(for example, the month of the Date being passed) invari-
ably means calling methods (on the Date object). Aggregat-
ing by such information also entails method calls—such as
equals(), compareTo() or hashCode()—made by the aggre-
gating container. All of these methods are entitled to perform
locking. Although in these cases we could perhaps use JNI
to make raw (private) field accesses instead of method calls,
targeting private interfaces is little more desirable in instru-
mentation than in normal code. Method calls are also nec-
essary to perform I/O, which invariably risks contention for
per-VM data structures such as file handle tables.

3.5 Plausible instrumentation crashes the VM
It would be a convenient facility to instrument Object.<init>,
because this captures all object initialization events. Unfor-
tunately, doing so on at least one popular JVM (namely
HotSpot) crashes the JVM.5 Similarly, adding fields to Ob-
ject might be an efficient way for an analysis to associate ad-
ditional state with each object, but this also crashes HotSpot.
The underlying problem is that there is no specification
about what instrumentations are required to be supported
by the VM; it is undefined whether this is a bug in HotSpot.
(We emphasise that all problems described in this section,
although inevitably triggered using specific JVM or library
implementations, are not implementation-specific problems.
Rather, sharing the JVM between instrumentation and user
code creates unavoidable risk of bad interactions.)

3.6 Bytecode verification failure
Our immutability analysis needs to determine whether a
given field write occurs during the execution of the target

5 Actually, whether HotSpot crashes depends on precisely what instrumen-
tation does, but without any obvious pattern. For example, we found that
constructing a String with the += operator reliably crashed the VM, but
constructing one from a literal did not.

object’s constructor (meaning the field may be immutable)
or afterwards (meaning it must be mutable). Unfortunately,
to determine which field is being written, our analysis re-
quires a reference to the containing object; if the constructor
is still executing, this is an uninitialized object, and passing
a references to it is conservatively forbidden by the bytecode
verifier. We are forced to run this analysis with verification
turned off. In general, objects which are not yet initialized
may nevertheless be of interest to an analysis, but such anal-
yses are not accommodated by the bytecode verifier.

3.7 Coverage underapproximations
DiSL supports instrumentation of the entire class library, not
just user-supplied code. Indeed, instrumenting the sensitive
code found deep in the libraries has helped expose the prob-
lems we have encountered. (However, all of them could arise
purely in user code.) To allow the same library classes to be
both instrumented and used by instrumentation without infi-
nite recursion, a “bypass” is used: a thread-local flag records
whether execution is currently at the base level (the pro-
gram) or meta-level (the code inserted by instrumentation).
Each method body is duplicated in both arms of an if–else
construct testing this flag, with only the “false” (base level)
copy being instrumented. In this way, helper calls made by
the analysis into library code (such as containers) are not
themselves analysed.6 In general, we seek to avoid both this
over-analysis (analysing the analysis, possibly causing infi-
nite regress) and also under-analysis (loss of coverage, e.g. if
we instead omitted to instrument the class library). Unfortu-
nately, this thread-local bypass is only approximate; it avoids
neither over- nor under-analysis. A simple example of under-
analysis is the static initializer of a class which is used by
the base program, but now also used earlier by instrumenta-
tion: its initializer will be run uninstrumented, when in fact
it would later have been run by the base program and should
therefore be analysed. The bypass is also active on all execu-
tion before the main() method, to avoid perturbing the load
order of core classes (which is critical to VM bootstrapping),
so these classes’ static initializers are also not covered.

3.8 Reference handler over-analysis
The bypass flag avoids over-analysis within a single thread.
However, when work is passed between threads, it cannot
help. A notable example is reference handling. Many analy-
ses make heavy use of WeakReferences, to track program
objects without preventing their collection. Unfortunately,
the task of appending cleared WeakReferences to their in-
tended ReferenceQueue is usually implemented by a shared
reference handler thread, implemented in class library code
and therefore subject to instrumentation. All work done by
this code is analysed, even though some of these references
are due to the analysis rather than the base program. The

6 This technique is called “polymorphic bytecode instrumentation” [12].
We previously believed it to offer adequate separation of meta-levels, until
further experience uncovered the problems in §3.7 and §3.8.

problem is exacerbated when the analysis running in the
reference handler thread itself allocates WeakReferences,
hence creating yet more work for the reference handler,
hence more allocations. This cycle is rate-limited by the life-
time of the WeakReference target, but can still exhaust mem-
ory. In affected applications of DiSL we have worked around
this manually excluding the reference handler thread from
analysis using an if-test in each inserted snippet. However,
this turns overanalysis into underanalysis: reference process-
ing for the base program is no longer analysed.

4. External observation
Our immediate plans for improving DiSL rest on a new de-
sign strategy: “execute as little code as possible in the ob-
served process”. However, this statement begs two important
questions: how little is possible, and will this really solve our
problems? In this section we review the current options for
external observation of JVMs, and also consider related de-
signs not currently implemented by most JVMs.

4.1 Options for external observation of JVMs
Native code The closest vantage point “outside” a JVM
is from native code in the same process. Some JVMTI-
based systems such as hprof [10] perform analysis in native
code to reduce perturbation. Unfortunately, most potential
problems remain in some form. The biggest effect of shifting
analysis to native code is to reduce coverage (since native
code is not itself observed) and so reduce the likelihood of
hitting a problem. However, native code is not intrinsically
safer; deadlock (§3.2) and reentrancy (§3.3) remain issues as
presented earlier, and gathering contextual data (§3.4) will
still generally require calls back into Java code.

Separate process The JVMTI documentation recommends
doing most analysis from a separate process. However, in
such a design, inserted bytecode must still be used to collect
data and transmit it to a remote process using some IPC
mechanism (such as a ring buffer in shared memory). So,
while storage and computational processing are done in a
separate process, the design does not fundamentally prevent
any of the same problems from occurring. In particular,
simply collecting data can easily require a method call; if
so, then this call must be made within the observed process.

JVM debugging interfaces As outlined in §2, JPDA facil-
ities designed primarily for the construction of interactive
debuggers can also support a variety of dynamic analysis
tools (including Caffeine [6] a trace collector and query en-
gine, and the first version of the PROSE aspect weaver [14]).
However, these tools run slowly: most JVM implementa-
tions run unoptimised code when a debugger is attached.
(Even HotSpot’s “full-speed debugging” works by dynamic
deoptimisation of the debugged code.7) Furthermore, we

7 Described in a HotSpot white paper, retrieved from http://www.oracle.
com/technetwork/java/whitepaper-135217.html on 2012/8/17.

note that debug clients acquire the ability to query VM state
thanks to the presence within the VM of a debug server (talk-
ing JDWP8). This is therefore arguably not external observa-
tion at all! Pure external observability requires that observ-
ing a program’s execution involves adding no code in the tar-
get process. This is not supported by any Java platform spec-
ification. Significantly, JVMs need not publish their data rep-
resentations or stack frame layouts, so cannot be observed
from memory dumps or peek/poke-style interfaces.

4.2 Pure external observation
Some existing JVMs provide additional support for pure
external observation of program state. We first discuss this
support, then discuss a real-world use case.

4.2.1 Vendor extensions
Some JVM vendors have added limited forms of pure ex-
ternal observability using custom interfaces. HotSpot pro-
vides a set of “SA tools”, for Serviceability Agent, a “Sun
private component. . . developed by engineers. . . debugging
HotSpot [who] then realized that SA could be used to craft
serviceability tools for end users”. In particular, SA “can ex-
pose Java objects as well as HotSpot data structures both in
running processes and in core files”.9 SA tools include the
jmap memory-map dumper, the jstack stack tracer, the jhat
heap dump analyser, and others.

Specifying this kind of mechanism in the Java platform,
ideally using compiler-generated descriptive debugging in-
formation (rather than “baked in” VM-specific knowledge
used by the SA tools) would be a step forward, in allowing
external observation without deoptimised execution and also
in post-mortem cases. Fig. 4 illustrates. JVMs built on native
compiler back-ends, such as gcj [2] for gcc or VMKit [5]
with LLVM [9], already inherit this ability. However, just as
method calls were preferable to digging for fields with JNI
(§3.4), access to raw fields is less useful than the ability to
isolate bytecode-based instrumentation would be.10

4.2.2 Use case: DTrace on Java
A cutting-edge application of external observation is found
in DTrace [3], a dynamic tracing tool designed for safety,
high coverage, and performance appropriate for use on pro-
duction systems. DTrace primarily targets native code at
both user and kernel levels. All analysis code runs in the ker-
nel, sandboxed within an interpreted virtual machine subject
to various load- and run-time checks.11

8 http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/jdwp-spec.
html
9 From “Serviceability in Hotspot”, retrieved on 2012/8/15 from http:
//openjdk.java.net/groups/hotspot/docs/Serviceability.html.
10 Pure external observers of Java will require notification when objects are
moved by the collector; a portable protocol for this is also required.
11 DTrace arguably then does internal observation of kernel code. It avoids
deadlock and reentrancy problems (§3) using a wait-free analysis path
which mutates only private state and may not itself be instrumented.

Figure 4. Pure external observation using descriptive de-
bugging information

An essential design feature of DTrace is that little in-
formation is propagated proactively from the analysed pro-
gram to DTrace. Rather, DTrace kernel code extracts state
from the observed program (such as the stack trace, current
function arguments, and data gathered from walking data
structures), using memory access and debugging informa-
tion much like a native debugger. In this way, probes can
be enabled and disabled without the base program’s involve-
ment, and unwanted probe data can be discarded at source.
This relies on the ability of DTrace kernel code to decode
the data structures and stack frames of target code, so can-
not be supported with existing JVM observability mecha-
nisms. Existing portable solutions for running DTrace in
Java code (including the JVMTI-based dvmti12 provider, and
the BTrace13 bytecode instrumentation systems) are forced
to proactively marshal data into predictable form, negating
the “discard at source” feature and adding slowdown even
for disabled probes (an overhead avoided by most DTrace
providers). Recent versions of HotSpot now contain a built-
in DTrace provider, which permits a more optimised but
VM-specific approach (analogous with the “Serviceability
Agent”, §4.2.1), reaffirming our position that the specified
observability mechanisms are not sufficient.

5. How to fix it
We remain committed to the approach of running analysis
outside the JVM as far as possible. On the current JVM plat-
form this dooms us to limitations. We believe that the design
of VM-level mechanisms for fast, safe observation is an open
challenge, and specifically that an optimal synthesis of inter-
nal and external observation is yet to be achieved. Here we
sketch some ideas and requirements for such mechanisms.

Inlined guards and other “safe” instrumentation The dy-
namic compilation available in JVMs should allow us to
achieve a better isolation/performance trade-off than in na-
tive code. Some code really is effect-free and can safely be
inserted as instrumentation, where it can be optimised. This
could, for example, avoid redundant traps in DTrace for false

12 http://kenai.com/projects/dvm/
13 http://kenai.com/projects/btrace/

predicates (§4.2.2). Useful guidance could come from purity
analyses already performed by JIT compilers.

Isolated bytecode Executing analysis against snapshots of
program state is a convenient abstraction. Object-level copy-
on-write snapshots have already been demonstrated by work
on asynchronous assertions [1]. The same approach could al-
low instrumentation bytecode to execute “as if” in the target
process, but in an effect-free fashion. The resulting “sand-
boxed bytecode evaluator” could be a candidate for replac-
ing JDWP, much as JVMTI uses bytecode instrumentation to
replace various utility calls in its predecessor JVMPI [10].

Free association Maintaining per-object analysis state is
currently done using associative mappings (e.g. keyed on
WeakReferences). We noted (§3.5) that adding fields to Ob-
ject would be a useful alternative. Meanwhile, adding fields
to every object could be wasteful if only certain objects
are of interest. Fast disjoint metadata implementations us-
ing virtual memory techniques have appeared in recent work
[8, 13]. A useful addition to instrumentation libraries could
be to specify the availability of an associative container
keyed on object identity with a strong performance contract.

Meta-level separation as a VM service The concept of
software-isolated processes or “isolates” is well developed
[4, 7] and could be the basis of an isolated metalevel. A dis-
tinction from the normal case is that information flow in one
direction must be permitted. Fitting a suitable design onto
the JVM would at least require eliminating shared threads
(cf. §3.8). (We note that DTrace’s in-kernel virtual machine,
described in §4.2.2, is another instance of software isolation,
i.e. with respect to the wider kernel.)

Record/replay correctness It is currently a difficult task to
actually test that an analysis does not unduly perturb the pro-
gram it is observing. Some performance effect is always ex-
pected, and in the case of instrumentation, the path taken
through the program will necessarily be modified too. An
intuitive requirement is that we should be able to erase the
analysis parts of the path and find the base program path
otherwise unchanged. A useful approximation of this crite-
rion might be available from record/replay systems such as
that of Saito [15]: a replay log from an uninstrumented run
should be replayable against the instrumented code without
divergence, and producing the same output (as well as ad-
ditional output from the analysis). This will likely require
some support from the VM to tolerate execution differences
without causing divergence, e.g. concerning garbage collec-
tion: the instrumented program will allocate more memory
and collect more often.

6. Conclusions
We have shown, with examples, that bytecode instrumenta-
tion poses severe and unavoidable dangers as the basis of
tool construction, yet no other Java platform mechanism is

adequate. We have motivated the open challenge of design-
ing a efficient, isolated observation mechanism suitable for
JVMs, and have provided some initial design sketches.

Acknowledgments
The research presented here has been supported by the Swiss
National Science Foundation (project CRSII2 136225), by
the European Commission (Seventh Framework Programme
grant 287746) and by the Czech Science Foundation (project
GACR P202/10/J042). The authors thank their fellow DiSL
authors and contributors: Aibek Sarimbekov, Petr Tůma,
Yudi Zheng, Andreas Sewe.

References
[1] E. E. Aftandilian, S. Z. Guyer, M. Vechev, and E. Yahav.

Asynchronous assertions. In Proc. OOPSLA ’11. ACM.

[2] P. Bothner. Compiling Java with GCJ. Linux Journal, 2003.

[3] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dynamic
instrumentation of production systems. In Proc. USENIX
ATEC ’04. USENIX Association.

[4] G. Czajkowski and L. Daynés. Multitasking without com-
promise: a virtual machine evolution. In Proc. OOPSLA ’01.
ACM.

[5] N. Geoffray. Fostering Systems Research with Managed Run-
times. PhD thesis, Paris, France, September 2009.

[6] Y.-G. Gueheneuc, R. Douence, and N. Jussien. No Java with-
out Caffeine: A tool for dynamic analysis of Java programs.
In Proc. ASE ’02. IEEE, 2002.

[7] G. C. Hunt and J. R. Larus. Singularity: rethinking the soft-
ware stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, Apr. 2007.

[8] S. Kell and C. Irwin. Virtual machines should be invisible. In
Proc. VMIL ’11, SPLASH ’11 Workshops. ACM.

[9] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proc. CGO
’04. IEEE Computer Society, IEEE.

[10] S. Liang and D. Viswanathan. Comprehensive profiling sup-
port in the Java virtual machine. In Proc. COOTS ’99,
COOTS’99, Berkeley, CA, USA. USENIX Association.

[11] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder,
and Z. Qi. DiSL: a domain-specific language for bytecode
instrumentation. In Proc. AOSD ’12. ACM.

[12] P. Moret, W. Binder, and E. Tanter. Polymorphic bytecode
instrumentation. In Proc. AOSD ’10. ACM.

[13] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
Softbound: highly compatible and complete spatial memory
safety for C. In Proc. PLDI ’09. ACM.

[14] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving for
aspect-oriented programming. In Proc. AOSD ’02. ACM.

[15] Y. Saito. Jockey: a user-space library for record-replay debug-
ging. In Proc. AADEBUG ’05. ACM.

[16] A. Sewe, M. Mezini, A. Sarimbekov, D. Ansaloni, W. Binder,
N. Ricci, and S. Z. Guyer. new Scala() instance of Java:
a comparison of the memory behaviour of Java and Scala
programs. In Proc. ISMM ’12. ACM.

