
Interpreter Internals:
Unearthing Buried Treasure
with CXXR

Andrew Runnalls

School of Computing, University of Kent,

Canterbury, UK

Outline

1 CXXR

2 The RObject Extensible Class Hierarchy

3 Conclusion

The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
No change to the existing interfaces for calling out from R to other
languages (.C, .Fortran. .Call and .External).
No change to the main APIs (R.h and S.h) for calling into R.
However, a broader API is made available to external C++ code.

Work started in May 2007, shadowing R-2.5.1; the current release
shadows R-2.12.1, and an upgrade to 2.13.1 is in progress.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr

The CXXR Project

The aim of the CXXR project1 is progressively to reengineer the
fundamental parts of the R interpreter from C into C++, with the
intention that:

Full functionality of the standard R distribution is preserved;
The behaviour of R code is unaffected (unless it probes into the
interpreter internals);
No change to the existing interfaces for calling out from R to other
languages (.C, .Fortran. .Call and .External).
No change to the main APIs (R.h and S.h) for calling into R.
However, a broader API is made available to external C++ code.

Work started in May 2007, shadowing R-2.5.1; the current release
shadows R-2.12.1, and an upgrade to 2.13.1 is in progress.

We’ll refer to the standard R interpreter as CR.

1www.cs.kent.ac.uk/projects/cxxr

http://www.cs.kent.ac.uk/projects/cxxr

Why Do This?

The broad mission of CXXR is to make the R interpreter more
accessible to developers and researchers.

This is being achieved by various means, including:

Improving the internal documentation;
Tightening up the internal encapsulation boundaries within the
interpreter;
Moving to an object-oriented structure, thus reflecting a
programming approach with which students are increasingly
familiar.
Expressing internal algorithms at a higher level of abstraction, and
making them available to external code through the CXXR API.

Why Do This?

The broad mission of CXXR is to make the R interpreter more
accessible to developers and researchers.

This is being achieved by various means, including:

Improving the internal documentation;
Tightening up the internal encapsulation boundaries within the
interpreter;
Moving to an object-oriented structure, thus reflecting a
programming approach with which students are increasingly
familiar.
Expressing internal algorithms at a higher level of abstraction, and
making them available to external code through the CXXR API.

Outline

1 CXXR

2 The RObject Extensible Class Hierarchy

3 Conclusion

How R Objects are Implemented in CR

In CR, all R objects (as listed by the R command objects()) are
implemented using a C ‘union’. This is a way of telling the C compiler
that a particular memory address may hold any one of several distinct
datatypes: in this case 23 types, corresponding to the different types of
R object.

This has several disadvantages:

The compiler doesn’t know which of the 23 types is occupying a
particular union block. Consequently all type checking must be
done at run-time; the possibilities of compile-time type checking
are not exploited.
Debugging at the C level is difficult.
Introducing a new type of R object means modifying a data
definition at the very heart of the interpreter.

How R Objects are Implemented in CR

In CR, all R objects (as listed by the R command objects()) are
implemented using a C ‘union’. This is a way of telling the C compiler
that a particular memory address may hold any one of several distinct
datatypes: in this case 23 types, corresponding to the different types of
R object.

This has several disadvantages:

The compiler doesn’t know which of the 23 types is occupying a
particular union block. Consequently all type checking must be
done at run-time; the possibilities of compile-time type checking
are not exploited.
Debugging at the C level is difficult.
Introducing a new type of R object means modifying a data
definition at the very heart of the interpreter.

How R Objects are Implemented in CR

In CR, all R objects (as listed by the R command objects()) are
implemented using a C ‘union’. This is a way of telling the C compiler
that a particular memory address may hold any one of several distinct
datatypes: in this case 23 types, corresponding to the different types of
R object.

This has several disadvantages:

The compiler doesn’t know which of the 23 types is occupying a
particular union block. Consequently all type checking must be
done at run-time; the possibilities of compile-time type checking
are not exploited.
Debugging at the C level is difficult.
Introducing a new type of R object means modifying a data
definition at the very heart of the interpreter.

How R Objects are Implemented in CR

In CR, all R objects (as listed by the R command objects()) are
implemented using a C ‘union’. This is a way of telling the C compiler
that a particular memory address may hold any one of several distinct
datatypes: in this case 23 types, corresponding to the different types of
R object.

This has several disadvantages:

The compiler doesn’t know which of the 23 types is occupying a
particular union block. Consequently all type checking must be
done at run-time; the possibilities of compile-time type checking
are not exploited.
Debugging at the C level is difficult.
Introducing a new type of R object means modifying a data
definition at the very heart of the interpreter.

The RObject Class Hierarchy

In CXXR, the various sorts of R objects are implemented using a C++ class
inheritance hierarchy rooted at RObject:

CXXR::RObject

CXXR::ConsCell

CXXR::Environment

CXXR::ExternalPointer

CXXR::FunctionBase

CXXR::Promise

CXXR::S4Object

CXXR::Symbol

CXXR::VectorBase

CXXR::WeakRef

CXXR::GCNode

CXXR::ByteCode

CXXR::DottedArgs

CXXR::Expression

CXXR::PairList

CXXR::BuiltInFunction

CXXR::Closure

CXXR::FixedVector< T, ST, Initializer >

CXXR::String

CXXR::CachedString

CXXR::UncachedString

(Based on a diagram produced by Doxygen.)

C++ code sees: typedef RObject∗ SEXP;

The RObject Class Hierarchy

In CXXR, the various sorts of R objects are implemented using a C++ class
inheritance hierarchy rooted at RObject:

CXXR::RObject

CXXR::ConsCell

CXXR::Environment

CXXR::ExternalPointer

CXXR::FunctionBase

CXXR::Promise

CXXR::S4Object

CXXR::Symbol

CXXR::VectorBase

CXXR::WeakRef

CXXR::GCNode

CXXR::ByteCode

CXXR::DottedArgs

CXXR::Expression

CXXR::PairList

CXXR::BuiltInFunction

CXXR::Closure

CXXR::FixedVector< T, ST, Initializer >

CXXR::String

CXXR::CachedString

CXXR::UncachedString

All R's built-in vector
types are implemented
using this single C++
class template

(Based on a diagram produced by Doxygen.)

C++ code sees: typedef RObject∗ SEXP;

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants.
Allow developers readily to extend the class hierarchy.

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants.
Allow developers readily to extend the class hierarchy.

The RObject Class Hierarchy
Objectives

As far as possible, move all program code relating to a
particular datatype into one place.
Use C++’s public/protected/private mechanism to conceal
implementational details and to defend class invariants.
Allow developers readily to extend the class hierarchy.

Extending the Class Hierarchy: Example
Introducing arbitrarily large integers

Suppose we wanted to write a package adding to R the
capability of handling arbitrarily large integers, drawing on the
GNU Multiple Precision Library at gmplib.org.
In fact there already is such a package: the GMP package by
Antoine Lucas et al. which does this and much more . . .
. . . however the purpose of this example is to show how CXXR
makes this task relatively straightforward. We’ll call our nascent
package MyGMP.

http://gmplib.org

Extending the Class Hierarchy: Example
Introducing arbitrarily large integers

Suppose we wanted to write a package adding to R the
capability of handling arbitrarily large integers, drawing on the
GNU Multiple Precision Library at gmplib.org.
In fact there already is such a package: the GMP package by
Antoine Lucas et al. which does this and much more . . .
. . . however the purpose of this example is to show how CXXR
makes this task relatively straightforward. We’ll call our nascent
package MyGMP.

http://gmplib.org

Extending the Class Hierarchy: Example
Adding NA to what the GNU library provides

The GNU MP library defines a C++ class mpz_class to represent an
arbitrarily large integer.

But an attractive characteristic of R is its ability to flag individual data
points as ‘not available’: NA. As it stands mpz_class does not have
this capability.

Fortunately, in CXXR we can put this right essentially in one line of
C++ code:

namespace MyGMP {
typedef CXXR: : NAAugment<mpz_class> B i g I n t ;

}

This type definition gives us a new C++ class which can represent an
arbitrarily large integer or ‘NA’. This is set up in such a way that
CXXR’s generic algorithms can detect and handle NAs with little or no
attention from the package writer.

Extending the Class Hierarchy: Example
Adding NA to what the GNU library provides

The GNU MP library defines a C++ class mpz_class to represent an
arbitrarily large integer.

But an attractive characteristic of R is its ability to flag individual data
points as ‘not available’: NA. As it stands mpz_class does not have
this capability.

Fortunately, in CXXR we can put this right essentially in one line of
C++ code:

namespace MyGMP {
typedef CXXR: : NAAugment<mpz_class> B i g I n t ;

}

This type definition gives us a new C++ class which can represent an
arbitrarily large integer or ‘NA’. This is set up in such a way that
CXXR’s generic algorithms can detect and handle NAs with little or no
attention from the package writer.

Extending the Class Hierarchy: Example
Vectors of BigInts

So far we can represent an individual BigInt. But of course R works
primarily with vectors (or matrices or higher dimensional arrays). We
can introduce vectors/matrices/array of BigInts into CXXR
essentially with one further line of C++ code:

namespace MyGMP {
typedef CXXR: : FixedVector <B ig In t ,

CXXSXP,
ApplyBig In tClass > B ig In tVec to r ;

}

BigIntVectors have now joined the RObject class hierarchy
alongside the built-in data vector types. We can now assign
BigIntVectors to R variables, and facilities such as garbage
collection, copy management, dimensioning and so on are
automatically in place.

Extending the Class Hierarchy: Example
Vectors of BigInts

So far we can represent an individual BigInt. But of course R works
primarily with vectors (or matrices or higher dimensional arrays). We
can introduce vectors/matrices/array of BigInts into CXXR
essentially with one further line of C++ code:

namespace MyGMP {
typedef CXXR: : FixedVector <B ig In t ,

CXXSXP,
ApplyBig In tClass > B ig In tVec to r ;

}

BigIntVectors have now joined the RObject class hierarchy
alongside the built-in data vector types. We can now assign
BigIntVectors to R variables, and facilities such as garbage
collection, copy management, dimensioning and so on are
automatically in place.

Binary Operations in R

Consider a binary operation
on R vectors:

vr <− v1∗v2

Basically this involves
determining each element
of the result by applying the
binary operation to the
corresponding elements of
the two operands, so for
example vr [1] is set to
v1[1]∗v2[1].

But there are complications. For example:
If either operand element is NA, the
corresponding result element must be set
to NA.

If the operands are of unequal length, the
elements of the shorter operand are
reused in rotation. But give a warning if
its length is not a submultiple of that of
the longer operand.

Attributes (e.g. element names) of the
result must be inferred somehow from the
corresponding attributes of the operands.

Further complications if the operands are
matrices or higher dimensional arrays.

Binary Operations in R

Consider a binary operation
on R vectors:

vr <− v1∗v2

Basically this involves
determining each element
of the result by applying the
binary operation to the
corresponding elements of
the two operands, so for
example vr [1] is set to
v1[1]∗v2[1].

But there are complications. For example:
If either operand element is NA, the
corresponding result element must be set
to NA.

If the operands are of unequal length, the
elements of the shorter operand are
reused in rotation. But give a warning if
its length is not a submultiple of that of
the longer operand.

Attributes (e.g. element names) of the
result must be inferred somehow from the
corresponding attributes of the operands.

Further complications if the operands are
matrices or higher dimensional arrays.

Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed (ignoring NA), e.g.
the multiplication operation defined for mpz_class by the GNU
MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).

Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed (ignoring NA), e.g.
the multiplication operation defined for mpz_class by the GNU
MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).

Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed (ignoring NA), e.g.
the multiplication operation defined for mpz_class by the GNU
MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).

Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed (ignoring NA), e.g.
the multiplication operation defined for mpz_class by the GNU
MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).

Generic Algorithm for R Binary Functions

CXXR defines a generic algorithm (based on the C++ class template
CXXR::VectorOps::BinaryFunction) for implementing R binary
functions, and makes it available to package C++ code via the CXXR
API.

To use this algorithm the package writer need only specify:

The elementwise operation to be performed (ignoring NA), e.g.
the multiplication operation defined for mpz_class by the GNU
MP library.
The two operands.
The type of vector (or other vector-like container) to be produced
as the result.
The way in which attributes of the result (e.g. row and column
names) are to be inferred from the operands (and usually a default
value suffices for this).

Extending the Class Hierarchy: Example
Multiplying vectors/arrays of arbitrarily large integers

Package R code:

‘ ∗ . B ig In t ‘ <− function (v l , v r) {
. Cal l ("MyGMP_ m u l t i p l y " , as . b i g i n t (v l) , as . b i g i n t (v r))

}

Package C++ code:

extern "C" {
B ig In tVec to r ∗ MyGMP_multiply (const B ig In tVec to r ∗ v l ,

const B ig In tVec to r ∗ vr)
{

using namespace CXXR: : VectorOps ;
return

BinaryFunct ion <Genera lB inaryAt t r ibu teCop ie r ,
s td : : m u l t i p l i e s <mpz_class> >()

. apply <B ig In tVec to r >(v l , v r) ;
}

}

Extending the Class Hierarchy: Example
Computing factorials

With very little programming at the package level, we are already in a
position to calculate some largish factorials:

> f <− as . b i g i n t (c (1 :20 , NA))
> for (i i n 3 :21) f [i] <− f [i] ∗ f [i −1]
> f

[1] " 1 " " 2 " " 6 "
[4] " 24 " " 120 " " 720 "
[7] " 5040 " " 40320 " " 362880 "

[1 0] " 3628800 " " 39916800 " " 479001600 "
[1 3] " 6227020800 " " 87178291200 " " 1307674368000 "
[1 6] " 20922789888000 " " 355687428096000 " " 6402373705728000 "
[1 9] " 121645100408832000 " " 2432902008176640000 " NA

Subscripting in R

R is renowned for the power of its subscripting operations.

The R Language Definition document devotes over four of its 51 pages
to describing subscripting facilities. . . and even that doesn’t tell the
whole story.

The CR interpreter includes about 2000 C-language statements to
implement these facilities.

But this C code is effectively ‘locked up’ for two related reasons:

it isn’t made available via a documented API,
it is hard-wired around CR’s built-in data types.

This code is buried treasure—it is not, as it stands, suitable for
providing subscripting facilities for our BigIntVectors.

Subscripting in R

R is renowned for the power of its subscripting operations.

The R Language Definition document devotes over four of its 51 pages
to describing subscripting facilities. . . and even that doesn’t tell the
whole story.

The CR interpreter includes about 2000 C-language statements to
implement these facilities.

But this C code is effectively ‘locked up’ for two related reasons:

it isn’t made available via a documented API,
it is hard-wired around CR’s built-in data types.

This code is buried treasure—it is not, as it stands, suitable for
providing subscripting facilities for our BigIntVectors.

Subscripting in R

R is renowned for the power of its subscripting operations.

The R Language Definition document devotes over four of its 51 pages
to describing subscripting facilities. . . and even that doesn’t tell the
whole story.

The CR interpreter includes about 2000 C-language statements to
implement these facilities.

But this C code is effectively ‘locked up’ for two related reasons:

it isn’t made available via a documented API,
it is hard-wired around CR’s built-in data types.

This code is buried treasure—it is not, as it stands, suitable for
providing subscripting facilities for our BigIntVectors.

CXXR’s Subscripting Class

CXXR’s Subscripting class aims to encapsulate R’s subscripting
facilities within a number of generic algorithms.

These algorithms abstract away from:

The type of the elements of the R vector/matrix/array. (BigInts
work just fine!)
The data structure used to implement the vector/matrix/array itself.
This opens the door to using the algorithms with packed data (e.g.
A/T/G/C DNA bases), or with vector structures for large datasets
which hold data on disk (in the style of the ff package).

CXXR’s Subscripting Class

CXXR’s Subscripting class aims to encapsulate R’s subscripting
facilities within a number of generic algorithms.

These algorithms abstract away from:

The type of the elements of the R vector/matrix/array. (BigInts
work just fine!)
The data structure used to implement the vector/matrix/array itself.
This opens the door to using the algorithms with packed data (e.g.
A/T/G/C DNA bases), or with vector structures for large datasets
which hold data on disk (in the style of the ff package).

Extending the Class Hierarchy: Example
Subassignment: ‘[<-‘

Package R code:

‘ [<− . B ig In t ‘ <− function (v , . . . , value) {
. External ("MyGMP_ b ig in t subass ign " , v , as . b i g i n t (value) , . . .)

}

Package C++ code:

extern "C" {
B ig In tVec to r ∗ MyGMP_bigintsubassign (const P a i r L i s t ∗ args)
{

args = args−> t a i l () ;
B ig In tVec to r ∗ l hs

= SEXP_downcast< B ig In tVec to r ∗>(args−>car ()) ;
args = args−> t a i l () ;
const B ig In tVec to r ∗ rhs

= SEXP_downcast<const B ig In tVec to r ∗>(args−>car ()) ;
args = args−> t a i l () ;
return Subsc r ip t i ng : : subassign (lhs , args , rhs) ;

}
}

In the Pipeline: Serialization

At the moment there is no provision for BigIntVectors to be saved
at the end of an R session, and subsequently restored.

Work is in progress on a new (CXXR-specific) approach to serialization
of R objects, with the intention that there will be an easy-to-use
framework for package writers to have objects of package-supplied
C++ classes (such as BigIntVector) serialized/deserialized along
with other session data.

Outline

1 CXXR

2 The RObject Extensible Class Hierarchy

3 Conclusion

Summary

CXXR aims to open up the R interpreter to
developers. In particular:

Objects visible to R are implemented
using a C++ class hierarchy which
developers can easily extend.
Key algorithms embodying R
functionality are being rewritten at a
higher level of abstraction and published
via the CXXR API.

Summary

CXXR aims to open up the R interpreter to
developers. In particular:

Objects visible to R are implemented
using a C++ class hierarchy which
developers can easily extend.
Key algorithms embodying R
functionality are being rewritten at a
higher level of abstraction and published
via the CXXR API.

Functionality Now in CXXR Core

Memory allocation and garbage collection.
SEXPREC union replaced by an extensible class hierarchy rooted
at class RObject.
Environments (i.e. variable→object mappings), with hooks to
support provenance tracking.
Expression evaluation. (S3 method despatch partially refactored;
S4 despatch not yet refactored.)
Contexts and indirect flows of control (with some loose ends).
Unary and binary function despatch. [-subscripting.
Object duplication is now handled by C++ copy constructors. (In
an experimental development branch, object duplication is
managed automatically, removing the need for NAMED() and
SET_NAMED().)

Conway’s ‘Game of Life’

CPU time for 100 iterations over a square matrix with wraparound
(toroidal topology):

Grid size CR CXXR
(secs) (secs)

32× 32 0·047 0·053
64× 64 0·168 0·191

128× 128 0·686 0·743
256× 256 3·084 3·004
512× 512 33·402 14·239

1024× 1024 144·386 60·128

The tests were carried out on a 2.8 GHz Pentium 4 with 1 MB L2
cache, comparing R-2.12.1 with CXXR 0.35-2.12.1.

CRAN Packages Tested
for useR! 2010 paper

Paper at useR! 2010 explored the compatibility of CXXR with 50 key
packages from CRAN: those on which the largest number of other
CRAN packages depend.

abind gdata MEMSS RColorBrewer scatterplot3d
akima gee mix rgl slam
ape gtools mlbench rlecuyer snow
biglm kernlab mlmRev Rmpi sp
bitops leaps multicore robustbase SparseM
car lme4 mvtnorm RODBC timeDate
coda logspline numDeriv rpvm timeSeries
DBI mapproj nws rsprng tkrPlot
e1071 maps quantreg RSQLite tripack
fBasics mclust randomForest RUnit xtable

Package versions were those current on 2010-05-05.

Apart from fixing latent bugs, only
three lines of package code needed
to be modified for all the tests in-
cluded in the packages to pass.

All these changes were in package
C code, never R code.

CRAN Packages Tested
for useR! 2010 paper

Paper at useR! 2010 explored the compatibility of CXXR with 50 key
packages from CRAN: those on which the largest number of other
CRAN packages depend.

abind gdata MEMSS RColorBrewer scatterplot3d
akima gee mix rgl slam
ape gtools mlbench rlecuyer snow
biglm kernlab mlmRev Rmpi sp
bitops leaps multicore robustbase SparseM
car lme4 mvtnorm RODBC timeDate
coda logspline numDeriv rpvm timeSeries
DBI mapproj nws rsprng tkrPlot
e1071 maps quantreg RSQLite tripack
fBasics mclust randomForest RUnit xtable

Package versions were those current on 2010-05-05.

Apart from fixing latent bugs, only
three lines of package code needed
to be modified for all the tests in-
cluded in the packages to pass.

All these changes were in package
C code, never R code.

Creating a BigIntVector

The R function bigint defined below creates a zero-filled vector of
bigints of a specified length:

Package R code:

b i g i n t <− function (length) {
. Cal l ("MyGMP_makebig int " , as . integer (length))

}

Package C++ code:

extern "C" {
B ig In tVec to r ∗ MyGMP_makebigint (const I n tV e c t o r ∗ arg)
{

i f (arg−>s ize () == 0)
Rf_er ro r (_ (" i n v a l i d ’%s ’ argument ") , " leng th ") ;

i n t sz = (∗ arg) [0] ;
i f (sz < 0)

Rf_er ro r (_ (" i n v a l i d ’%s ’ argument ") , " leng th ") ;
return CXXR_NEW(B ig In tVec to r (sz , B i g I n t (long (0)))) ;

}
}

	CXXR
	The RObject Extensible Class Hierarchy
	Conclusion
	Extras

