OMELET : Exploiting Meta-Models as Type Systems

Edward D. Willink

Thales Research and Technology (UK) Ltd
EdWillink@iee.org

Abstract. Meta-modelling is now well established for indiva models. The MOF
QVT proposal should support meta-model-based toamsftion between models.
However, meta-model compatibility poses a majoedhito the successful exploitation
of transformation technology. We therefore introeltlOMELET, a next generation
‘'make’, that supports integration of diverse tramsétions and uses meta-models as a
type system to ameliorate the threat and pave e far automated composition of
transformations.

1 Introduction

Activities such as the QVT proposal, XSLT schemppsut and the MDA have provided
much needed impetus to model transformation. A mddensformation supports the
conversion of one (or more) input models into omenjore) output models, and each model
is based on an associated meta-model as depickdg. ifh.

input : Model [L T s » output: Model
(Frarm Apalicationd oy —— (fram ApwaiicationOuiouiag

Fig. 1. Typical transformation invocation

In this paper we are interested in the problemsdhiae with multiple transformations, in
particular the problem of meta-model compatibiligtween two transformations in a chain
as depicted in Fig. 2.

] intermediate : Model]
frorn Producer * (Fromm Intermediatenmg fo. Consumer

Fig. 2. Typical transformation interconnection

We seek to ensure that thent er medi at e model, produced by an instance of a
Pr oducer transform and consumed by an instance @asuner transform, is indeed
based on thént er nedi at eMMmeta-model.

It is convenient to say that our models are ingtaraf our meta-models. However this is
inaccurate; a meta-model is a package containiagiaty of useful elements, some of which
may be useful in a particular application. Bézijih draws the distinction that a model is
based on a meta-model. It is the elements in a htbdeinstantiate elements of its meta-
model and also comply with the associated congsraixpressed in the meta-model.

We will briefly review the need for and hazardswiltiple transformations, discuss some
of the limitations of current technologies and sgjghow the next generation of tools can
address some of the problems.

2 Multiple Transformations

In [2] we introduced the Side Transformation Patteérs a technique to make model
transformations modular and re-usable. This wasesel at the expense of changing a
typical monolithic transformation involving two ngetodels (input and output as in Fig. 1),
into a composite transformation with four meta-nmedand three sub-transformations as
shown in Fig. 3. The pattern therefore introduces intermediate meta-models and four
extra opportunities for incompatibility.

pre-solution : Model

R ifrorn Applicationinputag |
v a
problem : Model :
(frown Probizrmlig
,'r i
¥
solution : Model | @
(frawm Saiutiaontig >-
h d
postsolution : Model el out
(frawn ApalicationQuiouilanm ou

Fig. 3. Side Transformation Pattern

Increasing numbers of stages of transformation Ww#l required as Model-Driven
approaches are adopted with greater abstractiarPilatform Independent Model or in some
Domain Specific Language in front of a PIM. Thegansformations will be more
manageable if each stage resolves the concernssofgée form of abstraction. We may
therefore expect the Model Driven Architecture twdlve a chain of transformations to
weave the various PIM, Platform Model and Mark Mottencerns into a coherent Platform
Specific Model. We can also expect the interverstegges in the chains to involve many
distinct meta-models, or at least many distinct-sets of a smaller number of shared and
often standard meta-models.

With many meta-models arising from transformatidrains and further meta-models
arising from using the Side Transformation Patterrpromote modularity and re-use, the
integrity of these meta-models becomes criticabto endeavours. The problems of XMl
dialects between early UML tools should act aslataey warning.

3 Current Technology

Ensuring that models really are accurately basedheir meta-models is difficult with
current technology, and so there is rather too mudiance on the best endeavours of
programmers and their intuition in choosing appiatpr sub-sets of inconveniently large
meta-models, such as UML. This provides ample dppdy for a joint development of

Producer and Consumer transformations to experienaather troubled development.
Problems are almost guaranteed when a more wides@itéempt to re-use these pragmatic
transformations is made.

The XML standard provides a good compromise betwaemuman-accessible and a
computer-accessible file representation. This makesery appropriate for interchange
between transformations where it is produced am$wmed by computers, but needs to be
intelligible by humans for at least debugging aachstimes manual interventions.

However, experienced XML users have discoveredXhit conformance is a very weak
discipline. It is all too easy for the conformanWMX dialect of Producer and Consumer to
differ, and as a consequence of the eXtensibilitKX®L, the difference in dialect is only
detected after a number of intervening activitiagehconspired to make diagnosis difficult.

DTDs and now XSDs are therefore increasingly usedhtidate that the intervening files
exhibit both semantic as well as syntactic consisteThis enables detection of errors in the
Producer such as generation of spurious constamdsomission of mandatory constructs.
However neither DTD nor XSD allow for more subtiglidation of constraints on optional
constructs. And of course no validation of the inpan validate that the Consumer dialect is
compatible.

XSLT provides its transformation capability withithe XML Technology Space.
Unfortunately the absence of comprehensive schewaaea support in current XSLT
processors prevents diagnosis of seriously err&atbexpressions. This severely erodes the
benefits that XSLT2 (or more readably, NiceXSL[d3n offer.

Within the Modelling Technology Space, MOF-derivaddels provide for more accurate
modelling in which OCL constraints capture subienantics. The lack of a direct model
transformation capability should be addressed ey MOF QVT proposal. This should
provide inherent rather than accidental compliawdé the input and output MOF models
and so introduce much needed discipline and efffigi¢o transformation programming.

When MOF models are converted to Java models téoiéxbe Program Technology
Space, some inaccuracies in a Java-based Produ€emeumer can be avoided at compile
time.

Until all transformations are defined in some laagg such as QVT that enforces model
compliance, it is essential to perform as much rhagdidation as possible in order to
establish integrity for each intermediate modeld assist in diagnosis of inadequate
transformations.

4 Tool Support

make and more recentlyAnt have established themselves as important parta of
programmer's tool kit. Both enable a number of prots to contribute to the solution of a
larger problemmake also allows for some automated discovery of apgeatg sequencing
and invocation of those programs. However the caitipo of programs lacks discipline.

In Ant , the control flow depends) defining the program sequencing is independent of
the data flow (the task-specific input and outpamnmands), so there is ample opportunity
for typographic mistake and no inherent reason Wieyoutput of one program should be
suitable as the input of another.

In make, the control flow is deduced from the file depemdles, so the control and data
flow are consistent although sometimes surprislifg typical use of file name extensions to
identify the data content of intermediate files @mages consistent usage, but there is still
no inherent guarantee that the file extension ctigrelescribes the content.

For transformations, we require the same abilitgsxtploit a mix of custom and standard
contributions, and we need to ensure that the uséglee transformations is valid. Meta-
modelling provides the solution to these problersisice the appropriate meta-model

provides a strict definition of the permissible ¢ymf each intermediate ‘file' in the
composition.

We may therefore look towards a next-generatiake in which rules are defined by
registering the capabilities of particular modelnsformations in terms of the acceptable
input and satisfied output meta-models. Using a/ \&@mple make-like example; given a
pair of transformation signaturésxame = i nput-nodel -name : input-neta-
nmodel -> out put - nodel - nane : out put - net a- nodel)

conpile = c_file: c.MM-> o file: oMW
link = o file: o MM-> exe file : exe MM

and a request to produce a model based omtlee MM from a model based on tlee MV|
we can deduce a suitable transformation chain topciszeconpi | e followed byl i nk.
We can augment the chain with validation of ingatermediate and output meta-model
compliance.

Many practical transformations are only approprifde a sub-set of the syntax or
semantics of particular meta-models. For instameplgied support for UML state charts
might exclude History States, and an executabldilpramust exclude facilities with ill-
defined semantics. This inhibits arbitrary modeldpendent chaining of transformations,
but if the transformation chain is deduced witliia tontext of the models to be transformed,
the actual meta-model sub-sets are known and subrasesformations can be exploited
reliably.

We therefore require transformations to accuradelyne the sub-set meta-models that the
transformation supports. Since this information wdt be automatically available for many
transformation technologies, we must be able teragbis as part of a transformation
declaration.

Determination of the sub-sets in use by particuleodels should be a relatively
straightforward model analysis to be performedhgyttansformation tool.

We must allow the user to specify a transformatitiain, explicitty when they need
complete control, implicitly when automation is eptable, partially when they need to exert
some influence, and historically when they needepieat a previous sequence.

The non-implicit specifications provide intermedialvay-points in the transformation
chain, between which a transformation chain musediablished. The tool must enable the
user to view the actual chain, understand why tetransformations are necessary, and
more importantly understand why certain transforomet are unsafe.

This is the goal of the Eclipse/OMELET project [Blpgrading the capabilities ofake
to adopt meta-models provides the opportunity talude powerful transformation
compositions. Adopting the Java extensibility apmtees underlyingAnt provides the
opportunity to integrate transformations arisingnira wide range of differing technologies.
Using meta-models allows the transformation intetises to be validated and
transformation chains deduced.

At the time of writing a preliminary OMELET release available that demonstrates the
ability to register and invoke a diversity of tréarsnations and meta-models. A rather more
useful release should be available by the timepéafser is presented.

5 Acknowledgements

The author is grateful to Thales Research and Tadeby for permission to publish this
paper, which is influenced by work done on the SREfad GSVF-2 projects.

6 Conclusions

We have shown how meta-models can introduce diseigh transformation chains and

motivated the development of OMELET, a next genenatrake-style program that uses

meta-models to impose a type system on transfoomatihat are implemented in a diverse
range of technologies.

7 References

1 Jean Bézivin, MDA : From Hype to Hope and Real@yest talk at UML'2003.
http://www.sciences.univ-nantes.fr/info/perso/peneras/bezivin/lUML.2003/UML.SF.JB.GT.ppt

2 Edward D. Willink and Philip J. Harris, The Sideansformation Pattern - making transforms
modular and re-usable, submitted to SETra-2004ol6&ct2004.

http://dev.eclipse.org/viewcvs/indextech.cgi/~chmdk/omelet-home/doc/SETra2004/SETra2004-Pattefn.pd
3 The Eclipse OMELET Project.

http://dev.eclipse.org/omelet
4 The SourceForge NiceXSL Project.

http://nicexsl.sourceforge.net

