System Support for Adaptation and Composition of Applications
Research abstract for the EuroSys 2008 Doctoral Workshop

Stephen Kell
Stephen.Kell@cl.cam.ac.uk

1 The Problem

A fundamental role of the operating system is to en-
able separate pieces of software to communicate. It
provides the basic communication mechanisms which
knit together the complex masses of abstraction logic
bridging between hardware- and application-level code.
With the increasing ubiquity and diversity of hardware
(including mobile devices), the continuing convergence
of applications (including telephony and media), new
application domains (e.g. social networks, location sen-
sitivity) and ever-more heterogeneous application de-
livery (e.g. as browser extensions or web applications),
there is ever greater need for flexible, composable ap-
plication code.

This, in turn, requires system support for combining
independently developed code in unanticipated novel
ways, where these combinations may be specified dy-
namically by the user. Traditional mechanisms and
practices fail to meet these demands in three key areas.

1. System-level communication mechanisms are too
many in number and too low-level in nature. Un-
typed, unstructured communication forces devel-
opers to re-invent countless mutually conflicting
encodings for the abstract structures and mean-
ings present in the application domain. This, in
turn, complicates composition.

2. The operating system’s notion of application
structure is too coarse-grained. Individual pro-
grams, processes or libraries don’t adequately
identify the boundaries of applications’ require-
ments for isolation, security and communication.
Recent research into “browser OSes” and isola-
tion between web applications addresses a special
case of this problem [2, 8.

3. There is no convenient support for interposing
on the communication between separate units of
software. Independently developed code is in-
evitably not plug-compatible; consequently, com-
posability entails support for adaptation logic.

Although there are traditional means of perform-
ing adaptation for each OS communication mechanism
(e.g. wrapper scripts, wrapper libraries, proxies, con-
version tools, pipeline filters), these are inadequate.
The multiplicity of communication mechanisms means
that, for example, an adapting wrapper script is use-
less if the target application is written to use sockets.
Coarse grain means that the desired point of interpo-
sition is often unavailable, having been elided at link
time. Finally, the byte-based interface at any available
point of interposition necessitates tedious adaptation
techniques such as regex-based string rewriting.

As a result, application composition is poorly sup-
ported by today’s OSes. Plug-in and extension systems
have provided composability inside the boundary of a
single application, but the Unix dream of widespread
inter-application cooperation has yet to materialise. To
illustrate, here are several simple use-cases which are
currently impracticable even for most moderately ad-
vanced users.

e sharing bookmarks or history logs across multiple
web browsers, or with other classes of application;

e adding a button to invoke a web-based natural
language translator from within an e-mail client;

e writing a script (e.g. a make rule) which invokes
the Postscript generator of an interactive graph-
ical document editor;

e sharing a calendar between multiple applications
concurrently, each notifying others of updates;

e pausing a media player application whenever an-
other process requests the sound device.

For the same reasons, re-use of existing code
is unnecessarily difficult. Even in the open-source
world, where code is freely available, separate projects
emerge implementing near-identical functionality, dis-
tinguished only by implementation details (choices of
windowing toolkit, desktop environment, programming
language, storage abstraction, and so on). The moti-
vation for such duplication is invariably that the added
homogeneity aids integration with other applications.

My research goal is to create an adoptable system
for convenient, dynamic composition of independently
developed application code, using adaptation.

2 The Approach

My approach exploits the following observations.

e In code, there is a desirable but seldom achieved
separation of functionality from integration. The
“baking in” of separable details about communi-
cation mechanisms and conventions causes mis-
matches, which make composition harder. We
would like to enable and encourage the separa-
tion of these concerns, by rethinking the design
of linking, loading and IPC mechanisms.

e Scripting languages are popular for “glue code”:
they have convenient support for many IPC
mechanisms, syntactic brevity makes scripts easy
to modify invasively, and string rewriting features
enable adaptation. However, these low-level fea-
tures are error-prone. We would like to work with
a more abstract model.

o Configuration languages (ranging from linking
languages up to architecture description lan-
guages) enable our separation, providing a do-
main convenient for resolving mismatches. We
would like to extend such a language with conve-
nient and powerful support for adaptation.

I am working on the design and implementation of a
configuration language, based on the linking language
Knit [7] but supporting an extensible set of adapta-
tion primitives (including various published algorithms
[9, 6, 1]), custom linkage standards (including e.g. Java
binaries), and a higher-level data model. To exploit
pragmatic invasive modification without discouraging
modular re-use, the language supports inline “ad-hoc”
adaptation but also hierarchical modularisation of re-
usable sub-configurations. To illustrate, the following
toy example shows adaptation from tuple- to stream-
based communication; the code is Knit-like.

Process
stream consumer
read
tuple-stream adapter map project 27
flatten
tuple space (]
(20, b100101.)
N (21, b011000.) W=)
(22, b111010.) take_contiguous(n)
tuple (24, b000110..)
producer
out e

unit myTupSpc {
exports [prod { (int, bit list) in-lowest () },
cons { void out(int, bit list) } J;
files { obj_elf ("C”, tuplespace.o) } }

unit myTupProd {

imports [dest { void outp(bit list, int) }];
exports [/* ... x/];

files { obj_elf ("C”, tupleprod.o) } }

unit myStreamConsumer {

imports [streamProvider { int read(byte addr, int) } |;
exports [/* ... x/];

files { obj_elf ("C”, streamcons.o) } }

unit takeContig {

imports [source { (int, bit list) in-ord() } J;
exports [listProvider { (int, bit list) list get() } I;
files { obj_elf ("C”, take_contig.o) } }

/* The definitions above could be auto—generated from C code.
* The definition below links them wusing ad—hoc adaptation.
* Note differing symbol names and argument orders, and the
* ‘map’ and ‘project’ used to turn tuples into a string. */

unit Process {
exports [/*x ... x/];
link exec_elf ("process”) {
myTupProd.dest <— myTupSpc.cons { outp(a, b) <— out(b, a) }
takeContig.source <— myTupSpc.prod { in_ord <— in_lowest }
myStreamConsumer.streamProvider <— {
read <— flatten(map (project #2),
takeContiguous.listProvider. get)

1

To address dynamism, I will embed a variant of this
language into the operating system’s dynamic loader.
This subsumes of a host of other IPC interfaces while
supporting dynamic, user-directed adaptation. (Cur-
rently dlopen () accepts a library name; this extends to

an adaptation expression in the variant language. Like-
wise, library handles and file handles may be unified.)
As with LLL [5], the structure of running applications
will be dynamically manipulable, but with the added
benefit of adaptation support.

3 The Plan

Current implementation work is extending Knit with
the new features. Early case-studies will capture the
linkage graph of a large existing codebase, such as Fire-
fox, then produce new compositions of its features with
external codebases (e.g. porting the bookmarking fea-
ture to a file manager) and develop a small library
of common adaptations. The library can exploit the
pre-existing selection of “packagings” [3]: it suffices to
adapt to and from a variety of known linkage forms.

Later work will tackle the dynamic case by extend-
ing Linux’s dynamic loader, and demonstrate how this
subsumes traditional IPC (e.g. mapping file handles to
object handles; objects need not be simple files). With
help from the library, users can dynamically specify
extensions to their running applications by combining
generic third-party code with adaptation logic. A possi-
ble complement is a refactoring tool, for human-assisted
separation of integration from functionality within ex-
isting C code (suitably preprocessed [4]).

Evaluation will proceed by both case study and soft-
ware measurement. Separating functionality from in-
tegration aims to reduce the complexity of adaptation,
i.e. to reduce local coupling. Existing measures are ad-
hoc and based on models which do not feature adapta-
tion. I propose a new measure grounded in information
theory, in which local coupling is related to the com-
bined entropy of module interface specifications and the
adaptation logic required to bridge mismatches.

Implementation is only just beginning, but I hope
to have useful results by the time of the workshop.

References

[1] A. Bracciali, A. Brogi, and C. Canal. A formal approach to
component adaptation. J. Sys. Soft., 74:45-54, 2005.

[2] R. Cox, J.G. Hansen, S. Gribble and H. Levy. A safety-
oriented platform for web applications. Proc. IEEE. Symp.
Sec. Priv., 2006.

[3] R. DeLine. Avoiding packaging mismatch with flexible pack-
aging. IEEE Trans. Soft. Eng., 27:124-143, 2001.

[4] B. McCloskey and E. Brewer. Astec: a new approach to
refactoring C. Proc. 10th ESEC / 13th FSE, 2005.

[5] J. Mukherjee and S. Varadarajan. Develop once deploy any-
where: achieving adaptivity with a runtime linker/loader
framework. Proc. Jth Workshop on Reflective and Adaptive
Middleware Systems, 2005.

[6] R. Passerone, L. de Alfaro, T. Henzinger, and A. Sangiovanni-
Vincentelli. Convertibility verification and converter synthe-
sis: Two faces of the same coin. Proc. Int. Conf. Computer-
Aided Design, 2002.

[7] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. Proc. 4th
OSDI, pages 347-360, 2000.

[8] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and communication abstractions for web browsers in Mashu-
pOS. Proc. 21st SOSP, 2007.

[9] D. Yellin and R. Strom. Protocol specifications and compo-
nent adaptors. ACM TOPLAS, 19:292-333, 1997.

