
CO658 bonus material:
C for Java programmers (part two)

Stephen Kell

s.r.kell@kent.ac.uk

A more interesting bit of code
// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

- indirection (reference) is
explicit, using pointers:
 T* is a pointer to type T
 *p means “follow p”
 p->f means (*p).f
 &n means “get me a
 pointer to n”

- i.e. no ‘value types’ vs
‘reference types’
 ... can point to any type T
 ... can nest any T in struct S

Pointers and arrays in C
int x = 42; // x is an int
int *px; // px is a pointer to int (uninitialized!)
px = &x; // set px to point to x (“= address of x”)
*px = 43; // assign to the thing px points to

// continuing...

int xs[] = { 2, 3, 5 }; // xs is an array of 3 ints
xs[0] = 42;
px = &xs[1]; // now px points to... what?
printf(“The value is: %d\n”, *px);

*px is following a pointer... we say the pointer is
dereferenced

Pointers and arrays in C

int xs[] = { 2, 3, 5 }; // xs is an array of 3 ints
px = &xs[1]; // now px points to xs[1]
++px; // now px points to xs[2]
--px; // now?
px = px – 1; // now?

We’ve just seen pointer arithmetic.
This just means pointers can be used as “array iterators”.
Conceptually, pointers always point into an array
... if pointing at a single value, pretend it’s an array of one

int x; int *p = &x; // as if “array of one”

Pointers and arrays in C
int xs[] = { 2, 3, 5 }; // xs is an array of 3 ints
px = &xs[0]; // now px points to xs[0]
px = xs; // same effect

If we name an array where a pointer is required,
an implicit conversion is done
yielding a pointer to the first element of the array.

It is not the case that “arrays and pointers are the same”!

printf(“Array size: %d\n”, sizeof xs); // 12 (...)
printf(“Pointer size: %d\n”, sizeof px); // 8 (...)

String literals themselves are passed using this implicit
conversion: “Hi!” is a char[4], but printf gets a pointer.

Pointers and arrays in C

It is not the case that “arrays and pointers are the same”!
Pointers are iterators over arrays.

However, we can do indexing on pointers. It accesses the
array that they are ranging over.

int xs[] = { 2, 3, 5 }; // xs is an array of 3 ints
int *px = &xs[1]; // now px points to xs[1]
printf(“Indexing px at 1 gave: %d\n”, px[1]);

Pointers and arrays in C

Pointer indexing is just a notation for combining pointer
arithmetic and pointer dereferencing.

px[1] is the same as *(px + 1)

Alternatively, pointer arithmetic is just a notation for
combining pointer indexing and address-taking!

px + 1 is the same as &px[1]

Pointers and arrays in C

We can think of pointers as combining:

- a reference to an array (modulo “pretend, if it’s just one value”)

... with:

- a position in that array.

Value and reference in C
“Pointers as iterators” is a useful feature, but also
dangerous, when we want to pass around arrays, as
arguments or return values.

How does parameter-passing work in C?

Short answer: we pass everything by value. E.g.

struct point { double x; double y; };

struct point scale(struct point p, double factor) {
 p.x *= factor; p.y *= factor; return p;
}

struct point mypoint = { 1.0, 3.0 };
struct point scaled = scale(mypoint, 2.0);

mypoint is not modified! Copies are passed/returned.

Value and reference in C

“Pointers as iterators” is a useful feature, but also
dangerous, when we want to pass around arrays, as
arguments or return values.

So how do we pass arrays? We can’t. (Why not?)

You have to pass a pointer.

void scale_two(double *p, double factor) {
 p[0] *= factor; p[1] *= factor;
}

double mypoint[2] = { 1.0, 3.0 };
scale_two(mypoint, 2.0);

In this version, mypoint is modified!
We passed the pointer by value... it references the array.

Value and reference in C
There are three common idioms for passing arrays around.

- explicit length

void sort_n(int *arr, unsigned int n);

- “sentinel” a.k.a. pass the ‘end pointer’

void sort_between(int *begin, int *end);

- terminator element

int puts(const char *string); // simpler printf

A “terminated array” means a special value denotes the
end of the sequence... here a null (zero) character.
-> no need to pass a length or end pointer

Closing: some real C snippets
(from musl libc, http://musl-libc.org/)

// duplicate the string pointed to by s
char *strndup(const char *s, size_t n)
{
 size_t l = strnlen(s, n); // get length of string, max n
 char *d = malloc(l+1); // allocate space for the copy
 if (!d) return NULL; // check malloc didn’t fail
 memcpy(d, s, l); // copy ‘l’ bytes from *s to *d
 d[l] = 0; // write a zero terminator
 return d;
}

http://musl-libc.org/

Closing: some real C snippets
(from musl libc, http://musl-libc.org/)

// “find the first token in the string *stringp that is delimited
// by one of the bytes in sep”
char *strsep(char **str, const char *sep)
{
 char *s = *str, *end;
 if (!s) return NULL; // here strcspn finds the
 end = s + strcspn(s, sep); // offset of the first char in ‘s’
 if (*end) *end++ = 0; // that is present in string ‘sep’
 else end = NULL;
 *str = end; // update the caller’s pointer
 return s;
}

Notice the first argument: this “passes a pointer by
reference”, by passing a pointer to the pointer. This is so
that the function can modify a pointer provided by the caller.

http://musl-libc.org/

Preprocessing

.c

.o
 .a cpp

OS +
CPU

“link”“preprocess”

ld

executable

source
code

libraries

cc

“compile”

based on a diagram by George Ferguson,
CC-BY-SA 4.0

.so
 .dll

.o

object
code

“load”

 .dylib

“run”

process / address space
.so

 .dll exe

“images”“image”
 .dylib

.h

“C compiler”

librariesas

“assemble”

// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

- Preprocessor directives
begin with a ‘#’

- They are not part of the C
language per se!

- They are processed, and
thereby eliminated, before
code is compiled

- Here #include will paste the
contents of the named file
(found at some path known to
the compiler) into the current
file...

- ... recursively (i.e. that file
may #include others)

// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

These ‘.h’ header files contain
declarations:

- function signatures for library
code (not code itself; just its
declaration) e.g.
int printf(const char *s, ...);

- declarations of global
variables, e.g.
char** environ;

- type definitions used in the
above (e.g. struct _IO_FILE)

... in short, defining the
interface of library code

// tree.c
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct bst {

struct bst *left;
int num;
struct bst *right;

};
static struct bst *root;
static
void bst_insert(int n, struct bst *node) {

struct bst *new_node = calloc(1,
 sizeof (struct bst));
new_node->num = n;
if (!node) { // empty tree

assert(!root);
root = new_node;

} else if (n < node->num && !node->left) {
 node->left = new_node;
} else if (n >=node->num && !node->right){

node->right = new_node;
} else if (n < node->num) {

bst_insert(n, node->left);
} else {

assert(n >= node->num);
bst_insert(n, node->right);

}
}

In a more realistic example,
some of the code on the left
would actually appear in a .h
file, not a .c file

e.g. the struct definition

and signatures for the
“public” functions of the
module

If you want a file to export
code to other files, create a
header for it, and include that
header from the other files.
(And from the current file, to
save duplication.)

struct sigaction action = {
 .sa_handler = &handle_sigill,
 .sa_flags = SA_RESTORER | SA_NODEFER
 #ifndef __FreeBSD__
 , .sa_restorer = restore_rt
 #endif
};

Conditional compilation

Sometimes to make code
portable, we have to build in
per-platform variations.

In this example, FreeBSD
defines a struct slightly
differently to other OSes,
lacking a particular field.

Usually the condition is
whether a given preprocessor
macro is defined (#ifdef)

- here __FreeBSD__
- this is a built-in macro which
is defined by the FreeBSD
preprocessor but not others

#if __STDC_VERSION__ >= 201112L
/* Use the new threading library. */
#include <threads.h>
#else
/* Hope we have the pthreads library */
#include <pthread.h>
#endif

Conditional compilation

As well as #ifdef, there is also
#if
which can evaluate simple
conditional expressions in a
C-style syntax

Remember: this isn’t C!

It runs before compile time.
Program variables cannot be
used.

__STDC_VERSION__ is a
macro that is defined with a
value (at least 201112 in a
C11-conforming compiler)

#define PI 3.14159

double circle_area(double r) {
 return PI * r * r;
}

// .. becomes..

double circle_area(double r) {
 return 3.14159 * r * r;
}

// can nowadays write...
const double PI = 3.14159;
// ... but less easily optimised

Symbolic constants

In the old days, there was no
way to declare constants in C.
So we used the preprocessor
instead.

By the time the compiler gets
to see this code...

... PI has been macro-
expanded away by the
preprocessor, and it looks like
this.

It’s still useful to define
constants this way. For
reasons to do with linking, the
compiler can’t assume this
value is fixed yet.

// myheader.h
#ifndef MYHEADER_H_
#define MYHEADER_H_

int myfunc(int x);
struct mystruct { int y; };
// etc

#endif // i.e. “else say nothing!”

// myotherheader.h
#ifndef MYOTHERHEADER_H_
#define MYOTHERHEADER_H_

#include “myheader.h”
struct myotherstruct {
 struct mystruct nested;
 double z;
};

#endif

// program.c
#include “myheader.h”
#include “myotherheader.h”
...

#include guards

It’s idiomatic to use some
preprocessor directives at the
beginning and end of header
files...

... mainly to help speed up
compilation, by preventing
the same things from being
included two or more times

Here our client doesn’t need
to know that myotherheader
includes myheader – but we
still avoid sending two copies
to the compiler

#define for function-like
macros

Macros can be used to
perform some function-like
substitutions.

Again: this isn’t C!
Macros consume tokens and
generate tokens.

Useful to avoid repetition...

... or more generally generate
snippets of code
(metaprogramming).

Historically used to gain the
effect of inline functions

// we previously wrote:
struct bst *new_node = calloc(1,

 sizeof (struct bst));

// but if we define
#define NEW_ARRAY(len, t) \
 calloc((len), sizeof (t))

// ... we can instead write
struct bst *new_node
 = NEW_ARRAY(1, struct bst));

// or doing more:
#define ARR_DECL_ALLOC(\
 len, name, t) \
 t *name = calloc((len), sizeof (t))

// then our whole calloc line can be:
ARR_DECL_ALLOC(new_node, 1,
 struct bst);

Preprocessor summary

The C preprocessor is a fairly general-purpose
“level of syntactic abstraction”.

It is a “Swiss Army Knife” sort of tool...

... albeit fairly crude.

Used well, it helps keep code concise, portable and
maintainable.

Used badly, it creates confusion.

It does not know C! It just works blindly by
crunching files and tokens

The last chunk: gotchas and
demos
I’ll do a walk-through covering some common
gotchas:

- containment recap
- meaning of const
- function pointers
- “declaration reflects use”
- typedef
- lvalues and rvalues
- passing pointers up the stack

... and demoing some tools

- gdb, a.k.a. how to debug your code
- Godbolt’s “Compiler Explorer”

References

As last time, plus...

Kernighan. “Why Pascal is not my favourite
programming language”
(an insight into why arrays in C are as they are)
http://www.eprg.org/computerphile/pascal.pdf

http://www.eprg.org/computerphile/pascal.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

