

Practical Model Driven Development process

Xabier Larrucea, Ana Belen García Díez, Jason Xabier Mansell

European Software Institute
Xabier.Larrucea@esi.es, anabelen.garcia@esi.es, jason.mansell@esi.es

Abstract. Nowadays many organizations are adopting MDA to describe their
systems. This fact forces organizations to transform their software development
process into a Model-Driven Development process. This paper proposes a
software development methodology focused on MDA, and describes both the
MDD process as well as the main process workflow. The UML Profile SPEM is
used to describe the process. In this paper we present a MDD process and a set
of System Family Engineer concepts to adapt the MDD process according to
user and functional requirements. This methodology has been developed in a
European IST project (MASTER project IST-2001-34600)

Introduction

Many organizations have already realized that the UML usage is becoming more

and more important to define their systems. In fact this modelling language is a core
concept within the MDA (Model Driven Architecture [11]) standard defined by the
OMG (Object Management Group). When these organizations put into practice the
MDA philosophy, they need to adopt a Model-Driven development process and the
appropriated tools to support it. This paper is focused in the MDD process.

Nowadays many software development processes (SDP) like RUP (Rational
Unified Process) are being applied in the industry. However these processes are not
taking into account MDA concepts and they must be fit into this context. Others SDP
like XP (eXtreme Programming), are also being applied. This SDP is an agile method
and therefore the design phase is code-oriented whereas MDA is model-oriented. In
[4] Stephen J. Mellor et al. combine the notion of “agile” and “model” and other work
related with processes has already been published, such as [8] and [7].

This paper presents a methodology developed in the MASTER project, a European
IST project (IST-2001-34600). In this paper we present a MDD process and a set of
System Family Engineer concepts to adapt the MDD process according to user and
functional requirements. The process is described in SPEM [12] (Software Process
Engineer Metamodel) notation. This paper completes the work presented in [6].

This paper is structured in three main sections; Section 2 provides an overview of
the MDD process; Section 3 outlines the adaptative process. Finally section 4
concludes the paper with future research action lines.

The MDD process

Many software development processes are considered as heavyweight processes.
Moreover processes like RUP (Rational Unified Process) could be adaptable to Model
Driven Architecture. For example, in [5] Chris Raistrick et al. have demonstrated how
MDA could be applied (“Using MDA in a typical project”). However their process is
a heavyweight process, it’s focused in eXecutable UML(xUML) formalism and they
do not take account the architectural layers. Our main process could be also
considered as a heavyweight process but with some differences. Our process is based
on the different architectural layers defined to describe and model a domain [3].
These layers are well-defined through the different metamodels definition.

In this section the MDD process is defined outlining the different phases with a
brief description. Each phase contains a set of activities that are deeply explained in
MASTER project deliverables [2]. The phases and the activities are tightly related
with PIM layers definition. The basis of the architectural layers are already described
in others works [10].

Figure 1 and Figure 2 provide an overall picture of the methodology proposed.
Figure 1 provides an overview of the phases of the methodology whereas Figure 2
provides a more detailed overview of the MDD process workflow, describing the
work products required and derived in each phase of the methodology.

ProcessPerformer

Capture user requirements

PIM Context Definition

PIM Requirements Specification

PIM Analysis

Design

Coding & Integation

Testing

Deployment

Figure 1 : Phases overview

 : Deployment Plan

Start

End

PIM Analysis

Design

Coding &
Integration

Testing

Deployment

Capture user
requiremetns

 : Requirements
Specificartion (SSS)

[Initial]

 : Requirements
Specificartion (SSS)

[Final]

 : Software Architecture & Design

[Initial] : Analysis PIM

 : Design PIM

. : CCM PSM

 : Software Architecture & Design

[Final]

 : Product

 : Test Evaluation Summary

 : Test Results

 : Test Model

 : Test Scripts

 : Deployment Unit

PIM Context
Definition

PIM Requirements
Specification

 : Glossary

[Initial]

 : Context PIM

 : Application PIM

[Derived from Family PIM]

 : Product Manuals

 : Application PIM

[Final]

 : Deployment Model

 : Requirements PIM

 : Release Record

Figure 2: MDD process workflow

Figure 1 provides and overview of the phases that make up the methodology
proposed. The phases are:

• Capture User Requirements: The objective of this phase is to elicit,
agree and document the customer requirements that the software system
needs to fulfill. This includes establishing a common understanding with
the customer on functional and non-functional requirements. This phase
includes the following activities: formalize the customer requirements in
an Application Model and derive an initial Application PIM and an initial
functional requirements specification from the common infrastructure of
reusable assets.

• PIM Context Definition: The objective of this phase is to clearly define
the scope of the software system to be developed. The result is an
unambiguous definition of the system, its objectives, and scope following
a black-box approach. Main activities are:

o Establish the system goals and business principles.

o Describe the external actors that interact with the system.

o Identify the high-level services offered by the system and their
key behaviour.

o Define the business events, and exchanged business objects.

• PIM Requirements Specification: The objective of this phase is to build
a model of customer requirements clear and complete and to have a
unique requirements description that all subsequent models will use. In
order to model the system functional and non-functional requirements, the
main activities of this phase are:

o Refine the PIM Context

o Identify services, events and business objects produced and
consumed by the system and the actors interacting with the
system

o Specify capabilities (use cases), forces (non-functional
requirements), and atomic requirements

o Identify and model the relationships between functional and non-
functional requirements.

• PIM Analysis: The objective of this phase is to model the internal view
of the system without any technological consideration and maintaining the
separation of concerns between functional and non-functional aspects.
The main activities of this phase are:

o Describe the system functionalities: the objects (with classes,
attributes, packages, etc.), the functions (with operations), the
system boundary (with interfaces), the behaviour (with sequence
diagrams), etc.

o Describe the system QoS aspects (refine the classes) and their
application to the functional elements of the model.

o Maintain traceability with the Requirements PIM.

• Design: The objective of this phase is to model the detailed structure and
behaviour of the solution (software application) that fulfils the system
functional and non-functional requirements. This implies making
decisions on how the system will be implemented and which architectural
style, patterns, standards and platforms will be used. Following an MDA
approach, the design is performed in two steps:

o Specify and design a platform-independent solution (how) for all
the requirements (what). The PIM will be defined with different
elements depending on the architectural style selected for the
solution, e.g., for a Components Design PIM the solution is
expressed in terms of software components (component,
interface, port, connector).

o Specify and design the platform-specific solution by refining the
platform-independent solution. The PSM is intended to be
automatically derived from the PIM through transformation
engines. The PSM contains models specific of the platform (e.g.,
CCM, EJB, .NET) and is detail and complete enough to allow
the codification and deployment of the solution

• Coding & Integration: The objective of this phase is to develop and
verify the software code that implements the software design fulfilling the
software requirements. This phase includes activities such as: develop the
components and classes (according to the models used as inputs), define
the organization of the code, execute unit tests, and integrate components
and subsystems. Following a MDA approach, the code is intended to be
automatically produced from the PSM through transformation engines.

• Testing: The objective of this phase is to demonstrate that the final
software system satisfies its requirements. This phase includes activities
such as: plan tests, prepare test model, test cases and test scripts, execute
tests, correct defects and document testing results. Test models are
traceable to PIM models (specially to PIM Requirements) and, following
an MDA approach, test models will be refined from the PIM and test
cases and test scripts will be automatically produced from the test model
through transformation engines.

• Deployment: The objective of this phase is to ensure a successful
transition of the developed system to the final users (including resources,
environment, schedule planning and execution). This phase includes
activities such as: create a deployment plan (dates of installation,
resources, etc.), create a deployment model (derived from the PSM
Deployment model and adapted to the specific execution environment of
the customer), create the product manuals, maintain records of the product
that is being delivered to the client, and provide the installation of the
product in the client premises

In this Model Driven Development process a set of roles are also described.
Moreover each phase is described through a workflow diagram in SPEM notation.
The purpose of this paper is not to give a deep and exhaustive description of the
elements of the entire process. However these elements are described in the MASTER
deliverables [1] and [2].

Adaptative Process

In the previous section a MDD process is described. This process is shown as
standard software process (SSP). Many organizations adapt their SSP to their specific
needs and requirements to provide software development plans. These plans have a
set of items that have common aspects and predicted variabilities [9] (a process
family). Therefore System Family Engineering concepts can be applied in this
domain. The MDD process could be adapted to user requirements establishing
relationships between application models (the MDD process and functional model).

Figure 3 provides an overview of the system familiy engineering process, in which
based on a detailed analysis of a domain, a set of decisions can be defined which
identify univocally any product of a domain. These set of decisions are captured in a
decision model which captures the variability of a domain. Once this variability is
solved by using the user requirements, an application model is produced. This
application model captures user requirements and is used in order to inititate the
derivation process by transformations in which the specific requirements are
introduced within the derivation process and the application variabilities are resolved.
As a result of the derivation process, in which all variabilities within a domain are
solved, the application assets for a specific customer are produced.

Application
assets

Application
assets

Input Output

Capture

Instance

Derivation
Process

Flexible
components

Application
Models

Application
ModelsDecision

Model

Decision
Model

User
Requirements

Domain
Analysis

Domain
Analysis

Figure 3: System Family Engineering overview

The main purpose of this paper is not describe how the MDD is produced step by

step but how the MDD process described in the previous section is tailored with user
needs and how some activities are removed or added depending on the requirements
(derivation process). This customization process is defined through variability
management, described in Figure 3. Within ESI a tool suite called V-Manage is used
to define and to implement the variability of the MDD process.

Figure 4 provides an overview of how Model Driven Engineering and System
Family Engineering have been used to produce a MDD adapted process.

System Family
Engineering (SFE)

good practices

Model Driven
Engineering (MDE)

good practices
SFE & MDE
standard
software
process

software project

MDD
adapted
process

Application
Engineering

Domain
Engineering

main view
Application
Engineering

Domain
Engineering

main view

Tailoring

Customer decisions
(Application Model)

System Family
Engineering (SFE)

good practices

Model Driven
Engineering (MDE)

good practices
SFE & MDE
standard
software
process

SFE & MDE
standard
software
process

software project

MDD
adapted
process

MDD
adapted
process

Application
Engineering

Domain
Engineering

main view
Application
Engineering

Domain
Engineering

main view

Tailoring

Customer decisions
(Application Model)

Figure 4: MDD adapted process

Conclusions and future work

This work has been developed in a European IST project called MASTER project
(IST-2001-34600) and it has also been applied in the context of Air Traffic
Management jointly with Thales ATM.

In this paper a Model Driven Development process has been described. Some parts
of this methodology like roles and work products description have been omitted to
limit the size of the paper. Moreover SFE has been applied to take into account user
requirements to customize the general process. However to complete the overall
process an appropriate tool suite must to be provided. Actually, it would be suitable to
have an IDE (Integrated Development Environment) supporting the domain analysis
phase throughout the deployment phase. Many tool vendors have MDD compliant
tools but do not provide support for the overall process or do not provide features
such as non-functional aspects (Rational XDE Modeller) related with behavioral
features.

In the context of methodology an emergent initiative related with MDA, agile
modelling (AM) [13] is growing. However tool vendors must improve their tools to
be able to execute models. Methodologies related with this “agile” area will be the
focus of our future work.

Reference:

[1] Deliverable D3.1 “Enriched PIM with project management information”. MASTER project:
IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D3.1)

[2] Deliverable D3.2 “Process model to engineer and manage the MDA approach”. MASTER
project: IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D3.2)

[3] Deliverable D2.1 “PIMs Definition and Description to model a domain”. MASTER project:
IST 34600. (http://modeldrivenarchitecture.esi.es/mda_publicDocuments.htm#D2.1)

[4] MDA Distilled. Principles of Model-Driven Architecture. Stephen J. Mellor, Kendall Scott,
Axel Uhl, Dirk Weise. Addison-Wesley. Series Editors. Object Technology Series

[5] Model Driven Architecture with Executable UML. Chris Raistrick, Paul Francis, john
Wright, Colin Carter, Ian Wilkie. Cambridge

[6] Process Engineering and Project Management for the Model Driven Approach. Ana Belen
Garcia Diez, Xabier Larrucea. First European Workshop Model-Driven Architecture with
Emphasis on Industrial Applications , Enschede, the Netherlands , March 17-18 2004

[7] Application of MDA for the development of the DATOS Billing and Customer Care System
(Case study on the use of MDA for the development of a larger J2EE System). Jorg Guther,
Chris Steenbergen. First European Workshop Model-Driven Architecture with Emphasis on
Industrial Applications , Enschede, the Netherlands , March 17-18 2004

[8] Towards an MDA-based development methodology for distributed applications. Anastasius
Gavras, Mariano Belaunde, Luis Ferreira Pires, Joao Paulo A. Almeida. First European
Workshop Model-Driven Architecture with Emphasis on Industrial Applications , Enschede,
the Netherlands , March 17-18 2004

[9] Software Product-line Engineering. A family based software development process. David

M.Weiss,Chi Tau Rober Lai. Addison-Wesley

[10] PIM Definition and Description. Daniel Exertier, Benoit Langlois, Xavier Leroux. First

European Workshop Model-Driven Architecture with Emphasis on Industrial Applications ,
Enschede, the Netherlands , March 17-18 2004

[11] MDA Guide v1.0.1. Object Management Group, omg/03-06-01, June 2003

[12] Software Process Engineering Metamodel v1.0 (SPEM), Object Management Group,

formal/02-11-14 November 2002

[13] Agile modeling http://www.agilemodeling.com

