
Memops: Data modeling and
automatic code generation in multiple languages

Rasmus H. Fogh1, Wayne Boucher1, Wim F. Vranken2, Anne Pajon2, Tim J.
Stevens1, T.N. Bhat3, John Westbrook4, John M.C. Ionides2 and Ernest D. Laue1

1Department of Biochemistry, University of Cambridge,
80 Tennis Court Road, Cambridge, CB2 1GA, UK
{r.h.fogh, wb104, tjs23, e.d.laue}@bioc.cam.ac.uk

2MSD group, EMBL-EBI, European Bioinformatics Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK

{wim, pajon, jmci}@ebi.ac.uk
3Biotechnology Division (831), NIST,

100 Bureau Drive, Stop 8310, Gaithersburg, MD 20899-8314, USA
bhat@nist.gov

4Department of Chemistry and Chemical Biology, Rutgers University, Rutgers,
State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854-8087, USA

jwest@rcsb.rutgers.edu

Abstract The Memops framework is a tool for data modelling and the fully automatic
generation of subroutine libraries for data access in multiple computer languages. The data
model is entered in a UML subset similar to XMI. Code is generated automatically for
several languages, with Python and Java being supported so far, and C/C++ and Perl support
planned. The product includes an object-oriented data interaction API and its implementation,
complete with data validation and checking and a notifier facility. Data storage in either XML
files or relational databases is integrated in the data access subroutines. XML and database
schemas and documentation is also generated from the UML model.

To achieve long-term maintainability across different platforms, Memops uses a single
platform-independent model directly as the basis for code generation. Platform-specific
information, which cannot be completely dispensed with, is entered in the UML model as a
series of tagged values. As an example, model-specific, language-specific code is kept in the
model as code snippets. These amount to less that 1 per cent of the final generated code. The
approach is successful because Memops is targeted to a limited field - data modelling and
data access. Memops is currently used for a data model in the structural biology field with
300 classes. A Python API (250 000 lines), and a number of applications based on it have
been released.

1 Introduction

1.1 Project Goals

Memops is a product of the CCPN project [1], which was funded by the BBSRC
to create a data exchange standard for the field of macromolecular NMR
spectroscopy. Such a standard should allow a conforming application to modify data
in a plug-and-play manner, with all modifications being kept for eventual database
deposition. As might be expected in a developing scientific field, the situation facing
CCPN was characterised by a substantial agreement on the kinds of data that needed
to be stored, a great variety of potential uses and algorithms for exploiting the data,

and the expectation of significant future changes for both. Organisationally, existing
software in the field was developed by a large number of poorly resourced academic
groups, each making its own choices with respect to platforms, programming
languages, and data representation and storage. The resulting programs tended to be
closely attuned to the needs of local users, but to have severe problems with respect
to interoperability and long-term maintenance because of the lack of coordination
and resources. With the rise of structural biology and high-throughput methods,
however, there was an increasing need for automation, for joining different analysis
programs together into software pipelines, and for large-scale harvesting and
deposition of data.

1.2 MDA and Autogeneration

Model-Driven Architecture and automatic code generation seemed the only way
of achieving a data exchange standard capable of being adopted and used in the
field. In the absence of a mechanism for enforcing compliance, a standard could only
hope to be adopted if it allowed programmers to continue working with their
favourite platform. To make the changeover attractive the model must come with
enough functionality in its subroutine libraries to actually make it easier to develop
applications with the Memops libraries than without them. With MDA the
underlying model could be precisely specified to serve as a standard, and at the same
time implementations could be provided for a variety of programming languages and
storage platforms. As a corollary, something very close to fully automatic code
generation is indispensable to allow supporting highly functional subroutine libraries
across multiple platforms with a realistic expenditure of resources. Not finding a
suitable application at the start of the project, we decided to develop Memops to
meet the twin requirements of simultaneous multi-platform support and 100%
automatic code generation.

2 The Data Model

A data model is a description of the data for a particular subject area, how they are
defined and organized, and how they relate to one another. In Memops, the data
model serves as the specification for all generated code, in keeping with the Memops
strategy of providing a data access layer rather than a complete application

2.1 Model organization - packages

A Memops data model is represented as a platform-independent model in UML.
Memops uses a UML subset very similar to the XMI subset used for metamodel
definition, with some additional tagged values. The model is generated with a
standard UML editing program.

The model is subdivided in packages, which ideally should represent separate
domains of knowledge and be loosely coupled to other packages. Packages serve to
organize both the model description, the generated subroutine libraries, and the
storage of the actual data. The purpose of this organization is to allow an application
(or a data modeler) to work on part of a multidisciplinary project without having to
consider either code or data for packages that are not relevant in the context. This

also facilitates the production of integrated data standards for large areas of
knowledge, since widely separated domains can have full control over their own
packages, while sharing packages for domains that are in common.

Fig. 1 A simplified part of the CCP macromolecular Data Model. Only
composition (‘parent’) links, attributes making up the class key, and some of the
more important links are shown. Dotted lines separate different model packages.

2.2 Model Organization - Relationships between Classes

There are some constraints on the allowed models to permit simple and efficient
API implementations (see Fig. 1 for an illustration). All classes must have a
composition association to another class, known as the ‘parent’ class (not to be
confused with inheritance). The ‘parent’ links connect all data objects into a tree
with a single root object. This has the dual purpose of providing a clear navigation
path between any pair of objects, and of specifying a containment hierarchy for

XML storage. There is a further requirement that any class must have a set of
attributes (or links) that uniquely identifies each object relative to sister objects with
the same parent. If no natural key is present, an integer ‘serial’ must be provided.
Combined with the tree of ‘parent’ links this provides a unique, persistent, composite
identifier for each object without relying on absolute URLs or locally generated
random integers, either of which may change with time. These identifiers are used to
specify inter-file links between objects for XML storage.

2.3 Methods and Constraints

Class methods are mostly implicit in the model, as the methods needed for data
access (see section 4.5) can be generated fully automatically once the data type and
cardinalities of an attribute are known. Methods are specified explicitly if their
behavior differs from the standard, or if it is desired to provide additional
functionality. A case in point is derived attributes and links. These are specified to
behave like normal attributes as far as the interface is concerned, but are calculated
on-the-fly rather than stored; here the necessary derivation functions must be
specified. When specifying a method (or a constraint) code snippets are added for the
supported languages (currently Python and Java). For the future it is considered to
enter code snippets in OCL, and to provide automatic translation to the supported
languages [2].

Constraints may be entered on attributes, links, classes and data types, in the same
way as for methods. These constraints are then evaluated either before modifying .
ed/data or in a validity checking step, and serve to prevent illegal data from being
entered.

3 Automatic Code Generation

As illustrated in Figure 2, subroutines for data interaction (APIs), data storage,
and documentation are all generated automatically from the abstract data model.
Autogeneration guarantees that all of the generated documents are synchronized,
greatly simplifying the maintenance of the project. For API implementations, I/O
routines, and even documentation, over 99% of the final code (or documentation)
can be generated fully automatically from the data model itself. The remaining 1%
is added to the model in the form of tagged values with code snippets or
documentation strings, or written to a separate file as backward-compatibility I/O
code. As a result there is no post-generation editing, and the generated code is ready
for use immediately after generation.

3.1 The Generation Process

The automatic code generation is a two-stage process. In the first stage the
information describing the model is extracted from the UML modeling tool
(ObjectDomain [3]), transformed into a set of Python objects in memory, and then
written to a set of files. In the second stage these files are read to recreate a set of in-
memory Python objects, which then form the basis for the various generation scripts.
This approach decouples the generation process from the UML modeling tool, and

allows the substitution of other tools at the price of changing only a single module of
the generation software.

Fig. 2 Implementation of Memops code generation. Users interact with
applications or deposition tools as before, while software developers use the APIs to
interact with the underlying data. The actual data model is written by domain
experts in a separate process with limited programming input. APIs and their
implementations, storage format descriptions, I/O routines and documentation are all
generated automatically from the UML data model, to the extent of over 99%. The
APIs will remain stable over time even when the underlying data formats or data
model change, thus insulating application programs from future changes.

3.2 Generated Libraries

Generated libraries include Python and Java API implementations, XML and SQL
schemas, subroutines and mappings for I/O, and documentation. Most of these are
essentially one-to-one mappings of the model. A class in the model will correspond
to a Java or Python class, an XML element, or an SQL table. The same name, or an
automatic derivation of it, is used throughout, to avoid the need for special mapping
files. Given the nature of the platforms a one-to-one mapping is not, however,
enough. XML requires extra elements for some attributes and links, relational
databases require extra tables for many-to-many associations etc., but in each case
the extra code follows directly from the nature of the model without requiring (or
allowing) extra input. There is of course an infinite number of ways of making e.g.
Python API implementations or XML schemas that correspond to a given data
model. The goal of MEMOPS is in each case to derive one useful implementation in
a simple and fully automatic way, rather than to make the process customizable by
the application programmer or data model developer.

4 The API implementation

The use of APIs (rather than data formats or models) as the invariant target for
application programmers’ efforts has a number of advantages for software
integration and interoperability. APIs can be designed to be less tied to the precise
detail of the underlying model than e.g. a parser would be, as they represent a higher
level of abstraction. This allows the API to protect applications that use it from
having to modify their code even as the data model changes. Additions to the model
are especially easy to handle, since the addition of new functions to an API does not
interfere with the existing ones. Changes in names, or in which data are stored and
which are calculated on the fly are also relatively unproblematic, and it will
frequently be possible for the API to accommodate even more fundamental changes
in the structure of a data model.

4.1 General Architecture

For an application programmer the impact of using the Data Model is determined
mainly by the APIs. The quality and ease of use of the API implementations is
therefore extremely important. Memops API implementations are optimized for
querying, for maintaining consistency in the presence of continuously changing data,
and for supporting multiple projects with multiple users using different approaches
and techniques. Automatic code generation in itself reduces the potential for bugs
and guarantees a consistent style across the entire body of code. In addition, the
APIs have been designed to include a wide range of functionality. Comprehensive
validity checking is incorporated in all operations that modify data, to ensure that the
data remain in a consistent and legal state. Data loading is done automatically, and
the API keeps track of which data packages are modifiable, or have been modified
and thus require saving.

The Memops APIs were designed as interfaces not to a specific XML file, but to a
single, consistent representation of the data in a project. The prototype use case in
structural biology research, where applications should be able to work directly off
the generated API, accessing all relevant data, leaving the project accessible to any
other conformant program, with information carried along towards an eventual
deposition of the data. The emphasis on consistency checking, on persistent
identifiers, and the decision not to use URL-based link mechanisms, arise from these
considerations.

4.2 Notifiers

A notification facility is built into the API, to facilitate the building of graphical
user interfaces (GUIs). The notifier registers a function to be called, with the
relevant object as a parameter, when a given method is executed or when a given
type of object is created, modified, or deleted. This can be a great simplification for
GUI coding. By registering a notifier for e.g. creation and deletion of e.g. Molecule
objects, a GUI could keep a list of all current molecules without having to change the
code actually handling the molecule objects.

4.3 Storage management

The current API interacts with data stored in a mixture of XML files and local or
remote databases. The price for this flexibility is that data must be loaded essentially
one file at a time, which would be appropriate for situations where each project is
accessed mainly by one person at a time. Data storage is by package, and each
package may be stored in an XML file or database, locally or remotely. The
Implementation package, which is loaded first, contains the storage locations for all
other data. These are then loaded automatically by the API when the data they
contain are needed. The API keeps track of which packages have been loaded and
which have been modified (and should therefore be saved). Packages can also be
marked as read-only, which will prevent attempts to modify the data they contain.

An alternative API implementation (currently in alpha test) provides concurrency,
security and fine-grained control for simultaneous, multi-user access, transaction
control, and roll-back, but this implementation depends on all the data being kept in
a single database.

4.4 Derived Attributes

‘Derived’ attributes and roles follow the same syntax as real attributes and roles,
but are in practice a convenient way of executing function calls. In a data model for
person data, for instance, one could store each person separately, with links from
children to their parents. A derived attribute ‘mothersMaidenName’ could then
return the appropriate value without making it necessary to store the mother’s
maiden name in the model. If the model is changed so that an attribute is no longer
stored explicitly, a derived attribute that mimics it can be added to avoid breaking
existing code. Derived attributes and roles are especially useful since it is
recommended that models be fully normalized, so that each piece of information is
stored in only one place. If a piece of data is of interest in several places, derived
attributes can make it available in all of them without duplication of the stored
information.

4.5 Example - the Python API

The Python API consists of a Python class for each class in the model. Each class
comes with a creation method (an __init__ in Python parlance), a delete method, and
a checkValid method. Attributes and roles can be accessed and set using the normal
Python ‘object.attribute=value’ syntax, but the code is organized using the Python
‘properties’ mechanism, so that these accesses are intercepted and passed to the
relevant ‘set’ and ‘get’ methods. Access methods are generated from the model
depending on the cardinality of the attribute/role. A single attribute, e.g. ‘name’, will
give rise to methods ‘getName’ and ‘setName’, as will a single role. Multiple
attributes will have two additional methods, so that you have e.g. getKeywords,
setKeywords, addKeyword, and removeKeyword methods. Multiple roles will have
a further three, e.g. findFirstAtom, findAllAtoms, and pickAtom; these methods
select one or more atoms, either by filtering on their attribute and role values (the
two ‘find’ methods) or by index (the ‘pick’ method).

Data are organized for fast retrieval rather than fast modification. Associations
are stored at both ends, so that an employer knows his employees and an employee
his employer, as it were. The API makes sure that the two ends of associations are
kept consistent even if only one of them is explicitly modified, so that
employer.addEmployee(newEmployee) and newEmployee.setEmployer(employer)
will have the same effect. Validity checking code is built into all commands that
modify attributes and roles, so that modifications that make the data illegal are
prevented. Newly created objects are checked for validity after creation. The delete
method works in a different way: If deleting object A makes object B invalid (e.g.
because there was a mandatory link from B to A), object B will be deleted as well in
a cascading delete.

5 Conclusions

5.1 Project Status

The Memops project has already matured sufficiently to prove that the approach
works. The autogenerated Python API has been released, in the version based on
XML data storage. It serves as the foundation for a couple of major scientific
applications developed by CCPN, and is being interfaced with a number of other
applications in the core area of CCPN, macromolecular NMR spectroscopy. The data
model is being expanded into the area of (bio)chemical laboratory information
management, and a Java API based on database storage is released in an alpha
version. To illustrate the size of the project, the current model contains 318 classes,
with 290 000 lines of code in the Python API implementation and 819 000 lines of
HTML documentation.

5.2 Discussion

The decision to use a single platform-independent model as the basis for
automatic code generation for several platforms has proved to work in practice, and
has contributed greatly to the maintainability of projects using Memops. Of course it
could be argued that the use of implementation-specific tagged values has confused
the issue. The crucial factor, in our opinion, is that Memops is limited to generating
data access layers, in a broad sense. This makes the problem sufficiently small and
well-defined to allow the generation of efficient code from the platform-independent
model with an efficiency of over 99%. It does not follow that a similar approach
would be appropriate (or successful) in projects with a wider scope.

References

1. http://www.ccpn.ac.uk and references mentioned therein.
2. Akehurst D.H., and Patrascoiu, O.: Tooling Metamodels with Patterns and
 OCL. Proceedings of ‘Metamodelling for MDA’, York, UK, November 2003.
3. http://www.objectdomain.com

