
Convivial Design Heuristics for Software Systems
Stephen Kell

University of Kent, UK

S.R.Kell@kent.ac.uk

ABSTRACT
Illich’s notion of conviviality centres on the balance between indi-

vidual freedom to act and collective freedom from domination. This

balance, or tension, is present in the design of most user-facing

computer systems, and especially in the design of programming

systems. Software lore has arisen with at best a skewed perspective

on such issues, having developed from an industrial viewpoint.

In this paper I survey some tentative design principles, extracted

from examples of research work or (more often) systems used in

practice, which (sometimes by accident) do show some regard for

conviviality. Although preliminary, my hope is that these principles

may yet develop into a collection of design hints at least equal,

and largely countervailing, to the less conviviality-prone ideas

circulating in today’s software folklore. Relevant topics include

language design, information hiding, language virtual machines,

portability, classical logic, and layered system design. I also briefly

consider the intertwined social and political constructs, such as

copyleft, ownership and community responsibility, asking how to

evolve or generalise these towards convivial ends.

CCS CONCEPTS
• Software and its engineering; • Social and professional is-
sues;

KEYWORDS
Programming, design, modularity, culture, conviviality

ACM Reference Format:
Stephen Kell. 2020. Convivial Design Heuristics for Software Systems. In

Companion Proceedings of the 4th International Conference on the Art, Science,
and Engineering of Programming (<Programming’20> Companion), March
23–26, 2020, Porto, Portugal. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3397537.3397543

1 TECHNICAL HEURISTICS
Jareth I ask for so little.

Just let me rule you, and you can have everything that you want.

Just fear me, love me, do as I say,

and I will be your slave.

Sarah You have no power over me.

from the film ‘Labyrinth’ [11]

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00

https://doi.org/10.1145/3397537.3397543

Illich’s notion of conviviality [10] centres on a balance: between

individual freedom to act and collective freedom from domination.

A tool that allows some individuals to achieve great power is un-

acceptable if it tends towards domination of the majority—even if

this domination occurs unintentionally, indirectly or creepingly.

For Illich, writing in the 1970s, this meant several things. Insti-

tutionalised education is unacceptable because it creates a society

dominated by the social capital of the ‘most treated’, rather than

one of individuals empowered by learning. The extremes of modern

medicine are unacceptable because they prop up the continued suf-

fering of much of the population, amid the unhealthy environment

of industrialised society. A society organised around high-speed

transport is unacceptable because the resulting social imperative, or

‘radical monopoly’ of high-speed travel forcibly consumes the time,

space and energy of anyone participating in that society, while

accruing net benefit only to a wealthy few.

For us, concerned with computer systems in the present day,

these ideas are no less relevant. Domination is rooted deeply in

the culture of computer systems. ‘Systems’ dominate ‘users’, while

‘languages’ and ‘tools’ dominate ‘programmers’. As we push against

the frontier of absolute capability of our systems, and increase the

capability of their most expert and advanced teams of users, we

tend to shrink both the relative and absolute capabilities of the ‘unit

individual’. I assert this without proof, but believe it is a phenome-

non increasingly observed and accepted. It is familiar, for example,

to the generation who grew up programming early microcomputers

and nowadays wrestle to achieve comparably simple feats using

a ‘modern’ web framework. Although the modern technology is

more sophisticated in many ways, this rarely translates to less work

being needed to accomplish a simple human-meaningful task.

To reconsider programming systems with the goal of convivi-

ality, not industrial notions of productiveness, what must change

about our thinking? We must firstly stop the endless extrapolation

behind industrial thinking, including its ‘economies of scale’—for

the same reason that in the long run we are all dead. Instead of

seeing ‘programming’ in idealised form as the act of an individ-

ual, we must frame it scaled up to whole economies or ecosystems

of people writing software to diverse ends. They all do so using

existing programming systems, whose designs are informed by a

small number of decades’ thinking, under the strong influence of

industrial ideas. The following countervailing ‘design heuristics’

are the (unfinished) product of thought experiments in rejecting

industrial notions of ‘larger problems’ and instead considering the

effects our technical choices as they are scaled up along human

dimensions, through cultures and societies.

Value reference over definition. When we ask what a pro-

gramming language can express, we mean what can be defined

within it, not what things outside itself it can reference. So begins

that language’s play for domination. To achieve conviviality, this

must be reversed. The more a system can draw from its context of

https://doi.org/10.1145/3397537.3397543
https://doi.org/10.1145/3397537.3397543
https://doi.org/10.1145/3397537.3397543

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Stephen Kell

use, the less it dominates its users. The ‘polymorphic identifiers’

of Weiher and Hirschfeld [24] are a recent rare example of work

founded on expanding the space of reference; one can credit F#’s

type providers [19] with their ability to ‘bring in’ diverse sources

of data from outside. The same thinking is found in the systems

and networking tradition of of unifying namespaces, such as the

filesystem in Unix, or the space of network interfaces in IP. In each

case, the easier it is for a ‘mere programmer’ or ‘mere user’ to

extend the space of names, the better; sadly, even in most of the

systems mentioned, this remains an involved process.

Value linking over containment. This is the same idea re-

stated. What we contain, we control. By contrast, linking a (partial)

program to an external definition requires some kind of negotiation

across a boundary. This might be by consensus, when the link is

‘direct’, meaning referer and referent are well-matched syntactically

and semantically. Or it might be by mediation, where some adap-

tation layer intercedes on the interaction. This distinction ought

to be as essential as that between synchronous and asynchronous

communication, yet it remains a non-feature of most programming

systems. I wrote previously about how at the level of module in-

terfaces, mediation is a separable problem which is often simpler

than general-purpose programming [13]. It is no coincidence that

graph-theoretic notions of dominance generalize containment (‘all

paths go through me’), nor that the trend in computing use cases

(but often not technologies’ designs!) is for hierarchy to give way

to heterarchy—as we gain hardware capable of transcending fixed

spaces and fixed communication structures.
1

Beware fragile affordances.Mention of ‘linking’ calls to mind

the web. The web appears to embrace linking, but in practice its

linkable design is easily trampled on. Computationally sophisti-

cated web pages are usually not functionally linkable in such a way

that would allow, for example, one to usefully reference their con-

tents ‘from the outside’ or cause their internals to be re-bound to

alternative referents elsewhere. Imagine, for example, a hyperlink

that functioned as a ‘continuation’ that would allow a friend to

resume at the same page; this falls within the idealised promise of

the web, but is seldom found in reality. Although linking is possible,

the capability is fragile, and the ‘design fabric’ of the web does little

or nothing to preserve it. Indeed one could argue that the separate-

ness of design elements such as cookies, referers and ‘post data’

effectively discourages linkability. Meanwhile, the module bound-

aries and dynamic (re)binding that would make for useful ‘linking’

are also often absent. Consider how many web applications con-
tain their own embedded ‘rich text’ editing widget. If linking were

truly at the heart of the web’s design, a user (not just a developer)

could supply their own preferred editor easily, but such a feat is

almost always impossible. A convivial system should not contain

multitudes; it should permit linking to them.

Support referential structures, not [just] definitional struc-
tures.What else might it mean to be ‘expressive’ with respect to

the outside? Infrastructure should make it easy to ‘construct views’,

1
In the late 2000s I read a text which first introduced to me the notion of ‘heterarchy’

in computer systems observing its tendency to replace hierarchy. I was sure it was

a draft by Robin Milner of his book about bigraphs [15], but this is a false memory:

neither the published book nor the draft dated January 2008 uses the word. If any

reader knows where I might have read this observation, I would be grateful for a

reference!

that is specifying new ways to refer to already extant definitions.

Relational databases have succeeded in this like few others. In net-

works, despite the goal of evolutionary application deployment

that lies behind the Internet’s end-to-end design, IPv4’s possessive-

ness of the network namespace—‘the only addressable entities are

IPv4 interfaces’—defied even contemporary thinking on how to do

naming, and continues to stymie evolution of IP in deployment

(specifically, to version 6 [6]).

Forget world domination. Implementers of new languages

sometimes speak of a ‘libraries’ problem. What they mean is that

their language cannot adequately interface with existing code,

and to compound the problem, it has also not yet achieved world

domination—meaning thousands of developers have not yet been

compelled to spend thousands of hours, on either reimplementing

that existing code, or writing and maintaining shims or wrappers.

This is not a problem that can or should be ‘solved’. Rather, the prob-

lem is in the assumed necessity of bootstrapping a new ecosystem—

the hope of world domination. Such hopes must be dashed for

the good of all. If we follow the other principles mentioned here,

perhaps such domination will not be necessary.

Bring the outside in. In older languages such as Pascal, C,

Fortran and so on, external entities can be declared, often with

a suitable type annotation and/or calling convention, and there-

after used much like a ‘native’ object. However, in more ‘modern’

garbage-collected languages, this kind of referencing the outside has
been deemed intractable. The art of language implementation has

turned inwards—on an entanglement of compilers and managed

heaps, a fully circumscribed universe. Only if we untangle these and

turn a language’s attention outside, liberating ‘memory’ or ‘objects’

or ‘environments’ or ‘bindings’ as a space within which diverse

entities may be referenced, will we cease seeking to dominate. This

embraces, but goes beyond, the question of what we can name or

reference; it is about the primacy of communication, over bounded

(fenced-in) computation.

Do not create worlds. At or near the origin of the universe,

creating new worlds is a necessary activity. But when existing

matter is plentiful, it is either a futile gesture or a bid for domination.

A key idea behind subject-oriented programming [8]. was that

creating a new taxonomy need not force creation of a new world.

There is an open question of how to achieve this kind of subjectivity

in the large, and among existing systems. Much as database-style

‘views’ seem a useful abstraction, more generally some degree of

mapping or ‘gatewaying’ of spaces also appears essential, since a

single unifying space will never emerge by consensus. (Ironically,

gatewaying is what the Internet Protocol sought to eliminate; but,

as we noted, its approach was only an option for first-movers, and

was itself based on domination within the network layer.)

All objects should appear in all spaces. To continue the idea
of gatewayed spaces: if new worlds cannot be created, how can

we create a new reality? The answer is to create a new space—but

one that maps the old world within it. This notion of ‘space’ is not

an established concept in programming systems design. Although

difficult to define, spaces are fairly easy to recognise. Any ‘names-

pace’, ‘environment’ or even denotative ‘language’ is likely to be

a space in a sufficiently close sense. In the land of Unix, VFS [7]

has been used to broaden the filesystem namespace to other ends,

but users are not afforded an easy (shell-level) means to define new

Convivial Design Heuristics for Software Systems <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

filesystem views; instead this remains an expert task (‘write a fuse
[22] file server’). The ‘files as directories’ concept of Wimmer [25]

is yet another articulation of this pattern’s value. Slightly more

laterally, the central design of the Dynamicland laboratory in Oak-

land, as articulated in a talk by Victor [23] aptly entitled ‘Seeing

Spaces’, is also an instance of this pattern: programmatic objects

are also physical objects that appear (or ‘are seen’) in the user’s

spatial realm, while conversely, ideally a large fraction of physical

objects in that realm are programmatically available.

Say no to classical logic. Ostermann, Giarrusso, Kästner, and

Rendel [17] wrote about the link between classical logic and con-

ventional notions of modularity. Classical logics have the property

that new facts cannot invalidate old inferences. When applied to

modularity, such approaches bring scalability, because locally es-

tablished facts (such as the correctness of a client with respect to a

module specification) are never jeopardised by changes elsewhere

(such as varying the implementation within the module). However,

facts do change. Programmers change interfaces constantly; on what

happens then, information hiding has nothing to say (except that

some past programmer made a mistaken prediction of the future).

Similarly, although classical inferences are robust to new axioms, if

a prior axiom must change, all bets are off. The promises of stability

and scalability therefore rest rather precariously on the presence of

inviolable ‘axioms’ or specifications that, in the case of software, are

defined by fallible humans. A far more realistic model is one where

new facts may indeed disrupt old inferences. Cook [5] observed that

abstract data types gain their amenability to reasoning from the

way in which a given type’s representation, although existentially

hidden, remains a singular fact (hence allowing class-style encap-

sulation). By contrast, objects are hard to reason about because

they radically delay the fixing of their implementation details, this

limiting them, at least in their purest form, to per-object encapsu-

lation. But this same intractability is also the source of flexibility

and diversity, for example in permitting many interoperable imple-

mentations of the same abstraction (a theme discussed by Aldrich

[1]). The concepts of ‘closed-world’ and ‘open-world’ reasoning are

relevant here, although slippery: classical modularity’s monotonic-

ity permits nominally ‘open-world’ reasoning, and indeed ‘for all

time’—but only thanks to fixed axioms which constrain the domain

of the program (to a single implementation of a given abstraction,

say). Non-classical logics, by admitting transient inferences such

as those produced by closed-world reasoning, actually keep that

domain open (to many new and coexisting implementations of a

given abstraction, say).

Implement porously, not portably. The best portable spec-
ifications provide unifying ‘views’ onto a multitude of external

definitions. But in contrast, a portable implementation is often prob-

lematic, created as a ‘needs must’ approach to mitigating external

diversity. In order to avoid linking with such diverse outside entities,

it tends to contain fresh re-implementation addressing only a fixed

‘lowest common denominator’ view of the outside. In the late 1990s

and early 2000s, Java’s ‘Swing versus AWT versus SWT’ design

discourse flowed back and forth over this issue [16]. More recently,

a bug report on the infamous systemd project shows a more trivial

but no less real instance, over whether system usernames were

allowed to contain digits.
2
The verdict: ‘in order to make systemd

unit files portable between systems, we’ll hence enforce something

that resembles more the universally accepted set, rather than accept

the most liberal set possible’. The chosen trade is to ‘level down’

outside the circle (reduce the space of valid usernames), in order to

level up within it (increase the core system’s portability, unmodi-

fied, to other platforms). This is locally expedient, but is globally

the non-convivial option: the fallout is on the hapless user whose

system already contains these now-illegal usernames. A portable

implementation tends to dominate its users. To level up rather than

down, the system needs to take a less portable or at least more

diverse view of the outside.

Abstraction definition as a costly operation. One can quib-

ble that the preceding example is some unclear mix of the cultural

and the technical. On one level it reveals simply that the codebase is

insufficiently polymorphic. In this example, a polymorphic solution

would somehow be parameterised over the domain of usernames

supported by the host system. Coding it in such a manner may

or may not be convenient, but would certainly be possible, at the

price of adding a further layer of indirection or abstraction (that

which is hidden behind the polymorphic interface). The choice not

to offer this, one the other hand, might be blamed on the culture

of infrastructure software, which likes to define itself as the au-

thority on the world around it, by specifying a ‘unifying-or-else’

abstraction that, at least in this example, is not actually very unify-

ing. The definition of new abstractions is often perceived as a ‘free’

operation, or at least an author’s prerogative, but it is actually a

high-cost operation precisely because it is a play at dominating oth-

ers. Although technical affordances, such as polymorphic coding or

other indirections, can reduce the need for such dominating moves,

they almost always do so with additional human or technical cost,

meaning that (as with the systemd example) programmers prefer

not to use such means unless or until they are deemed ‘needed’.

This judgement depends on the dominance of one’s position.

Reasoning scales best when it’s small. Limiting the use of

abstraction and preferring non-monotonic reasoning would seem to

put some dampeners on our ability to reason about large systems.

Yet I certainly would not argue in favour of unreliable systems.

How do we reclaim this goal? The ‘obvious’ answer is to keep our

systems small. Formal verification research has suffered from a phe-

nomenon that could be called the ‘Zeno-Wirth paradox’: by the time

verification can scale to a given extent, commodity systems have

become that much less lean [26] that it no longr suffices. Unlike

Zeno’s case, the former’s speed need not outstrip the latter’s. Mean-

while, as automated reasoning engines become more powerful, the

lengthening ‘chain of trust’ in their soundness becomes a significant

problem [14]. Faith in a long bootstrapping chain is an industrial

idea: industrial development has proceeded via the bootstrapping

of powerful machinery on which ever-larger populations depend

ever more critically. We need not to discard this, but to rein it in.

Unlike Wirth, we are not limited to pleading or to developing our

own ‘lean’ systems. Commodity systems of even ten years ago are

‘small’ compared with current ones, and the pile-on of complexity

in mainstream systems appears to be yielding diminishing returns.

Being optimistic for a second, this may be reason to believe that

2
https://github.com/systemd/systemd/issues/6237

https://github.com/systemd/systemd/issues/6237

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Stephen Kell

manageably-sized systems can be made lean enough to be reasoned

about, yet also compatible enough to compose usefully with the

mainstream.

Information guiding, not hiding. If defining new interfaces

is high-cost, then where does that leave perhaps the most time-

honoured design heuristic, information hiding in the sense of Parnas

[18]? Such a technique requires predicting what is likely to change,

so that we know what to hide. These predictions may be correct in

the short term, but they have a half-life and can always be wrong.

In a world where software is not developed in ‘closed project’ mode,

but may live on in surprising ways, hard-boundaried hiding is a

recipe for disposability. Clark and Basman [4] have already made

this case in more detail. I also wrote about the relative virtues of lan-

guage features for ‘guidance’ as distinct from enforced abstraction

in the context of type-checking [12].

2 SOCIAL HEURISTICS
Master Yoda The dark side of the Force are they.

Easily they flow, quick to join you in a fight.

If once you start down the dark path,

forever will it dominate your destiny.

Luke Is the Dark Side stronger?

Master Yoda No, no, no. Quicker, easier, more seductive.

from the film ‘The Empire Strikes Back’ [3]

Yoda was speaking of anger, fear and aggression. But perhaps,

given opportunity, he would also have mentioned certain anti-

convivial traits mentioned above, such as hierarchical containment,

world creation, and over-reliance on classical logic. These are also

‘quick to join’ in the fight of building software; yet they dominate

our destiny in adverse ways. The light side may ultimately be

stronger, but how can we prevent the fall of the galaxy?

‘Conviviality’ as both social and technical. The free soft-

ware movement, particularly its GNUist, copyleft-advocating sec-

tion, takes an approach to licensing that could almost be quoting

Illich. Illich wrote that ‘a convivial society would be the result of

social arrangements that guarantee for each member the most am-

ple and free access to the tools of the community and limit this

freedom only in favor of another member’s equal freedom’. Stall-

man has described the GNU General Publice Licence as ‘fighting

fire with fire’ [21], by using copyright law to protect freedoms

rather than curtail them. If free software has failed, perhaps that

is partly from the its relative lack of technical differentiation; Pike

lamented twenty years ago [20] how the designs of free software

components have rarely innovated much over their commercial

competitors and predecessors. A further weakness of the move-

ment is that many free software projects have proven amenable

to corporate capture, and not coincidentally, this has most often

occurred in those projects where a huge industrial-strength team

is required simply to tread water. Therefore, perhaps we should

start to recognise software projects not only on their quality or

completeness, but on their tractability to individual contributors

and customisers. This tractability is likely to be inversely correlated

with the rate of code churn and size of community—two metrics

commonly associated, sometimes perversely, with the health of

a project. Obviously, such an inverse association only appears at

some point after these metrics have crossed beyond some lower

threshold of basic viability. This ‘two thresholds’ model is familiar.

Illich wrote of medicine passing two thresholds: a first where medi-

cal technology delivered verifiable benefit to society, and a second

where further developments increasingly delivered overall harm,

but where this harm had come to be defined as benefit, owing to

the use of metrics that discipline of medicine had itself created.

Exploiting irrationality. Illichian thinking is challenged by

the tragedy of the commons. Once a powerful tool exists in a soci-

ety (such as cars), those within reach will use it (to drive), and this

easily pushes society down a slippery slope (to increasing networks

of roads, sprawl, and quasi-compulsory driving). Although perhaps

kicked off by some degree of political or institutional enablement

(such as building roads), beyond a certain point this tragedy arises

from selfish rational agents descending a gradient (that of ‘anti-

utility’, in economists’ terms). How canwe steer our culture towards

the ‘light side’, so that it may be healthy and well-functioning even

in the presence of such dynamics? Humans also have wonderful

capacity for irrationality, and convivial culture must surely harness

this. Humanity’s stable ‘common’ institutions and restraints can

be traced perhaps to evolved ethical or even religious tendencies,

which instil a sense of moral culpability overruling what are locally

‘selfish, rational’ choices in favour of collective interests. Kant ob-

served the moral value of ‘institutions’, as basic as truth-telling,

preserved by acts of restraint that may frequently be irrational

to a selfish individual, but which human society has shown some

capacity to preserve. The battle for convivial software in this sense

appears similar to other modern struggles, such as the battle to

avert climate disaster. Relying on local, individual rationality alone

is a losing game: humans lack the collective consciousness that

collective rationality would imply, and much human activity hap-

pens as the default result of ‘normal behaviour’. To shift this means

to shift what is normal. Local incentives will play their part, but

social doctrines, whether relatively transactional notions such as

intergenerational contract, or quasi-spiritual notions of our evolved

bond with the planet, also seem essential if there is to be hope of

steering humans away from collective destruction.

Exploit the desire to own and to simplify. The normalization

of overpowerful tools challenges humans’ capacity for collective re-

straint. Like pre-industrial humanity, computer science has evolved

in a mindset of scarcity—making it vulnerable to cravings for the ap-

parent fruits of industrial over-efficiency. In an era of plenty, these

cravings become unhealthy and even self-destructive. Yet humans

also routinely strive to eliminate the ‘negative’ from their habits,

environment or diet, and often are limited as much by limits of un-

derstanding than by limits of effort or discipline. Basman [2] wrote

about the ‘ownability of software’, or its absence; the psychological

appeal of ownership is something which, if effectively harnessed,

would provide impetus for the smaller, more individually tractable

and more convivial.

Exploit norms of social responsibility. Hinsen [9] has writ-

ten of the ‘moral commitments’ that impinge on even a community-

owned project such as Python, and how the traditional tenets of

open-source have failed to recognise them. These are responsibili-

ties that come from occupying a ‘monopoly’ or otherwise ‘domi-

nant’ position, and where ‘if you don’t like it, you’re free to fork

the code’ is an open abdication of those responsibilities. Yet com-

munities are great at spawning codes, tenets, and taboos, however

Convivial Design Heuristics for Software Systems <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

indiscriminately. If user-disrespecting or anti-convivial designs

were made taboo, healthier tendencies for the project might easily

result. Linus Torvalds’s strict code of ‘not breaking user-space’ is

usefully perpetuated by such a taboo, even if one rather unpleas-

antly established through the profane excoriation of those who

well-intentionedly submit non-compliant patches.

To conclude, it bears repeating that many of the supposedly

technical principles of programming are as much a cultural matter

as a technical one. I hope the foregoing thoughts can become part

of a broader exploration of how to make computer systems work

for humanity rather than vice-versa.

REFERENCES
[1] Jonathan Aldrich. 2013. The power of interoperability: why objects are in-

evitable. In Proceedings of the 2013 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming & Software (Onward!
2013). ACM, Indianapolis, Indiana, USA, 101–116. isbn: 978-1-4503-2472-4. doi:

10.1145/2509578.2514738. http://doi.acm.org/10.1145/2509578.2514738.

[2] Antranig Basman. 2016. Building software is not (yet) a craft. In Proceedings of
the 27th Annual Conference of the Psychology of Programming Interest Group
(PPIG).

[3] Leigh Brackett and Lawrence Kasdan. 1980. The Empire Strikes Back. Screen-

play to a film distributed by 20th Century Fox. (1980).

[4] Colin Clark and Antranig Basman. 2017. Tracing a paradigm for externalization:

avatars and the gpii nexus. In Companion to the First International Conference
on the Art, Science and Engineering of Programming (Programming 2̆01917).

Association for Computing Machinery, Brussels, Belgium. isbn: 9781450348362.

doi: 10.1145/3079368.3079410. https://doi.org/10.1145/3079368.3079410.

[5] William R. Cook. 2009. On understanding data abstraction, revisited. In Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’09). ACM, Orlando, Florida,

USA, 557–572. isbn: 978-1-60558-766-0. doi: 10.1145/1640089.1640133. http:

//doi.acm.org/10.1145/1640089.1640133.

[6] S. Deering and R. Hinden. 1995. Internet Protocol, Version 6 (IPv6) Specification.

IETF Request for Comments. (1995).

[7] Robert A. Gingell, Joseph P. Moran, and William A. Shannon. 1987. Virtual

memory architecture in SunOS. In Proceedings of the USENIX Summer Confer-
ence. USENIX Association, 81–94.

[8] W Harrison and H Ossher. 1993. Subject-oriented programming: a critique of

pure objects. ACM SIGPLAN Notices, 28, 411–428.
[9] Konrad Hinsen. 2020. The rise of community-owned monopolies. Blog article.

Retrieved on 2020/5/7. (2020). https://blog.khinsen.net/posts/2020/02/26/the-

rise-of-community-owned-monopolies/.

[10] Ivan Illich. 1973. Tools for Conviviality. Harper & Row.

[11] Terry Jones. 1986. Labyrinth. Screenplay to a film distributed by TriStar Pictures.

(1986).

[12] Stephen Kell. 2014. In search of types. In Proceedings of the 2014 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward! 2014). ACM, Portland, Oregon, USA, 227–241. isbn: 978-

1-4503-3210-1. doi: 10.1145/2661136.2661154. http://doi.acm.org/10.1145/

2661136.2661154.

[13] Stephen Kell. 2009. The mythical matched modules: overcoming the tyranny

of inflexible software construction. In Companion to the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA 2009). ACM, Orlando, Florida, USA, 881–888. doi:

10.1145/1639950.1640051. http://doi.acm.org/10.1145/1639950.1640051.

[14] Ramana Kumar. 2016. Self-compilation and self-verification. Tech. rep. UCAM-

CL-TR-879. University of Cambridge, Computer Laboratory, (Feb. 2016). https:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-879.pdf.

[15] AJRGMilner. 2009. The Space and Motion of Communicating Agents. Cambridge

University Press.

[16] Ella Morton. 2005. James Gosling Q&A. Builder AU. Web article. Archived at

https://web.archive.org/web/20051210233810/http://www.builderau.com.au/

program/work/0,39024650,39176462,00.htm.

[17] Klaus Ostermann, Paolo G. Giarrusso, Christian Kästner, and Tillmann Rendel.

2011. Revisiting information hiding: reflections on classical and nonclassical

modularity. In Proceedings of the 25th European Conference on Object-oriented
Programming (ECOOP’11). Springer-Verlag, Lancaster, UK, 155–178. isbn: 978-

3-642-22654-0. http://dl.acm.org/citation.cfm?id=2032497.2032509.

[18] David L. Parnas. 1972. On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15, 1053–1058.

[19] Tomas Petricek, Gustavo Guerra, and Don Syme. 2016. Types from data: mak-

ing structured data first-class citizens in f#. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’16). Association for Computing Machinery, Santa Barbara, CA, USA.

isbn: 9781450342612. doi: 10.1145/2908080.2908115. https://doi.org/10.1145/

2908080.2908115.

[20] Rob Pike. 2000. Systems software research is irrelevant. Presentation. Slide

contents available at http://doc.cat-v.org/bell_labs/utah2000/utah2000.html as

retrieved on 2020/5/7. (2000).

[21] Richard M. Stallman. 1998. The X Window System trap. Web note, available at

https://www.gnu.org/philosophy/x.html as retrieved on 2020/5/19. (1998).

[22] [n. d.] fuse—filesystem in userspace (fuse) device. Linux Programmer’s Manual

page. Available at http://man7.org/linux/man-pages/man4/fuse.4.html as

retrieved on 2020/5/7. ().

[23] Bret Victor. 2014. Seeing spaces. Presentation. Video and comic available at

http://worrydream.com/SeeingSpaces/ as retrieved on 2020/5/7. (2014).

[24] MarcelWeiher and Robert Hirschfeld. 2013. Polymorphic identifiers: uniform re-

source access in Objective-Smalltalk. In Proceedings of the 9th Symposium on Dy-
namic Languages (DLS ’13). Association for Computing Machinery, Indianapo-

lis, Indiana, USA, 61–72. isbn: 9781450324335. doi: 10.1145/2508168.2508169.

https://doi.org/10.1145/2508168.2508169.

[25] Raphaël Wimmer. 2018. Files as directories: some thoughts on accessing struc-

tured data within files. In Companion to the Second International Conference
on the Art, Science and Engineering of Programming (Programming ’18). ACM,

Nice, France.

[26] Niklaus Wirth. 1995. A plea for lean software. Computer, 28, 2, (Feb. 1995),
64–68. issn: 0018-9162. doi: 10.1109/2.348001. https://doi.org/10.1109/2.348001.

https://doi.org/10.1145/2509578.2514738
http://doi.acm.org/10.1145/2509578.2514738
https://doi.org/10.1145/3079368.3079410
https://doi.org/10.1145/3079368.3079410
https://doi.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
http://doi.acm.org/10.1145/1640089.1640133
https://blog.khinsen.net/posts/2020/02/26/the-rise-of-community-owned-monopolies/
https://blog.khinsen.net/posts/2020/02/26/the-rise-of-community-owned-monopolies/
https://doi.org/10.1145/2661136.2661154
http://doi.acm.org/10.1145/2661136.2661154
http://doi.acm.org/10.1145/2661136.2661154
https://doi.org/10.1145/1639950.1640051
http://doi.acm.org/10.1145/1639950.1640051
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-879.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-879.pdf
https://web.archive.org/web/20051210233810/http://www.builderau.com.au/program/work/0,39024650,39176462,00.htm
https://web.archive.org/web/20051210233810/http://www.builderau.com.au/program/work/0,39024650,39176462,00.htm
http://dl.acm.org/citation.cfm?id=2032497.2032509
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2908080.2908115
http://doc.cat-v.org/bell_labs/utah2000/utah2000.html
https://www.gnu.org/philosophy/x.html
http://man7.org/linux/man-pages/man4/fuse.4.html
http://worrydream.com/SeeingSpaces/
https://doi.org/10.1145/2508168.2508169
https://doi.org/10.1145/2508168.2508169
https://doi.org/10.1109/2.348001
https://doi.org/10.1109/2.348001

	Abstract
	1 Technical Heuristics
	2 Social Heuristics

