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Abstract

The continued growth of CRAN is testament to the increasing number of developers engaged in
R development. But far fewer researchers have experimented with the R interpreter itself. The
code of the interpreter, written for the most part in C, is structured in a way that will be foreign
to students brought up with object-oriented programming, and the available documentation, though
giving a general understanding of how the interpreter works, does not really enable a newcomer to
start modifying the code with any confidence.

The CXXR project is progressively refactoring the interpreter into C++, whilst all the time
preserving existing functionality. By restructuring the code into tightly encapsulated and carefully
documented classes, CXXR aims to open up the interpreter to more ready experimentation by sta-
tistical computing researchers.

This paper focusses on two example tasks: (a) providing, as a package, a new type of data
vector, and (b) adding the capability to track the provenance of R objects. The paper shows how
CXXR greatly facilitates these tasks by internal changes to the structure of the interpreter, and by
offering a higher-level interface for packages to exploit.

1. CXXR

The object of the CXXR project is gradually to reengineer the fundamental parts of the R
interpreter from C into C++, with the intention that:

* Full functionality of the standard distribution of R (including the recommended pack-
ages) is preserved;

* The behaviour of R code is unaffected (unless it probes into the interpreter internals);

* There is no change to the existing interfaces for calling out from R to other languages
(.C, .Fortran, .Call and .External).

» Likewise there is no change to the main APIs (R.h and S.h) for calling into R.
However, a broader API is made available to external C++ code.

Work on CXXR started in May 2007, at that time shadowing R-2.5.1; the current release
(as of August 2011) shadows R-2.12.1, and an upgrade to 2.13.1 is in progress.

This paper will refer to the standard R interpreter as CR, in contradistinction to CXXR.

The original motivation for embarking on the CXXR project was to introduce provenance-
tracking facilities into R, and progress on this front will be described later in the paper. But
CXXR has a broader mission, which is to make the R interpreter more accessible to devel-
opers and researchers, by various means. For example, the C++ classes and other code
structures within CXXR are carefully documented. Secondly, CXXR tightens up the en-
capsulation boundaries within the interpreter, so that a developer can be more confident
that modifying code in one place will not unexpectedly break things elsewhere. This is
part-and-parcel of moving towards an object-oriented software structure, something that
graduate students are increasing familiar with, and which the R language itself has moved
towards. Finally CXXR aims to express the internal algorithms of the interpreter at a higher
level of abstraction, and make them available to external code through CXXR’s own API,
and we shall see some examples of this shortly.
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1.1 Layers

CXXR code falls into three categories, which can be considered roughly to form three
concentric layers. At the centre is the CXXR core, which is written as far as possible in
idiomatic C++, making free use of the C++ standard library, and some use of the Boost
libraries of peer-reviewed, portable C++ [Boost (2011)]. Everything in the core layer is
placed in the C++ namespace CXXR. The following is a summary of the functionality cur-
rently within the core:

* Memory allocation and garbage collection.

* SEXPREC union replaced by an extensible class hierarchy rooted at class RObject
(described below).

* Environments (i.e. variable to object mappings), with hooks to support provenance
tracking.

» Expression evaluation. (S3 method dispatch partially refactored; S4 dispatch not yet
refactored.)

¢ Contexts and indirect flows of control (with some loose ends).
e Unary and binary function generics. [-subscripting.

* Object duplication is now handled by C++ copy constructors. (In an experimental
development branch, object duplication is managed automatically, removing the need
for NAMED () and SET_NAMED () .)

On the outside is the packages and modules layer, and the aim here is that existing R
packages should work with CXXR with minimal alteration—usually none at all. A paper
[Runnalls (2010)] at the useR!2010 conference explored the extent to which this had been
achieved by testing CXXR with 50 key packages (other than the base and ‘recommended’
packages, which are routinely maintained as part of CXXR development) from the central R
archive CRAN, namely the packages on which most other packages in the archive depend.
The upshot was that, apart from fixing some latent bugs in the packages (and bugs in CXXR
itself), only three lines of package code needed to be modified for all the tests included in
these 50 packages to pass. All these changes were in the C code which some packages
include; in no case did a package’s R code need to be changed.

In between the core and the packages layer is the transition layer, which consists of C
files from the CR interpreter adapted to work with the CXXR core. In most cases these C
source files have been redesignated as C++, but the programming idioms are largely those
of CR (which in addition to C idioms frequently exhibits those of Fortran and especially
LISP).

2. The RObject Class Hierarchy

One of the major changes in CXXR is the way that objects visible in R are implemented.
In CR, these objects are implemented using a C union, which can be thought of as a way of
telling the C compiler that a particular memory address may hold any one of several spec-
ified datatypes: in this case no fewer than 23 distinct types, corresponding to the different
types of R object.

This approach has several disadvantages. First of all, the compiler does not know which
of the 23 types is occupying a particular address: this is determined only at runtime. Con-
sequently much of the type checking in the interpreter must itself be done at runtime: the
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Figure 1: The ROb ject class hierarchy.

implementation simply doesn’t leverage the compiler’s own considerable capabilities for
type checking. This type ambiguity can also make debugging at the C level difficult.

Another snag is that this approach in effect turns the set of R data types into a closed
list: if you want to add a new type of R object, that means delving into the heart of the
interpreter and making fundamental modifications.

CXXR uses quite a different approach: the different types of R object are implemented
as a C++ class inheritance hierarchy, rooted at an abstract class unimaginatively named
RObject, and shown in Fig. 1. Readers familiar with R will have no difficulty mapping
the C++ class names in this figure onto the corresponding type of object in the R language.
A particular point to note is that all of R’s built-in vector types are implemented using a
single C++ class template called FixedVector: this includes vectors of integers, vectors
of reals and vectors of complex numbers as well as R lists.

Along with this change to a C++ class hierarchy, CXXR is carrying out a wholesale
restructuring of the interpreter code. First of all, the project is endeavouring gradually to
move all code relating to a particular data type into one place, and then to use C++’s pub-
lic/protected/private mechanisms to conceal implementational details and to defend class
invariants.

Most important of all, CXXR aims to make it easy for developers to extend the class
hierarchy, and the paper will now give an example of this: of how a developer can add a
new type of object to CXXR at the interpreter level.

2.1 MyGMP

R of course has the ability to handle vectors of integers, but the range of values that can
be represented by these built-in integers is limited by the word-length of the computer
you’re using; in fact currently R’s built-in integers are limited to 32 bits, even on a 64-bit
architecture.

Suppose a developer wanted to write a package, which we shall call MyGMP, adding
to R the capability of handling arbitrarily large integers. The developer is aware that there
is a free GNU library, the GNU MP library [GNU MP (2011)] that provides ‘bigint’s, as
they are called, for C and C++, and would like to build on that.

(Some readers will be aware that there already is such an R package, the gmp package
[Lucas et al. (2010)], which offers bigints and much else besides. The rudimentary package



described in this paper does not in any way match the capabilities of gmp: its purpose is
simply to illustrate how relatively easy it is to get such a package off the ground using
CXXR.)

The GNU MP library defines a C++ class mpz_class to represent an arbitrarily large
integer. But one of the attractive features of R for statistical analysis is that it can flag indi-
vidual data points as being ‘not available’, represented NA in R. As it stands mpz_class
doesn’t have this capability: it can represent positive integers, negative integers, zero, but
not NA.

Fortunately, in CXXR we can put this right essentially in one line of C++ code, using
the class template NAAugment, which does what the name suggests:

namespace MyGMP {
typedef CXXR::NAAugment<mpz_class> Biglnt;
}

This type definition gives us a new C++ class BigInt which can represent an arbitrarily
large integer or NA, and this is all set up in such a way that the generic algorithms in
CXXR can handle NAs with little or no attention from the package writer.

Each object of the new class BigInt represents a single bigint. But of course R
works primarily with data vectors—or matrices or higher dimensional arrays. No problem:
we can introduce vectors of BigInts into CXXR essentially with one further line of code,
which reinstantiates the same C++ class template F i xedVect or that is used for the built-
in vector types:

namespace MyGMP {
typedef CXXR:: FixedVector<Biglnt,
CXXSXP,
ApplyBigIntClass> BigIntVector;

}

With this one step, BigIntVectors have now joined the RObject class hierarchy. We
can now assign BigIntVectors to R variables, and facilities such as garbage collection,
and the dimensioning of matrices and arrays—all this is automatically in place.

2.2 Binary functions

Obviously the MyGMP package needs to have the capability to carry out arithmetic on
BigIntVectors: multiplication for example. Let us first review how binary opera-
tions such as multiplication work for R vectors. Basically each element of the result is
determined by multiplying together the corresponding elements of the two operands, so
for example the first element of the result is the product of the first elements of the two
operands.

But there are some complications. For example, if either of the operand elements is
NA, then the corresponding result element must be set to NA. If the operands are of unequal
length, the elements of the shorter operand are reused in rotation. But R gives a warning
if the longer operand is not an exact multiple of the length of the shorter operand. It is
also necessary to consider attributes: for example in R you can give names to individual
elements of vectors, or to the rows and columns of matrices. Somehow the attributes of the
result of a binary operation must be inferred from the attributes of the operands. There are
some further complications if the operands are matrices or arrays.

CXXR defines a generic algorithm for implementing R binary functions, and makes
it available to package C++ code via the CXXR API. To use the algorithm the programmer
needs to specify four things:



. The elementwise operation that is to be performed. In the case of multiplication this

operation is given to us directly by the GNU MP library, which overloads the C++
multiplication operator “x” for operands of mpz_class.

The two operands (in the present case BigIntVectors).

. The type of vector (or other vector-like container) to be produced as the result: in the

present case again a BigIntVector;

. Finally, it is necessary to specify how the attributes of the result are inferred from

those of the operands. Fortunately, this is better standardised in R for binary oper-
ations than it is for unary operations, so usually a default value can be used for this
parameter.

Using this algorithm, introducing multiplication of BigIntVectors to the MyGMP
package requires just the following C++ code:

extern "C" {

}

BigIntVectors MyGMP _multiply (const BigIntVectors vl,
const BigIntVectors vr)

{
using namespace CXXR:: VectorOps;
return
BinaryFunction<GeneralBinaryAttributeCopier ,
std :: multiplies <mpz_class> >()
.apply<BigIntVector >(vl, vr);
}

which is invoked via a simple R function in the package:

e

}

Biglnt® <— function(vl, vr) {
Call ("MyGMP_multiply", as.bigint(vl), as.bigint(vr))

All in all, the developer does not need to do much programming at all in the MyGMP
package before it becomes possible, for example, to compute large factorials in R. Here is
an example session:

> f <— as.bigint(c(1:20, NA))
> for (i in 3:21) f[i] <— f[i]=f[i—1]
> f
[1] "1" VA "o"
[4] "24" "120" "720"
[7] "5040" "40320" "362880"
[10] "3628800" "39916800" "479001600"
[13] "6227020800" "87178291200" "1307674368000"
[16] "20922789888000™" "355687428096000" "6402373705728000"

[19] "121645100408832000" "2432902008176640000" NA

This example illustrates the fact that NAs propagate as expected without needing special
consideration within the package code.

2.3 Subscripting

The factorial example above included the use of square brackets to perform subscripting on
a BigIntVector, and this facility is something that needs to be provided explicitly by
the MyGMP package.



R is rightly renowned for the power of its subscripting operations: subscript expressions
can be used to access or replace elements of vectors, rows and/or columns of matrices,
and slices of higher dimensional arrays. To give a few examples: a row of a matrix (for
example) can be specified either by its position, or by its name (if it has one). Negated row
numbers signify ‘include all rows except these’. Odd numbered rows of a matrix m can be
selected by specifying a logical expression as the index: m[c (TRUE, FALSE), 1, the
elements of the ‘logical’ vector ¢ (TRUE, FALSE) being recycled as necessary up to the
total number of rows in m.

In fact the R Language Definition document devotes over four of its 51 pages to de-
scribing R’s subscripting facilities, and even that glosses over some edge cases. In the
CR interpreter there are some 2000 C language statements implementing these facilities.
But in a sense this C code is ‘locked up’: it isn’t made available to external code via a
documented API, and it is written exclusively to handle R’s built-in data types. Conse-
quently, as it stands, we can’t directly exploit this code to bring subscripting facilities to
BigIntVectors.

CXXR takes a more open approach. It makes subscripting facilities available through
its API using a class with the obvious name: Subscripting. This class works using C++
generic algorithms, which abstract away from the type of the elements of the vector (or
matrix or higher-dimensional array). Consequently the algorithms are not restricted to R’s
built-in data types: BigInt elements work just fine.

But not only do the algorithms abstract away from the type of elements of the vector,
they also abstract away from the particular data structure used to implement the vector. So
this opens the way to using the algorithms with packed data: perhaps a developer imple-
ments a new vector object type in which 32 DNA bases are packed into a 64-bit word. Or
a developer may introduce into the ROb ject class hierarchy a new vector implementation
for large datasets in which most of the data are held on disk, after the fashion of the ff
package. In either case the developer can use CXXR’s subscripting algorithms to index
into these new vector types.

As far as BigIntVectors are concerned, using CXXR’s Subscripting class
means that we can carry across the full power of R subscripting with just a few lines
of package code. Here for example is the package C++ code needed to implement sub-
assignment, i.e. the replacement operation that occurs when square brackets appear on the
left-hand side of an assignment:

extern "C" {
BigIntVector+ MyGMP_bigintsubassign(const PairList* args)

{
args = args—>tail ();
BigIntVectors lhs
= SEXP_downcast<BigIntVectors>(args—>car ());
args = args—>tail ();
const BiglntVector* rhs
= SEXP_downcast<const BiglntVectors>(args—>car ());
args = args—>tail ();
return Subscripting :: subassign(lhs, args, rhs);
}
}
which is invoked via the following R function in the package:
‘[<—.Biglnt > <— function(v, ..., value) {
.External ("MyGMP_bigintsubassign", v, as.bigint(value), ...)

}



3. Provenance Tracking

This paper will now briefly describe another line of development building on CXXR,
namely work to provide provenance tracking facilities.

Have you ever returned to a data analysis after a period of months, and asked yourself
questions such as the following?

* How exactly was a particular data object or model derived from the original data?
* What data points were discarded, and how were they identified as being suspect?

* One of the several datasets that went into the original analysis is now known to have
been corrupt. Which results does this invalidate?

In other words you are interested in interrogating the provenance of data objects and
models. Provenance-awareness is a topic of increasing importance in information science,
and is the subject of biennial conferences: the International Provenance and Annotation
Workshops (IPAW).

Interestingly one of the first provenance-aware applications was S, and
[Becker and Chambers (1988)] is often cited as a pioneer paper. An S session would main-
tain an audit file, recording all the top-level commands, and identifying the data objects read
and modified by the commands. This audit file could then be analysed using a separate tool,
S AUDIT, described in [Becker, Chambers and Wilks (1988)].

We have been exploring the possibility of introducing this capability into CXXR, but
with the difference that provenance information can be interrogated directly from within
an R session. A preliminary report on this was given in [Silles and Runnalls (2010)]. To
illustrate this, consider the following simple R command session:

> one <— 1

> two <— c("deux", "zwei")
> two <— one + one

> three <— 3

> square <— function(x) xx*X
> four <— square (two)

> five <— four + 1

> nine <— square(three)

> rm(two, five)

Work to date enables us to ask about the provenance of a particular object (or, to speak
more strictly, the provenance of a binding of an R variable to an object). For example:

> provenance (nine)
$command
nine <— square (three)

$symbol
nine

$timestamp
[1] "01/07/11 15:50:43.497459"

$parents
[I] "square" "three"

$children
NULL



from which we can see that the current binding of the symbol nine was created at 15:50 on
July 1st by the top-level command nine <- square (three).

Somewhat more interestingly, we can ask about the entire pedigree of a binding, i.e. the
entire sequence of top-level commands that are relevant to a current symbol binding:

> pedigree (four)

one <— 1

two <— one + one

square <— function(x) X #* X
four <— square (two)

Notice how the provenance of the user-defined function square is included here, as well as
the provenance of the data objects one, two and four itself. This reflects the fact that in R,
functions are fully-fledged objects.

The pedigree command can also be applied to a set of object names, so for example
to find the joint pedigree of all the objects still existing in the session, we can use the
command:

> pedigree(1ls ())

one <— 1
two <— one + one
three <— 3

square <— function(x) X * X
four <— square (two)
nine <— square (three)

Notice how the symbol five makes no appearance in this pedigree, because the object named
five no longer exists, and its former value had no bearing on the value of any current bind-
ings. However, the symbol two does make an appearance: even though no object named
two still exists, one of the former values of the symbol two played a part in computing the
value of the current object named four.

4. Cross-session Provenance Tracking and Serialization

In the examples above we saw how provenance data was maintained during a single R
session. That is useful enough, but the real value comes when we resume a data analysis
after a lapse of time. This means that it is essential that provenance information is saved at
the end of a session, alongside the data objects it relates to.

This has led us to review the approach used for serialization and deserialization: the
process by which a set of R objects is rendered into a form suitable for saving in a file, and
subsequently restored. The primary objective is to delegate to each C++ class in CXXR
responsibility for serializing and deserializing objects of that class. (This is in contrast to
CR, which concentrates all serialization functionality into a few huge functions.) This in-
cludes the C++ classes used to implement provenance-tracking, so provenance information
will automatically be serialized alongside the data it relates to.

Reorganising serialization in this way will have a further benefit. We saw earlier how
CXXR enables developers to introduce new sorts of object such as BigIntVector into
the ROb ject class hierarchy. One serious omission at the moment is that there is no pro-
vision for BigIntVector objects to be carried across from one R session to the next.
The new serialization framework under development will rectify this: using this frame-



work, the BigIntVector class can itself define how BigIntVector objects are serialized and
deserialized.'

5. Conclusion

CXXR aims to open up the R interpreter to developers, providing a workbench on which
they can develop their own ideas regarding extensions, modifications and adaptations to R.
In other words, CXXR is an ideas hatchery. As this paper has illustrated, one important
way in which CXXR achieves this is by implementing objects visible in R using a C++
class inheritance hierarchy which developers can extend. This is complemented by a drive
to rewrite key algorithms within the R interpreter at a higher level of abstraction, and to
make them available via the CXXR APL

As one possible extension of R, the paper has briefly described work on introducing
provenance-tracking facilities to CXXR.

Much work remains to be done in the development of CXXR itself. A conspicuous gap
at present is a Windows port of CXXR: until now it has been built and tested only on Linux
and (to a lesser extent) on MacOS X. Volunteers to assist in this and other aspects of CXXR
development are welcome.
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