
Practical system-level adaptation of

heterogeneous components

a Thesis Proposal

Stephen Kell

January 2008

1 Introduction

As software systems become more complex, it becomes economically desirable to
re-use existing pieces (or components) of software. Similarly, with the expanding
space of applications, together with the ever-increasing ubiquity and mobility
of devices, there is an ever-greater need for software which can be composed
in novel and unanticipated ways, by users, at run time. For these practices to
become widespread, they must be feasible in cases where the components have
been developed independently of one another. In such cases, software interfaces
are almost certain to be mismatched in some way, meaning that they cannot be
correctly composed directly. To compose such mismatched components, there-
fore, some kind of adaptation is necessary.

Current development practices are far from optimal in their predispositions
towards re-use and composition. This proposal concerns research into new ways
by which existing software artifacts may be combined, and by which new soft-
ware artifacts may be written so as later to be more amenable to adaptation
and re-use. The key to these improvements is effecting a separation of concerns,
between code which implements functionality and code which implements in-
tegration (i.e. communication). In the following sections I will motivate and
outline the design of a system which enables and promotes this separation.

2 Motivation

When pieces of software are developed independently, yet have logically com-
patible functionalities, making them work together is often non-trivial. There
are effectively two variants of this problem: firstly, incorporating a selection of
re-used artifacts amid a novel environment, which can be tailored to support
those artifacts; secondly, combining multiple re-used artifacts together more-or-
less directly, such that additional code would ideally be unnecessary. I will call
these the “re-usability” and “re-use” problems respectively. Both are interest-
ing, but I will focus on the latter.

1

2.1 Open-source development

Perhaps the best evidence of the problem comes from world of open-source
software. Even when source-code is fully and freely available, we anecdotally
observe two phenomena. Firstly, most large programs’ request-trackers contain
requests for features which are already implemented in some other similar open-
source project. This indicates that the effort required to port existing code
for some logically compatible functionality is frequently non-trivial. Secondly,
functionality is frequently duplicated in programs whose only distinction is in
incidental implementation details irrelevant to their functionality: the choice
of operating system, windowing toolkit, desktop environment, programming
language, network protocol, storage abstraction, and so on. A major motivation
for such duplication is invariably that the added homogeneity aids integration
with other software.

As further illustration, here are some simple compositional use-cases which
are currently impracticable without considerable coding effort.

• sharing bookmarks or history logs across multiple web browsers, or with
other classes of application;

• adding a button to invoke a web-based natural language translator from
within an e-mail client;

• writing a script (e.g. a make rule) which invokes the Postscript generator
of an interactive graphical document editor;

• sharing a calendar between multiple applications concurrently, each noti-
fying others of updates;

• pausing a media player application whenever another process requests the
sound device.

Although we can imagine what code we might write to solve each problem
individually, my concern is to invent the necessary supporting tools and run-
time services to make the entire class of problem significantly more tractable.
This means it should be cheaper for developers and easier for users to solve
most common problems concerning communication between mismatched code.
I do not expect these tasks to become fully automated nor, necessarily, trivial.

Similarly, although we can imagine how to implement a solution to each
problem for a particular codebase (e.g. for Firefox, or for Emacs), my concern
is rather to enable the developer to implement the solution only once, or at
worst a small number of times, and have that implementation be cheaply com-
posable with the large number of external codebases for which that feature is
semantically meaningful.

(A final example might be the advertisement for Apple’s iPhone product,
showing in cinemas at the time of writing. A user begins with an instant mes-
saging application, suggesting a cinema trip to a friend. He or she then uses a
web browser to browse film descriptions, and finds candidate cinemas using a

2

mapping application backed by a web search engine. Finally, the user clicks a
cinema on the map, which passes its phone number to the dialler application.
Communicating these units of application-level meaning between continuously
running applications currently requires considerable integration effort specific
to the applications being combined.)

2.2 The need for adaptation

Adaptation is synonymous with resolving mismatch. Given our requirement
that composition may be specified dynamically by end users, I propose a form of
adaptation which is performed most often at load-time or run-time, is applicable
to a wide range of existing software, and is intended to support evolutionary
adoption. In the following sections we will overview the nature of adaptation,
sketch a design of the system, and outline a plan for its implementation and
evaluation.

3 What is adaptation?

I define adaptation as any process which modifies the form or behaviour of a
subsystem to enable or improve communication with the surrounding parts of
the system (which I call its environment). Adaptation may take many forms.
It may be done ahead-of-time, at load time or at run time, may be invasive
(i.e. modifying target code) or non-invasive (i.e. supplementing or interposing
additional code)1, automatic or manual, binary- or source-level, and may be done
for correctness (i.e. the very ability to compose functional units of software) or
for optimisation.

3.1 What needs adapting?

I assume familiarity with the problem space of adaptation. Unfamiliar readers
should refer to Appendix A.

3.2 Existing practices

The problem of adaptation, while often not explicitly acknowledged by name,
is certainly not a new one. Aside from writing “glue code” in conventional lan-
guages, many other established practices have particular relevance: scripting
languages, service-oriented computing, aspect-oriented programming, interface
definition languages, automatic marshalling in component middleware, config-
uration languages (e.g. in “inversion of control” frameworks), unified program-
ming interfaces (e.g. Unix’s “everything is a file”), unified binary interface (e.g.
Microsoft’s Common Language Runtime) and code metadata. None of these

1I use invasive and non-invasive synonymously with white-box and black-box respectively.

3

techniques is specifically designed to tackle the problem of mismatched pro-
gramming interfaces. For more detailed consideration of each technique, see
Appendix B.

4 The idea

I propose to investigate the thesis that “the complexity of composing heteroge-
neous mismatched components can be substantially reduced by adaptation ab-
stractions which enable the separation of functionality from integration”. To do
so, I will devise and implement a linkage model which enables and encourages
such separation, including a linking language containing adaptation features,
and implementations of both static and dynamic linking. This amounts to a
form of non-invasive manual binary adaptation.

The observations informing my approach are summarised in the following
sections.

4.1 Separating functionality from integration

Code frequently incorporates knowledge about how, with whom and using what
conventions it is to communicate. The avoidance of inlining such details is
precisely the established good coding practice of “low coupling”. However, even
with the greater programmer discipline and foresight, it is simply not possible to
communicate without assuming some details of communication. The essential
feature of my approach is therefore to provide not only a separate domain,
distinct from the programming language, in which to specify integration details,
but also convenient ways to work around such details from the outside when
mismatch does occur. The separate domain is a configuration language, and
these “convenient ways” are adaptation primitives.

4.2 Hierarchical configuration

Some configuration languages, such as Darwin [?], have an explicit hierarchical
structure, whereas others such as Reo [?] have a more general graph structure.
Although hierarchy may seem an unnecessary restriction, it mirrors both human
problem-solving and the recursive nature of the re-use paradigm—where new
artifacts are created, recursively, as combinations of pre-existing and re-used
ones. Providing a logical containment hierarchy might also tend to delineate
those pieces of a system which turn out later to be convenient units of re-use.

4.3 Pragmatism

It is essential that we support adaptation of existing code, since the benefits
of re-use are negated if the wealth of existing code cannot be exploited. Also,
as with most outputs of research, the potential for impact is much greater if
a technology can be adopted in an evolutionary fashion. Therefore, we must

4

support multiple code representations and languages, preferably in an extensible
manner, and prioritise the support of popular languages (including C and Java).

Another pragmatic distinction comes from scripting languages. I have men-
tioned that hierarchy is useful for expressing logical groupings and hence aiding
re-use. Notwithstanding this, some adaptations are too small to be practi-
cally re-usable. A benefit of scripting languages is their brevity, which makes
them suitable for invasive adaptation, i.e. for altering code which is frequently
changed [?]—perhaps during rapid prototyping, or for end-user customisation.
In cases where adaptation logic is not complex enough to justify re-use, we must
instead focus on making them brief to express in-line (as “ad-hoc” adaptation),
and hence convenient to change. To do so, my configuration language must aim
for brevity and expressivity comparable to that of scripting languages.

Finally, we observe that different object code representations contain dif-
fering levels of metadata. If we are to support many of these representations,
including many popular ones, we must support those which provide little type
information or other semantic annotations. It follows that we will not be able
to guarantee safety of the compositions generated, unless their constituents
happen to provide the necessary annotations—which we will not mandate. In
other words, my system will value composability over safety or other property-
checking. (The addition of pluggable property checking is discussed in Section
8.)

4.4 Extensible adaptation primitives

Rather than providing a fixed set of adaptation primitives, as with systems
such as Nimble [?], I propose that this set should be extensible, i.e. that new
adaptation primitives must be definable outside of the configuration language.

One important class of externally-definable primitives is that of generated
adaptation. Much adaptation can be captured re-usably as adaptor generation
algorithms, where a one-size-fits-all adaptor implementation would be inefficient.
The inputs to such algorithms are the target pieces of code or their interface
descriptions, perhaps supplemented with additional semantic specification. The
output is the required adaptor code. Examples include adaptor synthesis al-
gorithms [? ? ?], wrapper generators [?], IDL compilers, and convenient
constructors for translation tables and parsers. It is crucial to have convenient
support for invoking these generative adapters from within the linking language;
they may be seen as adaptation functions, ranging over units of linkage.

5 Implementation

I intend to implement a configuration language, first as a static linking tool
and second as an extension to the dynamic loader of a conventional modern
operating system such as GNU/Linux. Specifically, I will devise and implement
the following.

5

Configuration language A configuration language should be defined, which
is capable of expressing adaptation over binary component representa-
tions. To support heterogeneity, the set of representations should be ex-
tensible. Likewise, the set of adaptation primitives must be extensible,
meaning that new primitives may be added outside the language (anal-
ogously to how installing new Unix commands extends the language of
the shell). A unifying model of components, linkage and adaptation must
necessarily underpin the language’s design.

Static implementation The language should be implemented, for ahead-of-
time use, as a linker supporting adaptation. The linker should accept
the configuration language, and generate fully-linked executables out of
pre-existing object files and the like.

Dynamic implementation The language should be implemented, for run-
time use, as a dynamic loader (in the sense of the C library’s dlopen() et
al) supporting adaptation. The loader must accept a variant of the con-
figuration language, describing the components and adaptations to load.

Refactoring engine To complement the linking language, and demonstrate
an alternative application of the separation between integration and func-
tionality, a refactoring engine should be implemented. This will semi-
automatically (i.e. with user assistance) refactor single source files in some
popular existing language (either C or Java) into two refactored files: “core
functionality”, which will remain in the target language, and “integration
logic”, which will be captured in the configuration language.

5.1 Illustration

To illustrate the linking language, consider a toy system composed of two com-
ponents, one or which is written to generate data as a series of tuples, and the
other which expects to read data as a stream. Figure 1 shows a configuration
which might implement such a system.

The top-level configuration combines two components, one which outputs
tuples of the form (sequence no, bit string), and the other wishing to read a
bit-stream. Such an arrangement might be used to handle out-of-order packet
delivery in a network. The components are connected by a third component,
which is a configuration of some ad-hoc adaptation and two smaller compo-
nents: a tuple store and a re-usable adaptation component implementing a
take contiguous(n) procedure for the tuple space. The take contiguous pro-
cedure retrieves a list of two-tuples with sequential sequence numbers, whose
bit-strings do not exceed n in combined length. The ad-hoc adaptation projects
out the bit-strings and flattens the resulting structure into a single string, which
is handed to the stream reader as the output of a read call. Thick black lines
indicate connector bindings.

Some plausible code for the example system is shown in Figure 2. The syntax
is similar to that of Knit [?], a tool which allows precise specification of linkage

6

Process

stream consumer

tuple

producer

tuple space

tuple-stream adapter

take_contiguous(n)

map project #2;

flatten

tuple space

(20, b100101…)

(21, b011000…)

(22, b111010…)

(24, b000110…)

…

out

read

Figure 1: An example configuration

graphs under the traditional C linkage model. Note the following features in
the code, referring back to the system diagram in Figure 1:

• the subdivision of each imported and exported interface into “roles”, such
as prod and cons;

• the differences in names of compatible roles (e.g. cons versus dest and
the explicit mapping between the two using the <import> <- <export>

syntax;

• the inline (or “ad-hoc”) use of adaptation primitives map and project,
respectively for function application over a list and for tuple element se-
lection;

• the use of various constructors for different binary code representations,
here showing obj elf("C", ...) for an ELF object file with C linkage
and exec elf(...) for an ELF executable.

5.2 Novelty

I believe that the following contributions of the proposed work will be substan-
tially novel:

• support for adaptation in a linking language;

• the pragmatic distinction between ad-hoc and re-usable adaptation;

• support for an extensible set of adaptation primitives in a configuration
language;

• extension of an existing operating system’s dynamic loading interface for
implementing adaptation;

7

/∗ This syntax is simplified from Knit, with added adaptation features. Reserved
∗ words are in bold, and denote either syntactic block kinds (”unit” or ”compound”),
∗ compositional operators (”<−” and ”as”) or built−in types. Identifiers refer either
∗ to logical modules, interfaces (i.e. ”roles”), linkage standards, symbols or files. ∗/

unit myTupSpc {
exports [prod { (int, bit list) in ordered() },

cons { void out(int, bit list) }];
files { obj elf (”C”, tuplespace.o) }

}

unit myTupleProducer {
imports [dest { void output(bit list , int) }];
exports [/∗ ... ∗/];
files { obj elf (”C”, tupleprod.o) }

}

unit myStreamConsumer {
imports [streamProvider { int read(byte addr, int) }];
exports [/∗ ... ∗/];
files { obj elf (”C”, streamcons.o) }

}

unit takeContiguous {
imports [source { (int, bit list) in monotonic() }];
exports [listProvider { (int , bit list) list get() }];
files { obj elf (”C”, take contig.o) }

}

/∗ The stanzas above are simply declarations for existing object files , and could
∗ have been autogenerated from source. The next two blocks link them, using the
∗ wiring operator ‘<−’ and adaptation primitives ‘map’, ‘project’ and ‘flatten’. ∗/

compound tupleStreamAdapter {
exports [tupin { void out(int, bit list) },

strout { int read(byte addr, int) }];

link obj elf (”C”, ”tupstream.o”) [
myTupSpc, takeContiguous
]

{
takeContiguous.source <− myTupSpc.prod { in monotonic <− in ordered }
tupin as myTupSpc.cons;
strout as takeContiguous.listProvider {

read as flatten (map (project #2) get)
}

}
}

compound Process {
exports [/∗ ... ∗/];
link exec elf (”process”) [

myTupleProducer, tupleStreamAdapter, myStreamConsumer
]

{
myTupleProducer.dest <− tupleStreamAdapter.tupin {

output(a, b) <− out(b, a)
}
myStreamConsumer.streamProvider <− tupleStreamAdapter.strout

}
}

Figure 2: Example code for the configuration shown in Figure 1.

8

• refactoring to separate integration from functionality.

In addition, certain differences of approach or emphasis differentiate my
proposal from existing work. These include the very strong practical emphasis,
an insistence that the system will be useful for a wide variety of highly het-
erogeneous components, and a preference for composability ahead of safety or
verifiability.

5.3 Practical approach

5.3.1 Static implementation and basic case-studies

The static linker implementation will be based on Knit [?], in the first instance,
and the process of extending Knit will be used to refine out a suitable linkage
model, notation, and set of basic adaptation primitives. This may or may not
lead to a complete re-design which dispenses with all Knit implementation.

Case-study evaluation of this implementation will use well-known open-
source codebases including Mozilla Firefox. Once the codebase’s linkage relation
has been captured in Knit code (generated mechanically), we may extract sub-
graphs corresponding to individual features and, using the adaptation features,
integrate them with a separate codebase. For example, we might try extracting
the browser history feature from Firefox and integrating it into a file manager.
The primary success criterion is that this should be possible entirely from the
linkage domain, without changing any existing source code of the file manager,
and without introducing any adaptation primitives which would not be widely
re-usable. From the experience gained during this work, I will develop a library
of common adaptations, utilising the support for an extensible set of convenient
adaptation primitives described in Section 4.4.

5.3.2 Dynamic implementation

Dynamic loading is a logical extension to the static linking case, and is essential
for dynamic user-directed composition. Dynamic loading is a highly general
mechanism, which can add arbitrary new code into the running process. This
loaded code might function entirely within the current process, or it might
be stub code for communication with external processes (or the kernel). As
such, dynamic loading may serve as the unique mechanism by which any new
communication channel is defined or brought into scope. For example, one could
imagine rewriting the traditional C code

FILE *fp = fopen("/path/to/myfile", "r");

as a call to dynamically load a “file handle object”, e.g.

FILE *fp = (FILE*) dlopen("/path/to/myfile!r", 0);

where we have unified file control block pointers with library handles, and en-
coded the read-only interface signifier "r" into the object name.

9

Note that this transfers perfectly well to languages providing safety guaran-
tees. Run-time safety can be achieved by including an extra “type argument”,
e.g. in Java

T t = System.dlopen("/path/to/myfile!r", 0, T.class);

where System.dlopen() is polymorphic in T and throws an exception if the ob-
ject denoted by /path/to/myfile!r doesn’t satisfy type T. The type argument
is an assertion about the type of the object which the dlopen() call is expected
to return. Static type-safety requires additionally that the type encoded by the
assertion can be inferred at compile-time, such as in the above Java example
where T.class, having type Class<T>, allows the compiler to infer that the
result will have type T.

I will implement the dynamic case by embedding a variant of the adaptation
language into Linux’s dynamic loader, and providing bindings for some common
languages (including C and Java). Using this, and with help from the library,
users will be able to dynamically specify extensions to their running applica-
tions by combining generic third-party code with adaptation logic. For example,
a user might construct a browser plugin for natural language translation, dy-
namically, by specifying some adaptation which combines a local HTML parser
library with a plain-text natural language translation web service. This, and
other case-studies similar to the static case, will be sufficient for basic proof-of-
concept.

To demonstrate the unifying power of dynamic loading, I will also reimple-
ment the Unix filesystem and sockets interfaces as thin layers over the dynamic
loader. As a result, programs written against only one or other of these inter-
faces (e.g. a webmail-to-POP gateway, binding to a socket for input) will be
made to run just as easily against other targets (e.g. reading input from a log
file containing a previous POP session) simply by adapting the socket address
(e.g. to use a special address family, whose address structure can embed some
adaptation expression denoting the session log file).

(It is possible to unify more than just the socket and filesystem interfaces.
Note that dlopen() is essentially performing instantiation of objects—such ob-
jects are traditionally libraries, but might be finer-grained. Language-level ob-
ject instantiation mechanisms could therefore potentially also be unified with
dynamic loading. In general, there are many arguments in favour of bringing
the worlds of operating system and language implementation closer together, for
example the bad interactions between garbage collection and demand paging.
Meanwhile, the arguments for the “revival of dynamic languages” [?] read like
a manifesto for this closer integration, since most of the cited features—dynamic
structural modification, persistence, namespaces, pluggable type-checking and
reflection—are already, in some form or another, features of operating systems.
I hope that my findings will add further support to these arguments, although it
is unlikely that any substantial exploration will be feasible in the time available.)

10

5.3.3 Refactoring

The final piece of implementation is a refactoring tool, for human-assisted sepa-
ration of integration from functionality within existing C code. Semi-automatic
refactoring is rapidly maturing, and found in many popular development envi-
ronments (notably Eclipse). Although most refactoring techniques are proto-
typed for Java or similar languages, refactoring C is also feasible with suitable
treatment of the preprocessor. [?] The tool would accept single C source files,
and (with user assistance) output two files: one, a simpler C source file imple-
menting the “core functionality” in terms of idealised imports and exports; the
other, expressed in the configuration language, detailing the adaptations neces-
sary to recover compatibility of this simpler code with the original non-idealised
imported and exported interfaces.

To intuit a possible algorithm for this refactoring, note that in any module
of source code, there is a finite set of statements or expressions which perform
communication with the outside (i.e. across some external interface). For each
of these points, the algorithm may use the data dependency graph to search for
logic which is candidate for shifting into the adaptation domain, to achieve the
goal of better modularisation and/or lower overall complexity of the combined
source and adaptation. Graph complexity measures, or even abstract syntax
tree size, might be useful as heuristics for identifying such logic, but the semi-
automatic approach allows fall-back onto human judgement.

6 Evaluation

I propose to evaluate the implementation work by a combination of two methods:
case study, and software measurement.

6.1 Case study

Case study, as already described, will target some existing well-known open-
source codebases, including Mozilla Firefox, and investigate the use of adap-
tation to produce novel combinations of code. I will target a selection of the
dimensions described in Appendix A. Some example cases, and their dimen-
sions, might be:

• adapting a web browser plug-in between different binary plug-in interfaces
(e.g. Firefox to Konqueror);

• adapting a graphical application between different binary toolkit interfaces
(e.g. GTK+ to Qt);

• porting a commonly useful feature from a web browser to a file manager
(e.g. history or bookmarking);

• adapting a web browser extension to run as a stand-alone application in
a separate process;

11

• adapting a graphical debugger front-end to use a new back-end with a
differing command set or protocol;

• integrating a web-based on-line banking system with a home accounting
program;

• any or all of the examples mentioned in the Motivation.

This “first pass” method of evaluation will proceed by demonstrating in-
tuitively the simplicity of performing these tasks using the new configuration
language and adaptation library, by comparison to conventional glue code.

6.2 Software measurement

A more rigorous assurance of success may be found by software measurement.
For this purpose I will divide the proposed work into two: support for conve-
nience of adaptation (i.e. the configuration language and its implementations),
and support for refactoring (to effect the separation of functionality from in-
tegration in existing source code). Different measurements will be required for
each.

In the case of the configuration language, we would like to show that using
the language to perform adaptation and integration is cheaper than traditional
methods (i.e. writing glue code in other languages). Direct user observation
is possible, e.g. by giving coding assignments to a sample of undergraduates.
However, it is difficult to factor out the familiarisation overheads associated
with a new language. Instead, I propose to approximate “cheaper” with “less
complex”, and use code complexity measures. Many traditional complexity
measures are unsuitable because they fail to account for relevant sources of
complexity. For example, cyclomatic complexity considers only the control flow
graph, so would not account for complexity inherent in a regular expression
string-rewriting rule (which is a particularly complex string constant). Harri-
son’s entropy-based measure [?] is an ordinal measure of average information
per token, whose evaluation empirically demonstrates that this correlates nega-
tively with bug density (a reasonable proxy for effective complexity). This work
can likely be extended to allow comparison between my configuration language
and traditional glue code, hopefully showing that the average information per
symbol is greater in the new language and, correspondingly, that less total code
entropy is required.

In the case of the refactoring engine, we wish to show that the refactored
source is more composable, i.e. less coupled, than the original source. Existing
measures of coupling (as first proposed by Stevens et al [?]) use ad-hoc
weightings to assess the severity of coupling between each pair of modules. I
propose a more principled measure, again based on information entropy—this
is outlined in Appendix C. One complication is the fact that after refactoring
there are at least three (rather than two) modules: the two being composed,
and the adaptation or glue logic. As usual, the coupling of the ensemble can
be measured as a weighted sum of the pairwise couplings of each component

12

with the adaptation logic, assuming that all communication proceeds through
the adapter. (A trivial “identity function” adapter does not reduce coupling; it
arguably increases it, since changes to one component might need to be reflected
not only in the target component but also again in the adapter. The weighting
must be chosen to reflect this.)

Evaluation will proceed by measuring the coupling of a refactored source
tree, which makes use of adaptation features, and comparing it with the un-
refactored version. Depending on the success of the refactoring engine, these
refactored source trees might be produced semi-automatically using the tool,
or else manually. Since the refactored interfaces should, intuitively, be simpler,
and the adaptation logic also simpler than a traditionally written glue module,
the measure should show a clear reduction in local coupling on both edges.

6.3 Non-criteria

One non-criterion regarding evaluation is performance. Clearly, the techniques
described will necessitate greater indirection, greater numbers of procedures
and module boundaries, run-time code generation, and other techniques which
will degrade performance relative to a statically composed, statically optimised
version of the same code. I am confident that the performance penalties can be
substantially negated by relevant optimisation techniques. One existing example
is the flatten technique employed by Knit [?]. However, I will not research such
optimisations during this work.

7 Related work

Most relevant work is cited inline, including some in the Appendices. Here I
highlight the recent work of most direct relevance.

Flexible Packaging DeLine’s 1999 thesis [?] targets almost the same prob-
lem as this proposal: how can we compose functionality in the presence
of mismatched integration details? However, Flexible Packaging takes a
“clean slate” approach, rethinking the entire software development pro-
cess. The result is a system which places strong constraints on the lan-
guages and styles in which code can be written, and cannot be applied to
existing code. The approach proposed here, although less clean and offer-
ing less dramatic reductions in integration effort, embraces the wealth of
existing code and permits greater heterogeneity.

Rich interfaces and adaptor synthesis There is considerable work on en-
riching component interface specifications with additional metadata [? ?

], primarily for compatibility checking. Some of these interface specifica-
tions can be used as input to adaptor synthesis algorithms [? ? ? ?].
In most cases the capability of these algorithms is limited to finite-state
protocol adaptations and argument permutations. This work is essentially

13

complementary to my proposal: it suggests some unifying notions of inter-
face, and provides algorithms which might be incorporated into the library
of adaptations.

Coordination Coordination languages such as Linda [?] and Reo [?] spec-
ify the interactions between concurrent computational processes, whether
these be data flow (sends and receives) or control flow (waiting and resum-
ing of processes). The non-invasive “exogenous” coordination [?] pro-
vides a separate configuration domain for expressing these interactions.
This is consequently a domain convenient for performing adaptation of
timing and protocol details. However, these coordination languages can’t
express changes to the individual messages sent and received, meaning
that they can’t express a large class of useful adaptations.

Linkage-level flexibility Some work has explored link- and load-time flexi-
bility of binary code. Knit [?] introduces flexibility into the linkage
graph for ahead-of-time linking. Load and Let Link [?] provides sim-
ilar flexibility at run time. Binary Component Adaptation [?] relaxes
composition constraints for Java bytecode by rewriting typing metadata.
Like this proposal, all these works make the case for flexibility at the level
of linking and loading. However, none of these addresses the problem of
mismatched interfaces.

8 Future work and alternatives

For some ideas on future work and alternative avenues, see Appendix D.

9 Provisional structure and timetable

Below is a draft thesis outline, interleaved over a provisional timetable which
begins in January 2008 (month 0) and ends with December 2009 (month 23).
Please refer back to Sections 5 and 6 for details of all the implementation and
evaluation work mentioned.

1. Introduction

2. Technical background

3. Combining linkage with adaptation I will describe the design and
implementation of a linking language supporting an extensible set of
adaptation primitives, as described in Section 5. I will also detail the
experimental work applying the language implementation to a selec-
tion of case studies (including the “file manager history”, “calendar
sharing” and “debugger back-end” examples). From this experience,
I will summarise and justify the language’s underlying linkage model
and a basic library of useful adaptation primitives.

14

• Months 0–3: begin work on Knit; extend to support multiple binary
formats; add support for externally-defined adaptation primitives;
implement argument remapping primitive as test

• 3–5: Knit-ify the necessary parts of two open-source codebases (pro-
visionally Firefox and Rox Filer); identify and implement useful prim-
itives for mix-and-match of features (e.g. history) between these

• 5–7: develop some useful case-study compositions, some simpler ones
to include reference “old style” glue code implementations for later
evaluation

4. Dynamic composition with adaptation I will describe the design and
implementation of a variant of the linking language and its embed-
ding into Linux’s dynamic loader, as described in Section 5. I will
describe and explain the deviations from the original language, and
detail further case studies demonstrating dynamic composition use-
cases (including the “browser natural-language translation plug-in”
and “POP from file” examples, along with other mix-and-match of
code targetting sockets, filesystem and database interfaces).

• 7–9: embed into dynamic loading interface

• 9–10: develop case studies for dynamic composition

5. Refactoring I will detail the implementation of a semi-automatic refac-
toring engine to separate functionality from integration in existing C
code, as described in Section 5.3.3. I will report experiences of ap-
plying the engine to several of the case-study compositions already
developed, showing that the refactored sources permit simpler adap-
tation logic.

• 14–17: devise and implement refactoring

• 17–18: apply refactoring to existing case-studies, using coupling mea-
sure to evaluate

6. Entropy-based software measures I will describe and justify the ap-
plication of Harrison’s entropy-based complexity measure to show
that the total information and average information per symbol are
both improved when using our adaptation techniques (as compared
to traditional glue code). I will describe an entropy-based coupling
measure which accounts for a broad range of sources of coupling. Al-
though all this work logically follows the refactoring case studies, it is
timetabled earlier, since limitations of the measure might constrain
the choice of refactoring case studies.

• 10–11: adapt entropy-based complexity measure to adaptation code,
and evaluate old-versus-new (i.e. glue versus adaptation) using case
studies already implemented

15

• 11–14: devise entropy-based coupling measure and test against ex-
isting measures

7. Experimental evaluation and analysis I will summarise the experi-
ence gained from the case studies made of the configuration language,
showing both intuitive and measurable improvements, the latter us-
ing the complexity measure. I will also summarise experience from
the refactoring case studies, again showing both intuitive and mea-
surable improvements, the latter using the coupling measure.

8. Conclusions and future work

• 18–20: leftover or additional experiments and practical work

• 20–23: final-phase dissertation writing

• 23: submission

References

[] R Allen and D Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6:213–249, 1997.

[] C Andreae, J Noble, S Markstrum, and T Millstein. A framework for
implementing pluggable type systems. ACM SIGPLAN Notices, 41:57–74,
2006.

[] F Arbab. What do you mean, coordination. Bulletin of the Dutch Associ-
ation for Theoretical Computer Science, NVTI, 1122, 1998.

[] F Arbab and F Mavaddat. Coordination through channel composition. Co-
ordination Languages and Models: Proc. Coordination, 2315:21–38, 2002.

[] DM Beazley. Swig: An easy to use tool for integrating scripting languages
with c and c++. In Proceedings of the 4th USENIX Tcl/Tk Workshop,
pages 129–139, 1996.

[] AD Birrell and BJ Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems (TOCS), 2:39–59, 1984.

[] A Bracciali, A Brogi, and C Canal. A formal approach to component
adaptation. The Journal of Systems & Software, 74:45–54, 2005.

[] G Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of
Dynamic Languages, 2004.

[] N Carriero and D Gelernter. Linda in context. Communications of the
ACM, 32:444–458, 1989.

[] A Chakrabarti, L de Alfaro, TA Henzinger, M Jurdzinski, and FYC Mang.
Interface compatibility checking for software modules. In Proc. 14th CAV,
LNCS, volume 2404, pages 428–441.

[] EM Dashofy, A van der Hoek, and RN Taylor. A highly-extensible, xml-
based architecture description language. Software Architecture, 2001. Pro-
ceedings. Working IEEE/IFIP Conference on, pages 103–112, 2001.

16

[] L de Alfaro and TA Henzinger. Interface automata. Proceedings of the 8th
European software engineering conference held jointly with 9th ACM SIG-
SOFT international symposium on Foundations of software engineering,
pages 109–120, 2001.

[] R DeLine. Resolving Packaging Mismatch. Phd thesis, Carnegie Mellon
University, 1999.

[] E Eide, A Reid, J Regehr, and J Lepreau. Static and dynamic structure
in design patterns. Proceedings of the 24th international conference on
Software engineering, pages 208–218, 2002.

[] T Ewald. Overview of com+. In G Heineman and WT Councill, editors,
Component-based software engineering: putting the pieces together, pages
573–588. Addison Wesley, 2001.

[] D Garlan, R Allen, and J Ockerbloom. Architectural mismatch or why
it’s hard to build systems out of existing parts. Proceedings of the 17th
international conference on Software engineering, pages 179–185, 1995.

[] C Haack, B Howard, A Stoughton, and JB Wells. Fully automatic adap-
tation of software components based on semantic specifications. Algebraic
Methodology & Softw. Tech., 9th Int?l Conf., AMAST, 2002.

[] Warren Harrison. An entropy-based measure of software complexity. IEEE
Trans. Softw. Eng, 18:1025–1029, 1992.

[] TA Henzinger. Rich interfaces for software modules. Proc. of the 18th
European Conf. on Object-Oriented Programming (ECOOP 2004). Berlin:
Springer-Verlag, pages 516–517, 2004.

[] SP Jones, E Meijer, and D Leijen. Scripting com components in haskell.
In Proceedings of ICSR5, 1998.

[] R Keller and U Holzle. Binary component adaptation. ECOOP, 98:307–
329, 1998.

[] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented pro-
gramming. In Mehmet Aksit and Satoshi Matsuoka, editors, 11th European
Conference in Object Oriented Programming, volume 1241, pages 220–242,
Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

[] J Magee, N Dulay, S Eisenbach, and J Kramer. Specifying distributed soft-
ware architectures. Proceedings of the 5th European Software Engineering
Conference, pages 137–153, 1995.

[] B McCloskey and E Brewer. Astec: a new approach to refactoring c.
In Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations
of software engineering, pages 21–30, 2005.

[] J Misra and WR Cook. Computation orchestration: A basis for wide-area
computing. Journal of Software and Systems Modeling, pages 83–110, 2006.

[] J Mukherjee and S Varadarajan. Develop once deploy anywhere: achieving
adaptivity with a runtime linker/loader framework. In Proceedings of the
4th workshop on Reflective and adaptive middleware systems, pages 1–6,
2005.

[] O Nierstrasz and F Achermann. Separation of concerns through unifica-

17

tion of concepts. ECOOP 2000 Workshop on Aspects & Dimensions of
Concerns, 2000.

[] O Nierstrasz, A Bergel, M Denker, S Ducasse, M Galli, and R Wuyts. On
the revival of dynamic languages. Software Composition: 4th International
Workshop, SC 2005, Edinburgh, UK, April 9, 2005: Revised Selected Pa-
pers, 2005.

[] R Passerone, L de Alfaro, TA Henzinger, and AL Sangiovanni-Vincentelli.
Convertibility verification and converter synthesis: Two faces of the same
coin. In Proceedings of the International Conference on Computer-Aided
Design, 2002.

[] JM Purtilo and JM Atlee. Module reuse by interface adaptation. Software
- Practice and Experience, 21:539–556, 1991.

[] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide.
Knit: Component composition for systems software. Proc. of the 4th Op-
erating Systems Design and Implementation (OSDI), pages 347–360, 2000.

[] J Ren, R Taylor, P Dourish, and D Redmiles. Towards an architectural
treatment of software security: a connector-centric approach. ACM SIG-
SOFT Software Engineering Notes, 30:1–7, 2005.

[] M Shaw. Architectural issues in software reuse: It?s not just the function-
ality, it?s the packaging. Proc IEEE Symosium on Software Reusability,
1995.

[] M Shaw, R DeLine, DV Klein, TL Ross, DM Young, and G Zelesnik.
Abstractions for software architecture and tools to support them. IEEE
Transactions on Software Engineering, 21:314–335, 1995.

[] WP Stevens, GJ Myers, and LL Constantine. Structured design. IBM
Journal of Research and Development, 13:115, 1974.

[] DM Yellin and RE Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19:292–333,
1997.

Appendices

A Dimensions of adaptation

When discussing adaptation, it is helpful to describe the concrete ways in
which two components may be mismatched. Here I will enumerate some non-
orthogonal dimensions of adaptation.

Data encoding Data of the same meaning may be concretely represented in
many different forms. For example, there frequently exist many different
file formats, character sets or network protocol messages for what are,
at some higher level, the same meanings. The simplest cases of such
mismatch may be handled by conversion routines, translation tables or

18

other mapping constructs. I discuss more specific cases of this mismatch
in the following paragraphs.

Operations Units of code may implement logically compatible operations but
differ in the concrete expression of their interfaces. For example, two tra-
ditional procedural or object-oriented interfaces might differ in the names
of operations, order and types of arguments, and type of return value.
This is a special case of the data encoding mismatch, since arguments and
return values may be thought of more generally as structured messages.
These mismatches might occur at a higher semantic level than that of
conventional type systems – for example, a procedure

substring :: string → int → int → string

might interpret the two integers either as (start, end) or as (offset,

length).

Protocol A complement of the syntactic operational mismatch is the more se-
mantic issue of protocol mismatch. In any stateful communication, the
meaning of any message depends on what messages have been sent previ-
ously, and in what order. These messages might be those of network pro-
tocols (an obvious candidate for mismatch, especially versioning issues),
procedural interfaces (where each call is a pair of messages) or even vari-
able accesses and initialisations (for example in C, where the semantics of
global and local variables are subtly different with respect to initialisation
protocol). Finite-state automata may be used to capture many protocols
[? ?], although some may require more complex automata (e.g. a stack
which may not be popped more times than it has been pushed, requiring
a deterministic pushdown automaton [?]).

Language A common difficulty is combining code written in different lan-
guages. First, there must be some model of the relevant dynamic con-
structs of one language expressed using those of the other. Ensuing sub-
tleties include expressivity (that all meaningful operations provided by the
foreign-language component can invoked on its native model), safety (that
no undefined operations can be invoked through the model), and efficient
implementability. Procedure call and other message-based communication
is easily handled by value translation (i.e. marshalling), and tools exist to
generate translating wrappers (e.g. Swig [?]). Some language features
require new implementation techniques (e.g. spaghetti stacks) which are
less straightforward to integrate with other runtimes. Sharing state is also
complex, since state management semantics vary greatly (e.g. automatic
versus manual) and have far-reaching implementation consequences. A
final difficulty is from “closed world” assumptions which break when re-
sources are shared: consider a garbage collector which stops all other
threads. Finding all other threads is easy under the assumption that
these are only those created by a unique runtime library. The ability
to interpose within the language implementation, to adapt this logic, is

19

therefore essential for supporting integration. Nevertheless, interopera-
tion between specific implementations is essentially similar to any other
problem of mismatched library composition.

Targeted API When programs are written against pre-existing concrete in-
terfaces, such as system call interfaces or library interfaces, they are in-
evitably coupled to these interfaces. It often proves desirable, but expen-
sive, to port software to target a different piece of supporting software
– perhaps a different operating system, a different windowing toolkit, a
different mathematical library, and so on. A convenient way of generating
a suitable wrapper, with little or no change required to the existing code,
would be a very useful form of adaptation.

Binary interface Essentially a special case of data encoding mismatch, ABI
mismatches are caused by different conventions for data representation
and communication. In compilers they are worked around by building in
knowledge of several different ABIs, and by annotating source code (for
example using extern "<lang>" directives in C). This works satisfactorily
only because of the small number of conventions commonly implemented
for any given instruction set architecture. More generally there needs
to be a systematic way of specifying ABIs and performing the necessary
interposition or rewriting.

Programming style For any given functionality, there may be many program-
ming styles, above the level of language, which may be used to implement
it. Classic examples are the event- versus thread-based styles, the fil-
ter versus the in-place update, data-flow versus control-flow, and so on.
A particularly powerful form of adaptation would be capable of mediat-
ing between logically compatible code written in different styles, enabling
composition of highly heterogeneous codebases.

“Packaging” Although there exist innumerably many possible conventions for
binary interface, programming style and the like, in practice we observe
only a very small subset of these possibilities. For example, when writ-
ing some new code, we would choose to “package” it in one of several
different ways: as a command-line tool, a graphical tool, a C library, a
Python library, a web form, a spreadsheet macro, or various others [?].
Crucially, we would clearly pick some pre-existing set of communication
conventions, rather than inventing our own. A particularly pragmatic ap-
proach, therefore, is to develop means of adapting between pre-existing
(and future) packagings, for some one-time effort in each case, without
going so far as to achieve the level of generality required to support any
conceivable packaging with equal effort.

Software architecture Code frequently makes assumptions about communi-
cation topologies, control structures, causality of information flow, and
reasoning about uniqueness or completeness conditions over the remain-
der of the system. Among the hardest and most subtle kinds of mismatch

20

are those arising from such assumptions. Garlan et al [?] provided a
case-study detailing several such problems: inability to decompose and
minimise run-time code dependencies, inability to extend event loops, in-
accessibility of desired interfaces to objects, introduction of unwanted mul-
tithreading, and overly constrictive concurrency control. The underlying
assumptions causing these problems are usually not stated explicitly in
source code, and can therefore be difficult to identify. Adaptating the
components to overcome these mismatches – by extending event loops,
decomposing dependencies, exposing internal interfaces and altering con-
currency control logic – is a challenging task.

B Survey of existing practices

Scripting languages Scripting languages are programming languages charac-
terised by brevity, support for dynamic code evaluation, and lack of static
type-checking. They exploit a trade-off: in return for a loss of some effi-
ciency, elegance and safety, they gain dynamism, convenience and ease of
modification. Scripting languages are therefore popular for “glue code”,
whose purpose is to interface existing pieces of software. Glue code invari-
ably performs adaptation, and has special support for this in the extensive
regular expression-based string matching and rewriting found in main-
stream scripting languages such as Perl and Python. Additionally, these
languages provide convenient support for interacting with external code
using a wide variety of system-level communication mechanisms: invok-
ing other scripts, accessing the file system or network, invoking external
programs, manipulating environment variables, and so on. However, lack
of static checking can make script less reliable than code in conventional
languages. Also, adaptation by string rewriting is especially error-prone—
but is necessary because of the low-level byte-stream IPC mechanisms by
which scripts and other components traditionally communicate.

Orchestration and service-oriented computing Related to scripting is the
recent trend towards “service-oriented computing”, where large systems
are decomposed into a set of passive services (typically web services or
other RPC-like abstractions) and a set of proactive control components
which use them. These control components might be called as orches-
trations, workflows, or simply scripts. Separating the proactive from the
passive allows new languages to be used to express the active compo-
nents, which may have convenient support for error-handling, parallelism,
and asynchronous or high-latency communication [?]. This support has
proved useful for building distributed applications in the wide area, in
addition to providing the benefits of scripting languages. However, as
with scripts, there may be considerable effort in adapting between the
combination of multiple proactive components.

Distibuted middleware Middlewares frequently use IDL compilers to gener-

21

ate communicational code, supported by run-time libraries [?]. This frees
application code from the need to build in particular implementations of
communication abstractions (such as remote procedure call). However,
since client and server code must share a common interface, and must
be written to the conventions demanded by the middleware’s communi-
cation abstraction (and perhaps also to the syntactic conventions of the
particular IDL compiler being used), this often does not help in the case
of combining code written independently,

Component middleware So-called “component-based” technologies such as
JavaBeans, COM+ and the CORBA Component Model have become pop-
ular in industry for creating components of richer interface description
(and hence greater perceived re-usability), for composing such compo-
nents (often graphically), and for automatically generating certain kinds
of marshalling wrappers (such as COM+’s context proxies [?]). Note that
marshalling is a form of adaptation, at the level of data representation.
While useful, these technologies do not support any higher-level forms of
adaptation, such as adapting between mismatched interface definitions.
Therefore, although their emphasis on interface specification is helpful,
they do not solve the problem of direct re-use of independently developed
code.

Programming language advances Higher-level programming languages, in-
cluding functional and higher-order languages such as Haskell or ML, pro-
vide a more powerful set of basic abstractions than many traditional lan-
guages. These include tuples, lists, streams, first-class functions, discrim-
inated unions and pattern-matching. The inclusion of such abstractions
cuts down the potential for mismatch which might otherwise be caused by
differing conventions or implementations of these common abstractions.
Meanwhile, the powerful computational abstractions of lazy evaluation
and higher-order functions might enable more convenient expression of
script-style adaptation logic [?]. However, the need to adopt a com-
mon language, and the longstanding inconvenience of interfacing these
languages with foreign code, mean that for the foreseeable future there
will be greater need to perform adaptation to and from these languages
rather than within them.

Configuration languages “Configuration languages” include roughly any lan-
guage which expresses wiring, linkage, component topologies, component
initialisation data or other specialisations particular to a specific deploy-
ment. Examples are linking languages [?], architecture description lan-
guages [? ? ?], exogenous coordination languages [?], the configuration
languages of “inversion of control” development platforms (such as Spring2

or Castle3), and, strictly speaking, almost all conventional programming

2http://www.springframework.org/
3http://www.castleproject.org/

22

languages. (We informally exclude the latter, for convenience of reference
to the remainder.) These languages are useful for conveniently separat-
ing concerns, enabling static checking [?] and resolving some lower-level
mismatches (e.g. of component naming or wiring). However, existing con-
figuration languages do not support any higher-level forms of adaptation.
We will return to this idea in Section 4.

Aspect-oriented programming This technique [?] extends programming
languages with a new kind of module called an aspect, which specifies in-
line insertions or modifications to code within other modules, at certain
“join points” specified declaratively by the aspect definition. An aspect
can be used to modularise features whose code might otherwise be scat-
tered throughout many modules—such features might include logging, se-
curity checks, concurrency control and so on. Aspects can be treated as
first-class units of composition (i.e. linkage) alongside traditional mod-
ules, and it may be convenient to effect certain adaptations either as
new aspects or as changes to existing aspects, instead of making inline
changes to a large set of modules. As such, aspect weaving can be seen
as a particularly general adaptation primitive. However, the technique
has not yet been specialised towards composition of heterogeneous multi-
language systems—for example, most aspect toolchains target a particular
language, while inter-module linkage is typically specified endogenously by
name-matching rather than in a separate configuration domain.

Unification of programming interfaces The Unix motto of “everything is a
file” is an instance of a general technique: defining a unified programming
interface onto a disparate set of objects. The intention is to maximise the
composability of application code with respect both to data, such as files,
and to other pieces of application code—where communication with this
code is itself abstracted by the unified interface (as with pipes). Other
examples are the BSD sockets API, and the World-Wide Web with its
small set of HTTP “methods”. This approach is appealing, but has draw-
backs. Unification comes at the expense of semantic detail, so little static
checking can be performed. In practice, most objects implement some
ill-defined subset of the unified interface, discoverable only at run-time by
query or, worse, only in error-handling. Worst of all, some operations of
some objects simply will not be mappable satisfactorily from the unified
interface; this forces either an arbitrary local choice among the many un-
satisfactory ways, or the use of an escape-hatch such as Unix’s ioctl(). In
both cases, the original benefit is lost, since there is now a high likelihood
of mismatch with other application code. Adding a layer of indirection
(i.e. adaptation) between these pieces of application code is a promising
solution.

Unification of binary interfaces Similar to API unification, unifying binary
representations and linkage models brings immediate interoperability ben-
efits. Testament to this fact is the successful implementation of a large

23

number of languages over Microsoft .NET’s Common Language Runtime.
Since byte-code is almost always generated by tools rather than by hand,
code changes are not a problem: it is sufficient to implement a compiler
from each source-level language to the common byte-code. However, again
the need for semantic uniformity can be restrictive: in the .NET case, all
languages must use a garbage-collected heap, the .NET threading model,
a common data model, a common type system, and so on. Moreover, no
standard is ever final, nor adopted everywhere, so there will always be a
need for adaptation between different binary-level conventions. This is ev-
idenced by the current market for Java-to-.NET interoperability products,
including bytecode translators4 and trampoline generators5.

Metadata and annotations Recent languages and linkage standards, includ-
ing both Java bytecode and .NET intermediate code, incorporate the abil-
ity to annotate sections of code with arbitrary metadata. This is useful
for making explicit the semantic distinctions between apparently unified
objects, such as methods, variables, and so on. However, clearly it is
also necessary for application code to take these annotations into account.
Therefore, annotations are a useful set of inputs into the adaptation pro-
cess, but do not in themselves solve the problems of adaptation.

C Proposed entropy-based coupling measurement

Existing software measurement work defines various measures of coupling, in-
cluding some specific examples measuring local coupling. This concept was in-
troduced by Stevens et al [?] as “the measure of the strength of association
established by a connection from one module to another”. One consequent intu-
ition is that coupling measures the likelihood that changes in one subsystem will
require consequent changes in a disjoint subsystem, and therefore low coupling
predicts good properties such as extensibility and maintainability. Another in-
tuition is that high coupling correlates negatively with reusability, since the
more strongly a module is coupled with its environment, the more changes are
necessary in order to re-use that module in a different environment.

We would therefore like to show that compositions making appropriate use
of adaptation are less strongly coupled than traditional compositions. Unfortu-
nately, existing measurements for local coupling are ad-hoc and do not capture
all sources of coupling. I propose a new measure based on information theory
and a channel-based model of communication.

To illustrate, consider an untyped, unstructured communication interface
such as Unix pipes or files. In order to communicate structured data, the par-
ties must fix on conventions for coding that structure, typically a combination
of whitespace and punctuation characters. The convention chosen must be un-
derstood by both parties in order for them to communicate, and is therefore

4IKVM.NET: http://www.ikvm.net/
5JuggerNET: http://codemesh.com/products/juggernet/

24

a source of coupling. Now consider a further intuition: if a component is able
to understand multiple alternative structure codings—for example, if it detects
whether commas or tabs are being used to delimit input fields, and interprets
the input correctly in either case—then it is less coupled to its environment than
if it understands only one. This is because the component and the environment
have to agree on fewer choices about the code in the former case than in the
latter. This number of choices idea clearly suggests information entropy, and
it is specifically the entropy of the channel’s coding rules which correlates with
coupling.

I propose that the coupling between two modules joined by adaptation can be
measured by the complexity (i.e. entropy) of the shared interface definitions on
which the modules depend. Suitably advanced notions of interface are required
for this to capture all meaningful sources of coupling, certainly beyond the
highly syntactic interface definitions used in today’s code. For example, in the
Unix pipeline

printenv | sed ’s/=.*//’

which prints out the names of all defined environment variables, there is an im-
plied contract that all lines output by printenv follow the pattern NAME=value.
Temporal, timing- and protocol-based interfaces [?] are still useful for describ-
ing these contracts, but must be applied with sufficiently fine grain to capture
the complete language of individual data values sent and received, looking fur-
ther just the language-defined constructs such as procedure signatures. As an
alternative to these, I may explore a new, purely channel-oriented notion of in-
terface, based on the concepts of symbols, symbol content (i.e. the symbol itself),
symbol context and context variables.

D Future work and alternatives

Pluggable checking So far we have considered only the problem of creating
working compositions of software. A separate problem is the ability to
reason about these compositions and check arbitrary properties of them
(including type-safety, but potentially also quality of service, security and
so on). Given our emphasis on dynamism and heterogeneity, a useful
approach is that of pluggable checking [? ?], where type systems and
other reasoning frameworks are composable extras applied to configura-
tions of software. It would be interesting to add support for annotations,
both as discovered properties of code and as external assertions within
the configuration language, and demonstrate some examples of pluggable
checkability over these (and over intervening adaptation primitives).

Top-to-bottom traceability Configuration languages span a spectrum from
high- to low-level. At the high level, architecture description languages
(ADLs) such as Unicon [?], Wright [?] or xADL [?] describe the
structure of large, possibly distributed applications. With the advent of

25

virtualization technologies such as Xen and VMware, system software now
also supports the description of entire distributed applications spanning
multiple machines in the local area. (Specifically, in the case of Xen, these
descriptions would be the inputs into a domain builder for distributed
applications.) This opens up the possibility of describing the intended
structural and extra-functional properties, using ADLs, and having the
system toolchain and runtime directly support the checking, enforcement
and traceability of those properties. These properties might also usefully
include security properties and policies [?].

Adaptation-oriented programming If all programmers had access to con-
venient and expressive features for adaptation, how would this change the
way programs are written? Intuitively, the need to target concrete pre-
existing interfaces (such as library interfaces) when writing new code seems
to cause a “leakage” of complexity—where the highly general-purpose li-
brary interface imposes unwanted complexity onto what might otherwise
be a much simpler client. In other words, targeting existing APIs increases
the complexity of the resultant source code, and reduces its reusability.
Writing code which deliberately ignores pre-existing targetable interfaces,
with the expectation of using adaptation to perform this integration later,
might reduce client complexity and hence improve re-usability of this new
code. Investigation of this phenomenon might prove a useful alternative
avenue.

26

