
MDA-Driven Development of standard-compliant OSS
components: the OSS/J Inventory Case-Study

Nektarios Georgalas1*, Manooch Azmoodeh**

BT Group, UK
Tony Clark***, Andy Evans***, Paul Sammut***, James Willans***

Xactium Ltd, UK

*georgan@acm.org

**manooch.azmoodeh@bt.com

***[firstName.surname]@xactium.com

Abstract: The telecommunications-oriented Operational Support Systems (OSS) industry have
recognised the value of technology independent modelling of OSS solutions as a way to reduce cost,
add agility, validate and verify solution designs against architectural guidelines of an enterprise and
most importantly provide traceability in the design methodology process. The challenges faced by the
OSS community is how MDA tools can deliver the promise of advanced meta-modelling, model
definition and validation and model transformation for both OSS software components and integration
logic in the larger OSS landscape. This paper describes how an advanced extensible meta-modelling
tool is used to build an OSS component following best practice industry guidelines. Extended MOF,
extended executable OCL and a powerful transformation language are used to capture the constraints
in the meta-models as well as models followed by complete, 100% code generation from models.
Furthermore, meta-models are also developed to capture graphical user interface elements in
conjunction with the inventory data models, which are then automatically translated into code. This
work is the precursor for defining extensive meta-models for a component-based OSS infrastructure
based on industry best practice, for adding high degree of formality to model specifications and for
enabling the verification of domain requirements by executing the models through model snapshot
creation, way before system implementation takes place.

Keywords: OSS, OSS/J, NGOSS, TMF, Component, Contract, OMG MDA, TNA,TSA, meta-modelling
executable OCL, Inventory System, IP VPN

1 Introduction
Developing and operating Operational Support Systems (OSS) for
telecommunications companies (telcos) is a very expensive process whose const
continuously grows year on year. With the introduction of new products and services,
telcos are constantly challenged to reduce the overall costs and improve business
agility in terms of faster time-to-market for new services and products. It is
recognised that the major proportion of overall costs is in integration and maintenance
of OSS solutions. Currently, the OSS infrastructure of a typical telco comprises an
order of O(1000) systems all with point-to-point interconnections and using diverse
platforms and implementation technologies. The telcoms OSS industry has already
established the basic principles for building and operating OSS through the TMF
NGOSS programme [NGOSS] and the OSS through Java initiative [OSSJ]. In
summary, the NGOSS applies a top-level approach through the specification of an
OSS architecture where:

• Technology Neutral and Technology Specific Architectures are separated
• The more dynamic “business process” logic is separated from the more stable

“component” logic

1 Address: Adastral Park, Orion Building – Ground Floor pp13, Martlesham Heath, Ipswich, IP5 3RE,
UK

mailto:**manooch.azmoodeh@bt.com

• Components present their services through well defined “contracts”
• “Policies” are used to provide a flexible control of behaviour in an overall

NGOSS system
• The infrastructure services such as naming, invocation, directories, transactions,

security, persistence, etc are provided as a common deployment and runtime
framework for common use by all OSS components and business processes over a
service bus.

Complementary to NGOSS is the low-level approach of the OSS/J, which provides a
set of standard Java-based interface specifications with a roadmap for producing APIs
covering the entire landscape of the OSS space (Trouble Ticketing, QoS monitoring,
Inventory, Billing, SLA management, etc.). These specifications provide a technology
specific set of OSS functional capabilities and as such can be a basis for building an
implementation view of an OSS using J2EE platform.

Business System

ImplementationDeployment

Service Providers
View

Service Developers
View

Technology
Neutral
View

Technology
Specific

View

Business Capabilities,
Constraints & Context

System Capabilities,
Constraints & Context

Implementation Capabilities,
Constraints & Context

Deployment Capabilities,
Constraints & Context

Figure 1 - NGOSS lifecycle methodology

In addition to the above, NGOSS has defined a methodology for developing OSS
solutions emphasising separation of concerns so that different actors in the overall
design process are freed from polluting their models with details and aspects of other
areas. Figure 1 shows four different lifecycle stages or views identified by the
NGOSS methodology, namely, business, system, implementation and deployment
view. The top row shows the logical views of the systems, which are technology
neutral. The business view captures business contracts, business processes, entities
and interactions (using the eTOM [eTOM] and SID [SID] standards) without
reference to how they are realised using automated computer systems. The System
view provides the computational interactions among automated components,
processes and policies. The bottom row shows the physical view of system, which are
intrinsically technology specific, where on the right, the implementation view
contains the hardware and software to construct the system and on the left the
deployment view captures the instance level operating systems and active monitoring
of the system.

One of the main goals of the NGOSS lifecycle is to provide traceability from business
requirements to systems descriptions to implementation details and finally to
deployed systems, thus traversing from the top-level, technology neutral NGOSS
specifications to the low-level, Java-based APIs and J2EE architectural principles of

OSS/J. The MDA technology [MDA] is identified as the key enabler for providing
such automated traceability in an NGOSS environment. The main goal of our research
is to use MDA standards and tools to define meta-models and transformation rules
around the lifecycle so that various models and views in the lifecycle can be verified
for correctness and completeness as well as auto-generating these models and
systems. First research results presented in [Georgalas 2004] focused upon the
applicability of an MDA enabled OSS architecture in a telcoms environment and a
generic technology independent NGOSS component specification.

In this paper, we describe how an advanced meta-modelling toolkit, the XMF from
XACTIUM [XACTIUM] in particular, can be practically used to specify and
automatically generate a complete system implementation of a single OSS
component. As an example, the component at issue is based on the OSS/J Inventory
API specification and can manage models as well as instances of products, services
and resources within a telco environment. The paper, also, shows the use of a
constraint language, which is a version of OCL extended with imperative constructs
making it a powerful formalism for representing complete behavioural specifications
at the modelling level. Furthermore, meta-model transformations that automatically
derive the component implementation are demonstrated and specified in XMap, a
transformation rule language embedded in XMF with a powerful pattern matching
capability.

The remainder of the paper is structured as follows. Section 2 will introduce the
rationale for choosing the OSS/J Inventory API, present an inventory domain-specific
language meta-model with an example inventory PIM that instantiates the meta-model
and describe a mapping of the inventory language onto a Java and tool meta-model in
order to drive the automatic generation of an inventory application tool. Section 3 will
discuss a number of lessons learned from this study. Section 4 finally will complete
the paper with concluding remarks on the presented work and a description of further
research plans.

2 A Case-Study: the OSS/J Inventory
The merits of MDA have been formally recognised by the TMF as it is signified, on
one hand, by the recently announced strategic alliance between TMF and OMG and,
on the other, by the similarities encountered between MDA and the NGOSS
methodology [Strassner 2004]. This leaves little doubt that MDA will play a
significant role in the telcoms industry and in particular in the development process of
telcoms OSS. Nevertheless, however much appraised at a strategic level, there is no
evidence for the use of MDA in practice to develop OSS solutions2. With intent on
investigating the full power of MDA in the context of OSS solution design, we
embarked upon a small scale case-study aiming to generate a fully functional OSS
component implementation driven solely by technology neutral model specifications.

The case-study was based upon OSS component APIs specified in Java and J2EE by
OSS/J. OSS/J have issued a document with standard J2EE architectural patterns and
design guidelines all OSS component specifications [Gauthier 2001] should comply

2 The authors have not found any case-studies reported in the relevant literature. Furthermore, even
within the TMF’s Catalyst programme, where TMF member companies collaborate to build
demonstrators that apply the TMF standards in practice, no project has been setup as of yet with clear
focus on the use of MDA to develop OSS solutions.

with. In order to test conformance to the defined specifications and guidelines in
practice, OSS/J additionally produce reference component implementations and
technology compatibility kits. The case-study was specifically driven by the OSS/J
Inventory component API [Gauthier 2004] and set as its goal to prove the ability to
automatically conduct such compliance tests by means of MDA. This end acquired
more value by the fact that this particular API specification lacks, as of yet, a
reference implementation and compatibility kit that would permit its practical
validation. Given short project budget and timescale limitations, the study made
careful assumptions, where necessary, in order to simplify the API’s complexity
without compromising its results.

The exercise targeted to a twofold outcome, as shown in Figure 2:

• Automatic generation of PSMs conformant to the eTOM SID standard: The

OSS/J Inventory specification document includes a UML class diagram of an
inventory meta-model and some textual, i.e. informal, description of its semantics.
The meta-model defines the types of information/content the inventory will
manage, such as products, services and resources. These types stem from a bigger
model, namely, the Core Business Entities [Reilley 2004], that OSS/J have
defined in line with entities and interfaces encountered in eTOM SID for use by
the OSS/J component APIs. In the case-study, we will be capturing the meta-
model and some of its semantics in an MDA environment and instantiate it with
example PIMs. Based on transformation rules, technology-specific representations
for entities of an inventory PIM will be automatically generated. These
representations collectively form a PSM. The PSM entities in this case will
actually be Java classes or EJBs (entity beans) representing, one for one, the
inventory PIM entities. While the case-study generated technology specific
outputs in Java and EJB, the paper will focus only on the Java ones.

• Automatic generation of a system implementation conforming to standard

OSS/J architectural patterns and design guidelines: While the PSM entities,
i.e. Java classes or entity beans, bear the structure and deliver the behaviour of
inventory entities as described in the original inventory PIMs, end-users should
not interact directly with these entities. Rather, entities should be accessed through
a single interface that exposes a simple set of management methods and hides
their complexity. This is a standard OSS/J design guideline, which conforms to
the façade design pattern and influences the architectural design of OSS/J
components. In order to comply with the OSS/J guideline, the case-study aims at
implementing an application tool that allows users to manage the inventory
content through a simple GUI. Example users of such a tool may be front-desk
operators who respond to customer calls and access the inventory to setup a new
or change the state of an existing product/service instance. The case-study uses
MDA to automatically generate the tool and associated GUI in Java and J2EE
(session bean) in order to deliver the required OSS/J pattern and design guideline.
Again, this paper only concentrates on the Java outputs.

R
E
P
O
S
I
T
O
R
Y

R
E
P
O
S
I
T
O
R
Y

Core Business
Entities

meta-model PIMs

PSMs
J2EE meta-
model

Inventory DB

Service Entity Beans

Product Entity Beans

Resource Entity Beans

BEA WebLogic Server

JVTInventorySession Bean

Client

Service

Xactium
XMF toolkit

Java Classes

Product

Resource

Client

Java meta-
model

Transformation
models

Figure 2 – The OSS/J Inventory case-study

Before embarking on the study, a brief evaluation of available MDA tools was carried
out, such as iUML, Arcstyler, OptimalJ, Objecteering as well as XMF. It was found
that for this particular application area, XMF offered advanced meta-modelling
capabilities for expressing semantic aspects of models and definition of tools for any
arbitrary language expressed using the MOF standard.

The XMF toolkit [Clark 2004] is a generic meta-programming environment that aims
to support a wide variety of MDA development scenarios. To achieve this, XMF
provides a variety of rich meta-modelling languages including: a package of OO
meta-modelling concepts called EMOF, an executable version of OCL called XOCL,
and a mapping language called XMap. Each of these languages has a well-defined
executable semantics that is run on the XMF virtual machine.

Figure 3 shows how XMF was used to support the OSS/J Inventory MDA scenario.
Firstly, a platform-independent domain specific language for inventories was defined
by extending the EMOF meta-model. XOCL was used to specify meta-model
constraints so that models written in the inventory language can be checked for
correctness. That is, by means of XOCL, the meta-model semantics can be formally
captured and automatically enforced, in contrast to the informal, textual description of
the semantics presented in the OSS/J Inventory API specification document. Next,
mapping rules written in XMap were constructed to transform the inventory meta-
model into meta-models of two target platform specific languages: EJB and Java. This
enables any model written in the inventory language to be translated into models that
corresponded to programs written in EJB and Java. The former generates plain EJB
code, which can then be manually deployed onto the BEA Weblogic application
server. The latter is more sophisticated in that it generates a fully deployed Java tool
for instantiating the generated models and for checking constraints and running
operations on the models. The aim is to show that the source language was rich
enough to be translated into sophisticated domain specific applications.

Inventory-specific
language Java

Rules

XMap

IPVPN Inventory PIM

IPVPN
Classes

Augmented
with XOCL
constraints

Inventory System
Application

Tool

Inventory
tool

EMOF
Meta
models

Figure 3 – Using XMF to deliver the Inventory tool

2.1 Domain-specific language
Figure 4 shows the inventory domain specific language meta-model. As mentioned
earlier, it includes concepts from the OSS/J Core Business Entities, which are a subset
of TMF’s SID. The inventory language consists of the following constructs:

• Entity, that represents any type of information included in the inventory.

According to the specification, three types of inventory content are defined,
namely, Product, Service and Resource, which extend type Entity.

• EntitySpecification, that represents configurations of Entities, i.e. constraints, such
as range of values or preconfigured setting on features of the Entity. Again, the
API specification defines three subtypes of EntitySpecification, namely,
ProductSpecification, ServiceSpecification and ResourceSpecification, each
representing specifications for Service, Product and Resource, respectively.

• EntityAttribute, that represents relationships between Entity types.

To represent this inventory domain specific language, a meta-model is constructed
with classes that specialise classes of the XMF embedded EMOF package, each of
which EMOF classes has a well-defined executable semantics. More specifically:

• Entity specialises the class EMOF::Class, hence it can be instantiated and contain

attributes, operations and constraints.
• EntitySpecification inherits from EMOF::Constraint. It can, therefore, be owned

by an Entity and contain an evaluate-able XOCL expression. In the Inventory API
specification document, EntitySpecification is represented as a UML class, which
has a simple semantics, and thereby great modelling incapacity to express in full
potential the concept semantics as an Entity configuration constraint. Therefore,
by modelling EntitySpecification as a pure constraint, rich expressive power is
conveyed to the concept enabling it to represent complex Entity configurations.

• EntityAttribute specialises the class EMOF::Attribute and is used to associate
different Entity types.

A number of constraints (well-formedness rules) apply to the inventory language.
These are expressed in OCL. As an example, the following OCL constraint states that
if an Entity specialises another Entity it must be of the same type as the parent entity.
That is, entity IPStream_S of Figure 5, for instance, can inherit from IPStream, as
both are of type Service, but cannot inherit from IPVPN that is of type Product. Here,
of() is an XOCL operation that returns the meta-class of the entity (i.e. the class that
the entity is an instance of).

context Entity
 @Constraint SameParentType
 parents->select(p | p.isKindOf(Entities::Entity))->forAll(p |
 p.of() = self.of())
 end

Another noteworthy constraint formally delivering an important semantic property of
the inventory meta-model, as per the OSS/J Inventory API specification document,
involves the association of an Entity type with the correct type of EntitySpecification.
In other words, classes of type Service, for instance, can only have specifications of
type ServiceSpecification and not of type ProductSpecification or
ResourceSpecification. Checking this and other similar constraints on a model that
instantiates the inventory language meta-model can quickly and automatically
validate the model for semantic correctness. The XOCL for the constraint follows.

context Entity
 @Constraint CorrectSpecs
 self.constraints->forAll(c |
 let ctype = c.of()
 in @Case ctype of
 [IML::Entities::ServiceSpec] do
 self.isKindOf(IML::Entities::Service)
 end
 [IML::Entities::ProductSpec] do
 self.isKindOf(IML::Entities::Product)
 end
 [IML::Entities::ResourceSpec] do
 self.isKindOf(IML::Entities::Resource)
 end
 end
 end)

Once the inventory language has been defined it is possible to create models that
instantiate the language meta-model. An important question at this point is how this
model can be visualised. One approach supported by XMF is to create a model of its
diagrammatical syntax, which is then used to create a language specific diagram
editor for the language. This has the advantage of being able to support very rich
diagram types, but requires further modelling work.

A much simpler approach is to make use of a mechanism known as a metaPackage.
Meta-packages allow a package to be represented as an instance of another package
(its meta-package). Because XMF understands that the metaPackage represents a
package of language definitions, it can provide appropriate stereotypes in the model

package. Note that metaPackages represent a stronger variant of profiles [UML 2003]
because the stereotyped elements are real instances of meta-model elements (as
opposed to being virtual instances). This way, NGOSS architectural guidelines,
patterns and standards can be captured in a rigorous manner so that designers are
capable of continuously validating their models against NGOSS artefacts.

Inventory-specific language metamodel

Figure 4 – Inventory-specific language

In Figure 5 a model is presented that is an instance of the inventory meta-model (its
meta-package). It is based on an IP Virtual Private Network (IPVPN) product
provided by BT and, in favour of simplicity, it only illustrates a subset of entities
comprising the product3. The example IPVPN product, inter alia, would require a
broadband link service between the connected customer ends. Hence, the model in
Figure 5 shows IPVPN containing (containedServices attribute) many IPStream
entities, a BT ADSL service that comes in different offerings for home and for office
premises represented by IPStream_S and IPStream_Office, respectively. IPStream_S
is further subclassed by IPStream_S500, IPStream_S1000 and IPStream_S2000,
entities differentiating on the downstream bandwidth of the link that is, respectively,
500, 1000 and 2000 kbps. Individual features of the latter entities are defined in the
accompanying ServiceSpec constraints, namely, S500Spec, S1000Spec and
S2000Spec. Similarly, features of the IPVPN product and the IPStream_S service are
specified in the IPVPNSpec and IPStream_SSpec specification constraints.

3 In reality, the IPVPN product at issue could come in different versions packaged with additional
features to the broadband link, such as, equipment for the customer premises and/or frontdesk support.

Inventory PIM

Figure 5 – Inventory PIM

All above model entities have as their types meta-classes defined in the inventory
language meta-model of Figure 4. Hence, all entities in the model diagram of Figure 5
are shown as stereotyped classes constituting instances of the inventory domain
specific meta-classes, for example, IPStream_S2000 is an instance of meta-class
Service. This way a PIM has been designed for the inventory using modelling
constructs and semantics customary to the specific domain of interest.

Because all model entities of Figure 5 are instances of inventory meta-classes that
specialise Entity, which, in turn, extends class EMOF::Class, they inherit the ability
to have constraints, attributes and operations (and their associated specialisations,
namely, Specifications and EntityAttribute). As an example, the IPStream_S2000 is
associated with S2000Spec, which has the following OCL body:

self.upStream = 250 and self.downStream = 2000 and self.unitType = "kbps"

In addition, XOCL can be used to write operations on the PIM model. XOCL extends
OCL with a small number of action primitives, thus turning it into a programming
language at the modelling level. As an example, the following operation creates an
instance of an IPStream and adds it as a containedServices attribute to an IPVPN:

context IPVPN
 @Operation addIPStream(up,dwn,unit,con)
 self.containedServices :=
 self.containedService->including(IPStream(up,dwn,unit,con))
 end

Finally, because the entities in the model are themselves instantiable, it is possible to
create an instance of the IPStreamModel and check that the instance satisfies the
constraints that are defined in the PIM model. This is a further level of instantiation
that is possible because of the metaPackage relationship between the inventory PIM
model and the inventory language meta-model. Such a "snapshot" mechanism allows
the validity of the model to be established early in the development process without
the need to generate a prototype. In many respects it is more powerful than
prototyping because it allows the construction and checking of counter-scenarios, that
is behaviour that the system should not exhibit at runtime. This gives the designer
confidence that the system eventually generated will function in the required manner.
An example snapshot is shown in Figure 6.

Figure 6 - A snapshot of the IPVPN model

2.2 Transformations of PIMs to PSMs

Using XMap, two mappings were defined from the inventory language. The first was
to generate EJBs, whilst the second focused on the generation of Java and a Java class
tool. We concentrate on the second one here.

The model of Figure 7 shows the mappings that were used to generate Java. Rather
than mapping directly from the inventory language meta-model, a more generic
approach was taken in which the mapping was defined from EMOF classes. Because
the inventory language extends the EMOF meta-model, they therefore also apply to
inventory models (and any other language specialisations defined in the future).

Figure 7 – Mapping of Inventory language to Java

Every element in the EMOF package has a mapping to a corresponding element in the
Java meta-model. In XMap, mappings are represented by an arrow from source
objects (the domain) to target objects (the range), and contain pattern matches
between their values. An example of simple pattern match is described by the
following XMap code:

context TranslateClass
 @Clause Class2Class
 EMOF::Class[name = N, attributes = A]
 do
 MicroJava::Structure::Class[name = N, features = F]
 where
 F = A->collect(a | TranslateAttribute()(a))
 end

Here, a Class is mapped to a Java Class, where the name of the Java Class matches
the name of the Class and the attributes of the Class are mapped to fields belonging to
the Java Class. Because the bodies of EMOF operations are also mapped, the mapping

results in generating an executable Java program that precisely implements the
behaviour of the PIM. This Java code constitutes the PSM representation of the
entities in the inventory PIM.

2.3 Tool Generation
Whilst the above mapping generates a standalone Java program corresponding to an
inventory model, it would more useful to users of the language if the model it
represents could be interacted with via a user interface. To achieve this, a mapping
was constructed from EMOF to a meta-model of a class tool interface for managing
object models. The meta-model of the class tool interface is shown in Figure 8. A
class tool provides an interface that supports a standard collection of operations on
objects, such as saving and loading objects and checking constraints on objects. In
addition, a class tool defines a number of managers on classes, which enable instances
of classes to be created and then checked against their class’s constraints or their
operations run.

Figure 8 – Tool meta-model

For any EMOF model, a mapping can be defined to the class tool meta-model, which
generates a tailored user interface for creating and manipulating instances of a meta-
modelling language such as the inventory language. An overview of the mapping is
shown in Figure 9. For each class in the source model, a user interface element is
created which provides access to operations to create new instances of the class and to
manage the operations and constraints provided by the class.

Figure 9 – Mapping of meta-modelling language to class tool meta-model

Applying this mapping to the IPVPN model shown in Figure 5 results in the
generation of the class tool in Figure 10. Here, buttons have been generated for each
of the entities in the model. These allow the user to create new instances, edit their
slot values and delete instances. As the figure shows, a button for invoking the
addIPStream() method defined earlier has also been added in the GUI executing
functionality that implements in Java the method’s behaviour described in the model
with XOCL.

Figure 10 – Inventory tool

3. Lessons learned
A number of very interesting lessons were learned during the conduct of the case-
study:

• Models can be validated against precise meta-models. The use of MOF and its

well-defined, rich semantics for the definition of language meta-models allows for
the construction of precise, non error-prone design models. All these models will
be checked for validity against rules and constraints captured in the meta-models
leaving no room for mistakes and ambiguity. The case-study demonstrated this
through the example inventory PIM of the IPVPN product in Figure 5, which
when checked against the semantics of the inventory language meta-model it
sussessfully passed the validity tests as both meta-model constraints, namely
SameParentType and CorrectSpecs are satisfied. What is more interesting is that
tools, like XMF, are already available to provide the necessary automation in
support of this process. This becomes more important in a large industrial
environment, where solution desigers and developers constantly exchange models
involving implementation and integration of complex OSS solutions and a correct
understanding of the designs in one go can save in costs (no bouncing for
explanations), produce results faster and minimise the possibility of error.

• Models can be executed. Models include full specification of structure and

behaviour. Given an interpreting environment, a designer can execute the models
and test them against different scenarios. The snapshot mechanism and the

interpreting environment of XMF facilitates just-in-time instantiation of models
and running/simulating “what-if” situations. This eliminates the requirement of
implementing a system prototype first before one can test the durability and
robustness of a model. Executing the models is actually a form of rapid
prototyping that takes place in the modelling space and very early in the
development lifecycle. This capability is very useful in the context of OSS as with
a little more effort spend in modelling early on, solutions and ideas can enter a
fast-track testing stage before even a single line of code is put together.

• Automatic generation of platform-specific implementations out of PIMs. With

a bit of more effort invested in the modelling phase, most part of a system’s
implementation can be automatically generated. This is ideal for the development
of tactical solutions since systems are rapidly produced out of PIMs. Moreover,
systems can survive through paradigm shifts and technology changes because
PIMs remain intact. This is expected to have great effect in the gradual migration
of legacy OSS onto new platforms. Additionally, existing systems can evolve as
requirements change since every new feature or change introduced in the
technology neutral model can be automatically reflected in the implemented
system after re-generating the code. In other words, the use of MDA achieves
synchronicity between models and system implementations as it is demonstrated,
for instance, by reflective changes in the inventory tool GUI as soon as a new
operation, e.g. addIPStream(), was added in the PIM.

• Domain-specific languages can be standardised. With the rigorous definition of

appropriate meta-models one can unambiguously specify architectural styles,
design patterns and guidelines. This is especially important in the environment of
a large enterprise, which needs to apply company-wide and standardise across the
business a particular set of system development principles or requires to precisely
define a catalogue of reusable system capabilities, without room for interpretation.
With special regards to the current NGOSS meta-modelling we could go far
beyond its informal description in UML diagrams and specification documents, by
capturing its full semantics using XOCL and by completely generating platform
specifc models using XMap. This allows the architectural guidelines expressed in
the NGOSS Technology Neutral Architecture be specified and enforced by
automated tools, like XMF.

• Specifications and standards can be verified for correctness very early in the

lifecycle. Ambiguities are removed. For instance, in the absence of a reference
implementation and compatibility kit for the OSS/J Inventory, using MDA we
could achieve fast validation of the specification both by executing the models to
check model and meta-model constraint satisfaction and by generating an
executable system in a technology of choice that would completely conform to the
semantics captured in meta-model and PIM.

• Standards and specifications can obtain full tool support from the very start

of their textual definition. This is due to the use of rigorous meta-modelling
techniques with fully-defined and executable semantics based on OMG standards,
such as MOF and OCL. Tools, such as XMF, which are based on these OMG
standards, can be easily extended and customised to support new standards and
specifications, such as NGOSS and OSS/J. The study, in particular, demonstrated

XMF’s support of an important architectural OSS/J design guideline, the façade
pattern, through the rigorous definition of the inventory language, the generic
class tool meta-model and the eventual automatic generation of a front-end system
that provides access to and management of inventory entity instances.
Furthermore, the complete generation of executable systems out of meta-models
and PIMs can rapidly provide prototype technology-specific reference
implementations for practical tests of standards on criteria such as performance
and scalability.

• The richer the definition of the platform independent language (including

semantics) the richer the mapping can be to platform specific modelling
languages. In particular, it is possible to generate 100% of the code necessary to
support the execution of the translated model. In our case-study the inventory
domain specific language is fully executable, hence 100% code generation was
achievable.

• MDA has the power to integrate many different types of languages and

technologies. The case-study, for instance, showed clearly the integration of a
domain specific language (inventory meta-model) with a platform specific
language (Java meta-model) and a user interface tool (class tool meta-model).

• MDA tools are currently maturing towards constituting a viable and robust

solutions used to capture all the complete structural and behavioural aspects
of a system in a model. Despite the small scale of the presented case-study, there
was clear evidence that MDA supporting tools are viable, robust and worth be
tested to a more extreme extent of an industrial scale.

4 Conclusions and future work
In this paper, we described how XMF, an advanced meta-modelling tool, can be used
to develop, verify and generate models, code and GUI interface of an inventory
system based on OSS/J standards. We demonstrated that a complete system
description covering structural and behavioural aspects of the system can be captured
in an executable model using extended meta-modelling and constraint languages,
which are based on OMG standards.

We have demonstrated the power of the XMF meta-modelling tool producing an OSS
component completely based on well-defined precise and accurate models. This has
raised our confidence in the maturity of the MDA technology in a rich and complex
OSS environment. Of course, OSS is more than merely a single component. Often it
is made of diverse set of components based on varying platforms interconnected
through complex integration hubs, business process, workflow and policy engines.
Thus, the ongoing work aims at using MDA tools to provide fully automated support
in all stages of an OSS methodology lifecycle.

Initially we intend to extend the model definitions to cover a few OSS/J components
(such as trouble ticketing, QoS monitoring and service activation) and aim to capture
integration logic of these components in an MDA tool. The integration logic will be
captured at business and system view models of the lifecycle together with mappings
to implementation and deployment views. An important aspect of the overall
methodology is to encourage more reuse of the modelling artefacts in the entire

lifecycle and hence means are required to store model elements in meta-data
repositories and enable designers and architects to discover suitable model fragments
for use in their designs. This necessitates a method of expressing requirements for
OSS components and business processes in a precise language before searching meta-
data repositories.

In an OSS environment, code generation is not necessarily a prime driver for adopting
MDA. This is due to the fact that the OSS industry is moving towards a plug and play
architecture based on available COTS components as a way to reduce the cost of in-
house development and reducing vendor lock-in risks. Hence, the greater emphasis is
on development of rigorous architectural guidelines and frameworks capturing an
enterprise’s computing policies together with automated tool support so that the
designs of OSS solutions (integration and OSS components, business process
definitions and policies governing the behaviour of components and processes) can be
validated and verified. This work thus is the first step towards building meta-models
that capture the NGOSS lifecycle views, including various forms of components,
contracts, process definitions, policies and their inter-relationships.

In conjunction with COTS components, it is recognised that operators tend to
customise as much as 80% of COTS software resulting in high costs and use of
proprietary tools. As part of the COTS modelling exercise, we intend to capture the
customisation of COTS components in high-level models, where any modifications
can be done at the model level and then using suitable transformations to apply the
necessary changes on the COTS-specific development environment.

References
[Ashford 2004] Ashford C., “OSS through Java as an Implementation of NGOSS”, White Paper, April
2004, http://www.ossj.org/learning/docs/wp_technologycomparison1.0.pdf
[Clark 2004] Clark T., Evans A., Sammut P., Willans J., “Applied Metamodelling”, book to be
published
[eTOM] TeleManagement Forum – enhanced Telecom Operations Map (eTOM),
http://www.tmforum.org/browse.asp?catID=1647
[Gauthier 2001] Gauthier P., “OSS/J through Java J2EE Design Guidelines”, OSS/J Architecture
Board, October 2001, http://www.ossj.org/downloads/design_guidelines.shtml
[Gauthier 2004] Gauthier P., “OSS Inventory API – Overview (Part 1)”, Public Draft version 0.9, OSS
through Java Initiative, April 2004
[Georgalas 2004] Georgalas N, Azmoodeh M, “Using MDA in Technology-independent
Specifications of NGOSS Architectures”, First European Workshop on MDA (MDA-IA 2004),
Enschede, The Netherlands, March 2004
[MDA] Model Driven Architecture, http://www.omg.org/mda
[NGOSS] TeleManagement Forum - New Generation Operations Systems and Software,
http://www.tmforum.org/browse.asp?catID=1911
[OSSJ] OSS through Java Initiative, http://www.ossj.org
[Reilley 2004] Reilley J.P., Gauthier P., “Core Business Entities Concepts and Principles”, 2004,
http://www.ossj.org/downloads/cbe.shtml
[SID] TeleManagement Forum - SID Overview, http://www.tmforum.org/browse.asp?catID=2008
[Strassner 2002] Strassner J., Fleck J., Huang J., Faurer C., Richardson T., “TMF White Paper on
NGOSS and MDA”, TeleManagement Forum / Object Management Group, February 2004,
http://www.tmforum.org/browse.asp?catID=1875&sNode=1875&Exp=Y&linkID=28972
[UML 2003] Object Management Group – The UML Specification, version 1.5 (final), March 2003,
http://www.omg.org/docs/formal/03-03-09.pdf, pp 73-85
[XACTIUM] http://www.xactium.com

http://www.ossj.org/learning/docs/wp_technologycomparison1.0.pdf
http://www.tmforum.org/browse.asp?catID=1647
http://www.ossj.org/downloads/design_guidelines.shtml
http://www.omg.org/mda
http://www.tmforum.org/browse.asp?catID=1911
http://www.ossj.org/
http://www.ossj.org/downloads/cbe.shtml
http://www.tmforum.org/browse.asp?catID=2008
http://www.tmforum.org/browse.asp?catID=1875&sNode=1875&Exp=Y&linkID=28972
http://www.omg.org/docs/formal/03-03-09.pdf
http://www.xactium.com/

	1 Introduction
	Figure 1 - NGOSS lifecycle methodology

	2 A Case-Study: the OSS/J Inventory
	Figure 2 – The OSS/J Inventory case-study
	Figure 10 – Inventory tool
	4 Conclusions and future work

	References

