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Introduction

This document is a tutorial for the Communicating Haskell Processes (CHP)
library. CHP is based on a model of concurrency known as process-oriented pro-
gramming, which primarily stems from ideas in the Communicating Sequential
Processes calculus of Tony Hoare.

Process-oriented programming is based around having encapsulated pro-
cesses, with no shared mutable data. Of course, in Haskell, all normal data
is immutable. But the processes do not communicate via mutable shared vari-
ables (like they do with MVars in Concurrent Haskell and TVars in STM). Instead
they communicate using synchronous channels.

If you write to a synchronous channel, you must wait until the reader arrives
to take the data before the communication takes place. Thus, you can be sure
that the reader has taken the data once the call to write to a channel returns.
There are also buffering processes that can be used to get buffering behaviour.

Throughout this guide you will see diagrams of process networks. The la-
belled boxes are processes and the arrows show the channel connections. On
many of the diagrams there are stdin, stdout or stderr channels that are shown
as being connected to the outside environment.

Prerequisite Knowledge

This tutorial assumes that you already know Haskell. A basic knowledge of
monads is necessary to understand how to use the library. If you know how to
use the IO monad, you should get on fine with CHP.
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1 Simple Stream Processing Programs

1.1 Echoing

For the purposes of introducing CHP we will generate some programs that deal
with the console (stdin, stdout and stderr). Without further ado, let’s look at
the simplest program we can imagine, that echoes stdin on stdout:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console

main :: IO ()
main = runCHP (consoleProcess echo)

echo :: ConsoleChans -> CHP ()
echo chans = CHP.id (cStdin chans) (cStdout chans)� �

We begin with some module imports. Importing Control.Concurrent.CHP

pulls in most of the library, but we also need the console module, and we import
some common processes qualified. It may seem odd to import Common qualified
as CHP, but writing CHP.id makes more sense than Common.id.

The main function in our program consists of running a CHP program using
runCHP (type: CSP a ->IO ()). We use the consoleProcess helper function to
provide ConsoleChans for us, to our actual echo function. echo uses the common
id process to plug together stdin and stdout. The id process forever forwards
values from its input to its output.

So this program does echo all characters typed on stdout1, by simply copying
the input to the output.

1If you run it, characters may appear twice because your terminal is also echoing the
characters, but the program itself is doing what we intended! You may also find that characters
don’t show up until you press return, due to output buffering – running it through GHCi is
probably best for these simple examples.

CHP.id

Environment

stdin stdout
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1.2 Processing

We will now add to our program by doing some processing. Instead of just
echoing the character, we will filter out some characters. As an example, we
will filter out all lowercase x characters:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console

main :: IO ()
main = runCHP (consoleProcess not x)

not x :: ConsoleChans -> CHP ()
not x chans = CHP.filter (/= ’x ’) (cStdin chans) (cStdout chans)� �

Again we are using a standard CHP process, this time filter , which is the
process equivalent of the normal filter function.

1.3 Writing our own process

The previous two examples used library-supplied processes. We will now write
our own process that prints out a character’s ordinal value when it is input:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Monad

main :: IO ()
main = runCHP (consoleProcess printOrd)

printOrd :: ConsoleChans -> CHP ()
printOrd chans = forever (do

x <- readChannel (cStdin chans)
let ordXStr = show (fromEnum x) ++ "\n"

mapM (writeChannel (cStdout chans)) ordXStr
)� �

This process uses the Haskell function forever (from Control.Monad) to repeat
our monadic do block. Each time, it first reads a character from stdin, then
converts it to a String showing the ordinal value, then writes that out, one
character at a time, on stdout.
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2 Adding Choice and Parallelism

2.1 Choice

So far, all of our programs could be easily written using normal Haskell functions
in the IO monad, and shorter too. Now we will start to introduce some of the
more powerful features of CHP, beginning with choice.

We will write a program that waits for the user to press a single character,
and then print the ordinal value on the screen as in the last example. But then
we will wait for either the user to press another key, or for a second to elapse.
If the second elapses without the user pressing a key, we will repeat the last
ordinal code. If the user does press a key, the new ordinal code will be printed,
and we will wait for either another keypress or another second to expire:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Monad

main :: IO ()
main = runCHP (consoleProcess printOrdWhileWaiting)

printOrdWhileWaiting :: ConsoleChans -> CHP ()
printOrdWhileWaiting chans = readChannel cin >>= inner

where
inner :: Char -> CHP ()
inner x = do

printString (show (fromEnum x) ++ "\n")
(waitFor 1000000 >> inner x) <-> (readChannel cin >>= inner)

cin = cStdin chans
cout = cStdout chans

printString = mapM (writeChannel cout)� �
Our outer function reads the first character and feeds this to the inner func-

tion. The inner function then prints the ordinal value. The line after that uses
the <-> operator, which represents choice. The operator causes the process to
wait for the first of the two events, choosing the first that is ready. In this case
the two events are waiting for a second (one million microseconds) and read-
ing from a channel, because these are the first actions in either of the monadic
blocks being combined.
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2.2 Parallel composition

In this example, once a character is pressed, we will print the string on both
standard output and standard error. For demonstration purposes, we will send
the strings in parallel:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Monad

main :: IO ()
main = runCHP (consoleProcess printOrdWhileWaiting)

printOrdWhileWaiting :: ConsoleChans -> CHP ()
printOrdWhileWaiting chans = readChannel cin >>= inner

where
inner :: Char -> CHP ()
inner x = do

printString (show (fromEnum x) ++ "\n")
(waitFor 1000000 >> inner x) <-> (readChannel cin >>= inner)

cin = cStdin chans
cout = cStdout chans
cerr = cStderr chans

printString s
= mapM (writeChannel cout) s <||> mapM (writeChannel cerr) s� �

Here we have used the <||> operator to run two monadic actions in parallel.
You can also run do blocks and functions in parallel.

printOrdWhileWaiting

Environment

stdin stdoutstderr
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2.3 Process pipelines

One common pattern in process-oriented programming is to create a pipeline of
processes, similar to forming a function composition in Haskell. For this purpose
there are helper functions in the library to easily wire up process pipelines with
channels, in the Control.Concurrent.CHP.Connect module in the chp-plus library.

For the purposes of demonstration, we will remove all the non-alphabetic
characters from the input, then make the character upper-case, then drop all X
characters from the output:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Concurrent.CHP.Connect
import Control.Monad
import Data.Char

main :: IO ()
main = runCHP (consoleProcess crazyPipeline)

crazyPipeline :: ConsoleChans -> CHP ()
crazyPipeline chans = do

pipelineConnect [CHP.filter isLetter , CHP.map toUpper, CHP.filter (/= ’X’)]
(cStdin chans) (cStdout chans)

return ()� �
The pipeline function takes a list of single-input single-output processes, an

input channel-end for the start of the pipeline, an output channel-end for the
end of the pipeline, and then wires up the processes and runs them all in parallel.

This example could be done with a single process, but often it is easier to
wire up a list of already-written processes.

CHP.filter 

isLetter

Environment

stdin stdout

CHP.map 

toUpper

CHP.filter

(/= ‘X’)
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3 Tracing

As in all programming, while writing concurrent programs you may encounter a
bug. Concurrency-specific bugs include deadlock (the whole program grinding to
a halt because everyone is waiting for someone else) and livelock (programs doing
something but not getting anywhere). To try to help in understanding what your
program is actually doing, CHP provides a tracing facility. For demonstration,
we will use the classic dining philosophers problem. The description of the
problem can easily be found on the Internet (including its original description
in Hoare’s book at http://www.usingcsp.com/), and will not be repeated here.

We will use channels carrying the unit type to represent the forking picking-
up and putting-down events. This is preferred to barriers since we do not need
to deal with all the enrolling. For the purposes of demonstration (shorter code
and more likely deadlock) we will only use two philosophers.� �
import Control.Concurrent.CHP
import Control.Monad
import Control.Monad.Trans
import System.Random

spaghettiFork :: Chanin () -> Chanin () -> CHP ()
spaghettiFork claimA claimB = forever

( (readChannel claimA >> readChannel claimA)
<-> (readChannel claimB >> readChannel claimB) )

philosopher :: Chanout () -> Chanout () -> CHP ()
philosopher left right = forever (do

randomDelay −− Thinking
writeChannel left () >> writeChannel right ()
randomDelay −− Eating
writeChannel left () <||> writeChannel right ()
)
where

randomDelay = liftIO (getStdRandom (randomR (0, 50000))) >>= waitFor

college :: CHP ()
college = do

phil0Left <- newChannel
phil0Right <- newChannel
phil1Left <- newChannel
phil1Right <- newChannel
runParallel

[ philosopher ( writer phil0Left ) ( writer phil0Right )
, philosopher ( writer phil1Left ) ( writer phil1Right )
, spaghettiFork (reader phil0Left ) (reader phil1Right )
, spaghettiFork (reader phil1Left ) (reader phil0Right ) ]

main :: IO ()
main = runCHP college� �
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Usually we would pick up the forks in parallel, but while that design can
still deadlock, it run for a long time before deadlocking! To advance our lesson,
we pick up the forks in sequence and we have a fairly small time for thinking
and eating (tens of milliseconds). On my GHC setup, the program deadlocks
within a minute, with the message “thread blocked indefinitely”.

This error message is not very detailed when you are trying to track down
a bug in your program. To help get more information, you can add one more
import declaration at the top of your program:� �
import Control.Concurrent.CHP.Traces� �

And then change the definition of your main function:� �
main = runCHP CSPTraceAndPrint college� �

Now when you re-run your program, instead of the deadlock message, you
will get a trace printed that looks like this:

< c0, c1, c0, c1, c2, c3, c2, c3, c0, ... , c3, c2, c3, c0, c2 >

That’s not too informative, even on a system as small as this. The prob-
lem is that CHP doesn’t know how to label your channels, so it assigns them
arbitrary names. The list is actually a list of channel communications, but we
need to make it more informative. For this, we must label our channels, using
newChannel’ instead of newChannel. You can use the former function whether trac-
ing is being used or not, so it’s fine to just use it throughout all your programs,
regardless of whether you are planning to use tracing or not.

Now that we have turned tracing on and added channel labels, our code
looks like this:� �
import Control.Concurrent.CHP
import Control.Concurrent.CHP.Traces
import Control.Monad
import Control.Monad.Trans
import System.Random

spaghettiFork :: Chanin () -> Chanin () -> CHP ()
spaghettiFork claimA claimB = forever

( (readChannel claimA >> readChannel claimA)
<-> (readChannel claimB >> readChannel claimB) )

philosopher :: Chanout () -> Chanout () -> CHP ()
philosopher left right = forever (do

randomDelay −− Thinking
writeChannel left () >> writeChannel right ()
randomDelay −− Eating
writeChannel left () <||> writeChannel right ()
)
where

randomDelay = liftIO (getStdRandom (randomR (0, 50000))) >>= waitFor
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college :: CHP ()
college = do

phil0Left <- newChannel’ $ chanLabel "phil0Left"
phil0Right <- newChannel’ $ chanLabel "phil0Right"
phil1Left <- newChannel’ $ chanLabel "phil1Left"
phil1Right <- newChannel’ $ chanLabel "phil1Right"
runParallel

[ philosopher ( writer phil0Left ) ( writer phil0Right )
, philosopher ( writer phil1Left ) ( writer phil1Right )
, spaghettiFork (reader phil0Left ) (reader phil1Right )
, spaghettiFork (reader phil1Left ) (reader phil0Right ) ]

main :: IO ()
main = runCHP CSPTraceAndPrint college� �

Now we can run the program again and examine the trace. The end of the
trace is the behaviour leading up to the deadlock, so that’s the most interesting
bit. Here is the end of the trace from one of my runs:

..., phil1Left, phil1Right, phil0Left, phil0Right, phil0Left,
phil0Right, phil1Left, phil0Left >

At the end, we can see that the last two actions were the philosophers sending
a message to their left forks. Unfortunately, we can’t tell if those are pick-up or
put-down messages due to the design of our system, but it least gives us a clue
to go and start tracking down the deadlock. In real situations, you may find
traces helpful or you may not, but at least the facility is there in the library to
be able to turn them on and see what is happening.

spaghettiFork

philosopherphilosopher

spaghettiFork
phil0Left

phil0Right

phil1Right

phil1Left
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4 Termination

So far all our programs have run endlessly (with the exception of deadlock).
In reality, you usually want your programs to finish, and in a nicer way than
deadlock. Unfortunately this adds a bit of extra effort on the programmer’s
behalf, but it is mainly verbosity rather than complexity.

CHP programs are usually terminated using poison. The concept of poison
is to set channels into a poisoned state, and any further attempt to use them
causes a poison exception to be thrown. Thus, when a process wants to shut
down the whole system, it poisons all its channels. The other processes get a
poison exception when they try to access this channel, and in response they
should poison all their channels. Thus, in a fully connected network, the poi-
son should spread, and eventually all processes will have terminated (and all
channels should be poisoned). Processes may also perform further actions when
they catch a poison exception (such as closing files, closing GUI windows, etc).

Poison is different to an asynchronous exception because poison exceptions
are only thrown either by the user (you) explicitly throwing them, or when you
use a channel or barrier. So, for example, poison exceptions cannot occur during
lifted IO actions. This should make poison easier to reason about.

We will now return to our earlier examples that read in characters and
printed them. We will continue to read in characters and print them until a
lower-case q is entered:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console

main :: IO ()
main = runCHP (consoleProcess echoUntilQ)

echoUntilQ :: ConsoleChans -> CHP ()
echoUntilQ chans = idUntilQ (cStdin chans) (cStdout chans)

idUntilQ :: Chanin Char -> Chanout Char -> CHP ()
idUntilQ cin cout = (readChannel cin >>= inner)

‘onPoisonTrap‘ end
where

inner :: Char -> CHP ()
inner ’q’ = end
inner c = writeChannel cout c >> (readChannel cin >>= inner)

end = poison cin >> poison cout� �
Our end action is to poison all our channels. We do this if we encounter a

lower-case q, or in response to catching poison ourselves. It is possible that the
console channels can be poisoned. For example, if there is an error on stdin
(such as a broken pipe), the channel will become poisoned.
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This poisoning works when composed with other processes. For example,
if we now add a process that turns the characters into lower-case before our
process, the poison still shuts that process down too:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Concurrent.CHP.Connect
import Data.Char

main :: IO ()
main = runCHP (consoleProcess echoUntilQ)

echoUntilQ :: ConsoleChans -> CHP ()
echoUntilQ chans = do

pipelineConnect [CHP.map toLower, idUntilQ] (cStdin chans) (cStdout chans)
return ()

idUntilQ :: Chanin Char -> Chanout Char -> CHP ()
idUntilQ cin cout = (readChannel cin >>= inner)

‘onPoisonTrap‘ end
where

inner :: Char -> CHP ()
inner ’q’ = end
inner c = writeChannel cout c >> (readChannel cin >>= inner)

end = poison cin >> poison cout� �
You can see that we did not need to alter idUntilQ at all to still terminate

the process network. We just added another process and we retained the same
termination behaviour.
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4.1 Poison Propagation

4.1.1 Poison and Parallel Composition

When an exception is thrown during sequential code, the remainder of the code
is aborted and execution jumps to the handler. With parallel code, the issue
is not as clear. The semantics we use are that poison does not immediately
abort any parallel-sibling processes, but that at the end of a parallel compo-
sition of processes, if any of the sub-processes died of untrapped poison, the
parent rethrows the poison exception. So for example, with the following pro-
cess snippet:� �
do x <- readChannel in

writeChannel out0 x <||> writeChannel out1 x� �
If attempting to write to channel out1 throws a poison exception, the write

to channel out0 still goes ahead. Only when the write to channel out0 completes
(or itself throws poison) does the parallel composition finish. At this point,
because poison was thrown in one of the sub-processes, the parent (in this case,
the do block) throws a poison exception.

There are two possible handlers for poison: onPoisonTrap and onPoisonRethrow.
The first handler does not rethrow the poison (unless the handler does), whereas
the latter handler always rethrows the poison. The rethrowing version is almost
always more useful, but the trapping version can be used if you do not want the
aforementioned behaviour:� �
do x <- readChannel in

(writeChannel out0 x ‘onPoisonTrap‘ poison out0)
<||> (writeChannel out1 x ‘onPoisonTrap‘ poison out1)� �

This way, any poison thrown in the sub-processes will not cause the parent
to also throw poison.

You may notice this funny behaviour of poisoning channels that you know
must be poisoned already. This will not cause any problems, and in many
cases (if not this simple case) trying to poison only the channels you need to
is generally more effort than just poisoning all the channels and not worrying
about which one threw the poison.

4.1.2 Poison and Choice

The semantics of choosing between channel reads/writes and barrier synchro-
nisation is as follows with regard to poison. A poisoned channel or barrier is
considered ready for reads, writes and synchronisations. If it is then chosen,
a poison exception will be thrown as normal. For example, with this piece of
code:� �
readChannel in0 <-> readChannel in1� �
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If channel in1 is poisoned and in0 is ready to be read from, either a poison
exception will be thrown, or in0 will be read from. If in0 was not ready, then
the behaviour of this code would be to throw a poison exception.

4.1.3 Poison and Unsafe Usage

One thing that you must not do is to poison channels that are in use concur-
rently. So for example, do NOT do something like this to kill off your sibling
process:� �
do x <- readChannel in

(writeChannel out0 x ‘onPoisonRethrow‘ (poison out0 >> poison out1))
<||> (writeChannel out1 x ‘onPoisonRethrow‘ (poison out0 >> poison out1))

−− Unsafe code!� �
This may be tempting, and it has the bonus benefit of killing your sibling

early. But the algorithms underlying channels are built on the assumption that
channels only have one writer and one reader, so the above code could produce
some strange behaviour.
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5 Extended Transactions

5.1 Extended Input

Sometimes a single synchronisation for a channel communication is insufficient.
You might have a server listening for requests to alter a GUI. Another process,
P, might want to send it an instruction to close the window. Once P has sent the
message, it knows that the server has receieved it, but then (due to scheduling)
it doesn’t know how long it will be until the server processes this message, during
which time the GUI may generate further events.

One method to be sure would be to get the server to send a message back
to P. But the server may not have a channel to P, and the whole thing is a bit
awkward. In this case, an extended read is an easier method.

In an extended read, the recipient takes the data, but is able to perform an
extended action before freeing the writer; in our example, handling the request
and closing the GUI window.� �
do handled <- extReadChannel c $ \req ->

case req of
CloseRequest ->

do −− Handle close request
return Nothing

-> return Just req� �
This code will make the writer wait while it examines the request. If the

request is a close request, it is handled and the extended block returns Nothing.
If is any other request, Just the request is returned. This way, close requests are
handled in an extended read, but all other requests can be handled later on. Of
course, if you wanted, you could just handle all requests in an extended read.

5.2 Extended Output

Extended output is similar to extended input. Once the writer and reader have
agreed to communicate, the writer may engage in an extended action, and it is
the result of this action that is sent down the channel. Thus, if both the writer
and reader perform an extended action, you know that the writer’s (which
gives the value to send) must happen before the reader’s (which uses the value
received).

Extended outputs are generally used less than extended inputs, because it
is more often the case that you can just perform the extended action before
engaging in the communication.
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6 Barriers and Buffers

6.1 Barriers

The channels in CHP are synchronous, meaning that both processes must be
present for the communication to take place. The processes synchronise and
send data. With the exception of broadcast channels (introduced later), channel
communications always involve exactly two processes.

Barriers are purely for synchronisation, and do not exchange any data. At
any time, a barrier has a certain number of processes (zero or more) enrolled
on it. When a process synchronises on a barrier, it must wait until all the other
enrolled processes also synchronise.

6.2 Buffers

In some cases you do not want synchronous channels. To get asynchronous
channels (where the writer can write to the channel without having to wait for
the reader), you can use buffers from the Control.Concurrent.CHP.Buffers module.
There are four different types of buffer:

1. Limited capacity plain-FIFO buffers. These are the most common buffers
used. You provide a size for the buffer. Items are sent in order, and when
the buffer is full, it no longer accepts any input.

2. Infinite capacity plain-FIFO buffers. These are as above, but without a
limit. Thus, they always accept more input. Be aware that if a writer
continues to write to one of these buffers faster than the reader can take
it, the buffer will continue to fill up. This is effectively a memory leak.
Use with caution; a thousand-sized FIFO buffer is safer than an infinite
buffer, and will probably achieve what you want.

3. Overflowing FIFO buffer. This buffer acts like a limited-capacity plain-
FIFO buffer, except that when it is full, it will continue to accept input
and discard it. This is how buffers for user input (key presses and mouse
clicks) usually work.

4. Overwriting FIFO buffer. This buffer also acts like a limited-capacity
plain-FIFO buffer, except that when it is full, it adds the new item to the
buffer and discards the previous oldest item. This is often used for inputs
from sensors and similar, where newer values are more useful than older
values and the writer updates faster than the reader can read.

Buffers in CHP are processes. To use a buffer between two processes (P and
Q), you must connect P to the buffer with one channel, and then the buffer to
Q with a second channel.
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7 Sharing and Broadcasting

7.1 Shared Channels

A shared channel is one with either the writing and/or reading ends shared
between several processes. To use this channel, the shared end(s) must be
claimed, and can then be used like normal channels for the duration of the
claim. You can think of shared channel-ends as having a mutex attached to
them, which must be claimed.

CHP.parDelta

Environment

stdin stdout

mapAndClaim 

toUpper

CHP.id

mapAndClaim 

toLower

For example, here is a process network that reads in a character, sends it to
two processes that then both attempt to print upper and lower-case versions of
it on a shared channel connected to stdout:� �
import Control.Concurrent.CHP
import qualified Control.Concurrent.CHP.Common as CHP
import Control.Concurrent.CHP.Console
import Control.Monad
import Data.Char

main :: IO ()
main = runCHP (consoleProcess dualEcho)

dualEcho :: ConsoleChans -> CHP ()
dualEcho chans = do (c, d) <- newChannels

shared <- anyToOneChannel
runParallel

[ CHP.parDelta (cStdin chans) [ writer c, writer d]
, CHP.id (reader shared) (cStdout chans)
, mapAndClaim toLower (reader c) (writer shared)
, mapAndClaim toUpper (reader d) (writer shared) ]

mapAndClaim :: (a -> b) -> Chanin a -> Shared Chanout b -> CHP ()
mapAndClaim f in sout = forever (do

x <- readChannel in
claim sout ( flip writeChannel ( f x)) )� �
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Whether the lower-case or upper-case character is written first will be arbi-
trary. But the program is safe, because we are using shared channels. Using
unshared channels here might result in undefined behaviour – if you want mul-
tiple concurrent processes to be able to write to or read from the same channel,
you must use these explicitly shared channels.

7.2 Broadcast Channels

As discussed in the previous section, shared channels still involve one writer
and one reader in a communication. Broadcast channels are part of a common
pattern where there is one writer and many readers; the writer broadcasts the
same value to all the readers in one communication.

If the number of readers is fixed, consider using the delta process from the
Control.Concurrent.CHP.Common module instead, as it will be easier. Broadcast
channels are mainly useful if you want a dynamic number of readers, or if you
want to use extended writes/reads.

Broadcast channels are a mixture of channels and barriers. Readers must
enroll on the channel, and can then engage in the communications. A commu-
nication only completes when the writer and all readers engage in the commu-
nication.
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8 Laws of CHP

There are some useful properties in CHP that are worth stating here. The
left-hand column of the tables below gives an algebraic-style equality, and the
right-hand column states it in words. To represent sequence in CHP I’ve used
the >> operator, but the same laws apply if you are using >>=. p, q and r are
all processes. Unless otherwise stated, the rules apply for any p, q and r (that
are at least valid monadic actions – bottom breaks most of these laws). Finally,
note that these rules apply only to the concurrent semantics; the types of the
left- and right-hand sides of the equalities may not match exactly.

8.1 Rules for Sequence and Parallel

(p >> q) >> r == p >> (q >> r) Sequence is associative
p >> skip == p SKIP is a right-unit of sequence
stop >> p == stop Nothing follows STOP
(p <||> q) <||> r == p <||> (q <||> r) Parallel is associative
p <||> q == q <||> p Parallel is commutative
p <||> skip == p SKIP is a unit (left- and right-, given

the above law) of parallel
(p <||> stop) >> q == p >> stop A parallel with a STOP in it will never

complete
runParallel [p] == p Parallel on a singleton doesn’t matter

Note that SKIP is not a left-unit of sequence, because it will act differently
when placed in a choice. The code skip >> p is always ready, and will execute p

if chosen. However, p is only ready if its first action is ready.
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8.2 Rules for Disjunctive Choice

All of the rules in this section only apply if all of p, q and r that are used in the
law support choice.

(p <-> q) <-> r == p <-> (q <-> r) Unprioritised choice is associative
p <-> q == q <-> p Unprioritised choice is commutative
p <-> stop == p STOP is a unit (left- and right-, given

the above law) of unprioritised choice
(p </> q) </> r == p </> (q </> r) Prioritised choice is associative
p </> stop == p STOP is a right unit of prioritised

choice
stop </> p == p STOP is a left unit of prioritised choice
skip </> p == skip SKIP is an always-ready left-zero of pri-

oritised choice
( skip >> q) </> p == q SKIP is always ready, and does nothing
alt [p] == p Choice on a singleton doesn’t matter
priAlt [p] == p Choice on a singleton doesn’t matter
alt [p >> r , q >> r ] == alt [p, q] >> r Sequence is right-distributive over

choice

8.3 Rules for Conjunctive Choice

All of the rules in this section only apply if all of p, q and r that are used in the
law support choice (or, where they are used as parameters to every, the rules
that apply to parameters to that function).

(p <&> q) <&> r == p <&> (q <&> r) Every is associative
p <&> q == q <&> p Every is commutative
stop <&> p == stop STOP is a (left- and right-, given the

above law) zero of every
skip <&> p == p SKIP is a (left- and right-, given the

above law) unit of every
every [p >> q, r >> s ]

== every [p, q] >> runParallel [ r , s ]

every [ skip >> p, skip >> q]

== runParallel [p, q]

Every is equivalent to parallel if all
branches are immediately ready

every [p] == p Every on a singleton doesn’t matter (as
long as p meets the conditions for every)
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8.4 Rules for Poison

p ‘onPoisonRethrow‘ (return ()) == p An empty rethrowing handler is irrele-
vant

p ‘onPoisonRethrow‘ throwPoison ==p A rethrowing handler that only
rethrows is irrelevant

throwPoison ‘onPoisonRethrow‘ q

== q >> throwPoison

Throwing and rethrowing

throwPoison ‘onPoisonTrap‘ p == p Semantics of poison trapping
p ‘onPoisonTrap‘ throwPoison == p Semantics of poison trapping and

rethrowing
return x ‘onPoisonTrap‘ p == return x Return is a left-unit of poison handling
return x ‘onPoisonRethrow‘ p == return x Return is a left-unit of poison handling
throwPoison <||>p == p >> throwPoison Poison in a PAR is rethrown afterwards
(p >> throwPoison) <||> q

== (p <||> q) >> throwPoison

Poison in a PAR is rethrown afterwards

throwPoison >> p == throwPoison Poison breaks out of a sequence
p ‘onPoisonTrap‘ (q >> throwPoison)

== p ‘onPoisonRethrow‘ q

Trapping poison and always rethrowing
is the same as the rethrowing handler
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9 Frequently Asked Questions

9.1 How can I use CHP to make my programs run faster
by forcing computation to take place in a particular
process?

Increased performance is perhaps the most common motivation for people to
get into concurrency. While CHP does allow you to easily run IO actions con-
currently, trying to get computation to run concurrently in Haskell is difficult
due to its lazy evaluation. The same problem applies to all of Haskell – trying
to force evaluation is surprisingly difficult. Any advice you find elsewhere on
forcing evaluation applies in CHP, and this is used for the writeChannelStrict

function.

9.2 Why is my application behaving strangely?

There are several misuses of the library that will not cause a run-time error but
will instead cause odd behaviour:

• Using a non-shared channel end (Chanin and Chanout) in multiple processes
concurrently. If you want to do something like this, you must use shared
channel ends.

• Using a barrier (or clock) when you are not enrolled on it. You should
only use a barrier end or clock when you are inside an enroll block but
not inside a resign call.

• Enrolling on a barrier end or clock and then passing it to multiple con-
current processes to use. You must enroll once per process on each barri-
er/clock.

9.3 Why isn’t my network shutting down when I poison
it?

If you poison all your channels, there may be several reasons why this doesn’t
actually shut down all your processes:

1. Your program is trapping the poison somewhere and not propagating it,
thus it isn’t travelling up the process hierarchy.

2. Your process network is not fully connected via channels and/or barriers,
so poison in one sub-network cannot spread to the other sub-network.

3. A process may be performing a long computation. Poison will only be
seen when a process accesses a channel/barrier, so if the process is busy
computing a value, it will not notice the poison. To solve this you will
either just have to wait for the computation to complete or consider using
asynchronous exceptions.
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4. A process may be waiting for an external event, such as reading from a
socket or file. The process will not see poison until the read completes. In
this case you will almost certainly need to use asynchronous exceptions.
Look in the code for the Control.Concurrent.CHP.Console module for an
example.

It may seem like poison is not all that useful, given the last two points. Our
experience is that poison is generally easier to work with than asynchronous
exceptions, but you can always use a combination if that makes your job easier.

9.4 Why does my program crash, saying “Thread termi-
nated with: registerDelay: requires -threaded”

In order to use timeouts as part of a choice, you must compile your program
with the -threaded option.
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