Shared Channels etc.

Peter Welch (phw@kent.ac.uk)

Concurrency Design and Practice
\ y g /

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Unshared Channel-Ends

So far, all channels have been strictly point-to-point ...

| C
B

Only one process may outputto it ...

And only one process may input from it ...

Shared Channel-Ends (Writers)

Here is a channel whose writing-end is SHARED ...

Any number of processes may output to it ...

Only one process may input from it ...

However, only one of outputting processes may use it at
one time ... they form an orderly (FIFO) queue for this.

Shared Channel-Ends (Writers)

Here is a channel whose writing-end is SHARED ...

-~
SHARED ! CHAN MY.PROTOCOL c:
PAR
PAR 1 = 0 FOR n
smiley (c!)
server (c?)

This allows the writing end
to be SHARED.

Shared Channel-Ends (Writers)

The process at the reading-end sees a normal channel ...

PROC server (CHAN MY.PROTOCOL in?)
normal coding

server does
server is unaware that the other not care which
end of its input channel is SHARED. process sends

it messages.

Shared Channel-Ends (Writers)

The process at the writing-end sees a SHARED channel ...

PROC smiley (SHARED CHAN MY.PROTOCOL out!)
smilley code body

smi ley is aware that its end
of the channel is SHARED.

Shared Channel-Ends (Writers)

A SHARED channel must be claimed before it can be used ...

PROC smiley (SHARED CHAN MY.PROTOCOL out!)
SEQ

... Stuff ——
CLAIM out! \

write to the “out!”® channel

more stuff ~ Cannot use “out!” here
(unless similarly claimed)

Shared Channel-Ends (Writers)

A SHARED channel must be claimed before it can be used ...

PROC smiley (SHARED CHAN MY.PROTOCOL out!)
SEQ

... stuff

CLAIM out! -——=<

write to the “out!® channel

more stuff

This process waits here
... until it's its turn ...

Shared Channel-Ends (Writers)

A SHARED channel must be claimed before it can be used ...

PROC smiley (SHARED CHAN MY.PROTOCOL out!)

SEQ
... stuff @mes as@
CLAIM out!

write to the “out!” channel \j

more stuff

Shared Channel-Ends (Readers)

Here is a channel whose reading-end is SHARED ...

generator

Any number of processes may input from it ...

Only one process may outputto it ...

However, only one of inputting processes may use it at
one time ... they form an orderly (FIFO) queue for this.

Shared Channel-Ends (Readers)

Here is a channel whose reading-end is SHARED ...

generator

— N
SHARED ? CHAN MY.PROTOCOL c:)
PAR
PAR 1 = O FOR n
smilley (c?)
generator (c!)

This allows the reading end
to be SHARED.

Shared Channel-Ends (Readers)

The process at the writing-end sees a normal channel ...

generator

PROC generator (CHAN MY.PROTOCOL out!)
normal coding

generator does
generator is unaware that the other not care which
end of its output channel is SHARED. process takes its

MesSages.

Shared Channel-Ends (Readers)

The process at the reading-end sees a SHARED channel ...

generator

PROC smiley (SHARED CHAN MY.PROTOCOL in?)
smilley code body

smi ley is aware that its end
of the channel is SHARED.

Shared Channel-Ends (Readers)

A SHARED channel must be claimed before it can be used ...

generator

PROC smilley (SHARED CHAN MY.PROTOCOL in?)
SEQ

... Stuff ——
CLAIM in? \

read from the “in?® channel

more stuff Cannot use “in?° here
(unless similarly claimed)

Shared Channel-Ends (Readers)

A SHARED channel must be claimed before it can be used ...

generator

PROC smiley (SHARED CHAN MY.PROTOCOL in?)
SEQ

... stuff

CLAIM in? —<

read from the “in?’ channel

more stuff

This process waits here
... until it's its turn ...

Shared Channel-Ends (Readers)

A SHARED channel must be claimed before it can be used ...

generator

PROC smilley (SHARED CHAN MY.PROTOCOL in?)

SEQ
... stuff @mes as@
CLAIM

in?

read from the “in?° channel \é_ff;f

more stuff

Shared Channel-Ends (Both)

Here is a channel both of whose ends are SHARED ...

Any number of processes may outputto it ...
Any number of processes may input from it ...

However, only one outputting process and one inputting
process may use it at one time ... they form an orderly
(FIFO) queue at each end.

Shared Channel-Ends (Both)

Here is a channel both of whose ends are SHARED ...

— N

~
SHARED CHAN MY.PROTOCOL c:

PAR
PAR 1 = O_FOR n This allows both ends
blue.smiley (c!) to be SHARED.
PAR i = O FOR m

green.smiley (c?)

Shared Channel-Ends (Both)

The processes at the writing-end see a SHARED channel ...

PROC blue.smiley (SHARED CHAN MY.PROTOCOL out!)
blue.smiley code body

blue.smiley will
blue.smiley is aware that its have to CLAIM its
end of the channel is SHARED. “out!” channel to

be able to use it.

Shared Channel-Ends (Both)

The processes at the writing-end see a SHARED channel ...

PROC blue.smiley (SHARED CHAN MY.PROTOCOL out!)
blue.smiley code body

blue.smiley
blue.smiley is unaware of the must not care which
sharing status at the other end. process takes its

MeSSages.

Shared Channel-Ends (Both)

The processes at the reading-end see a SHARED channel ...

PROC green.smiley (SHARED CHAN MY.PROTOCOL in?)
green.smiley code body

green.smiley will
green.smiley is aware that its have to CLAIM its
end of the channel is SHARED. “in?” channel to

be able to use it.

Shared Channel-Ends (Both)

The processes at the reading-end see a SHARED channel ...

PROC green.smiley (SHARED CHAN MY.PROTOCOL in?)
green.smiley code body

green.smiley
green.smi ley is unaware of the must not care which
sharing status at the other end. process sends it

MeSSages.

PROBLEM: once a sender and receiver process have made
their claims, they can do business across the shared channel
bundle. Whilst this is happening, all other sender and receiver
processes are locked out from the communication resource.

SOLUTION: use the shared channel structure just to enable
senders and receivers to find each other and pass between
them a mobile private channel. Then, let go of the shared
channel and transact business over the private connection.

A sending process constructs both ends of an unshared
mobile channel and claims the writing-end of the shared
channel. When successful, it sends the reading-end of its
mobile channel down the shared channel. This blocks until a
reading process claims its end of the shared channel and

Inputs that reading-end of the mobile.

‘Advanced’ module ...

The sending and reading processes now exit their claims on
the shared channel and conduct business over their private

connection. Meanwhile, other senders and readers can use
the shared channel similarly and find each other.

Once each sending and reading pair finish their business,
there is a mechanism for the reader to return its reading-end
of the mobile channel back to the sender, who may then
reuse it to send to someone else.

‘Advanced’ module ...

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Protocol Inheritance (Variant)

A variant (or CASE) PROTOCOL can extend previously

defined ones:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT

PROTOCOL B
CASE
blue; INT::[]JREAL6G4
poison

poison

/

PROTOCOL C EXTENDS A, B:

Protocol Inheritance (Variant)

The extended protocol is a merge of the variants in the

protocols it is inheriting.

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT

PROTOCOL B
CASE
blue; INT::[]JREAL6G4
poison

poison

/

PROTOCOL C EXTENDS A, B:

Protocol Inheritance (Variant)

Processes sending to parameter channels carrying the A
or B protocols may be plugged into channels carrying C:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT

PROTOCOL B
CASE
blue; INT::[]JREAL6G4
poison

poison

/

PROTOCOL C EXTENDS A, B:

Protocol Inheritance (Variant)

Processes sending to parameter channels carrying the A
or B protocols may be plugged into channels carrying C:

PROTOCOL C EXTENDS A, B:

service

/ SHARED ! CHAN C service:

C PAR

serve.c (service?)
gen.a (servicel)
gen.b (servicel)

Protocol Inheritance (Variant)

Processes sending to parameter channels carrying the A
or B protocols may be plugged into channels carrying C:

PROTOCOL C EXTENDS A, B:

service

C PROC serve.c (CHAN C in?)

serve.c code body

Protocol Inheritance (Variant)

Processes sending to parameter channels carrying the A
or B protocols may be plugged into channels carrying C:

PROTOCOL C EXTENDS A, B:

service

C PROC gen.a (SHARED CHAN A out!)

gen.a code body

Protocol Inheritance (Variant)

Processes sending to parameter channels carrying the A
or B protocols may be plugged into channels carrying C:

PROTOCOL C EXTENDS A, B:

service

C PROC gen.b (SHARED CHAN B out!)

gen.b code body

Protocol Inheritance (Variant)

Processes receiving from parameter channels carrying C
may be plugged into channels delivering A or B :

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT

PROTOCOL B
CASE
blue; INT::[]JREAL6G4
poison

poison

/

PROTOCOL C EXTENDS A, B:

Protocol Inheritance (Variant)

Processes receiving from parameter channels carrying C
may be plugged into channels delivering A or B :

PROTOCOL C EXTENDS A, B:

service

/ SHARED ! CHAN A service:

A PAR

This is,

serve.c (service?)
gen.a (servicel)
gen.a (servicel)

perhaps, not

so useful.

Protocol Inheritance (Variant)

Processes receiving from parameter channels carrying C
may be plugged into channels delivering A or B :

PROTOCOL C EXTENDS A, B:

service

/ SHARED ! CHAN B service:

B PAR

This is,

serve.c (service?)
gen.b (servicel)
gen.b (servicel)

perhaps, not

so useful.

Protocol Inheritance (Variant)

The extended protocol carries a merge of the variants in the
protocols it is inheriting.

Honee PROTOCOL B
CASE oroc
red; INT; BYTE::[]BYTE) B
green; BYTE; BYTE; INT blue; INT::[]JREAL64
] poison
poison

N S

PROTOCOL C EXTENDS A, B:

Protocol Inheritance (Variant)

The extended protocol carries a merge of the variants in the
protocols it is inheriting. C is similar to:

PROTOCOL C2
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
blue; INT::[]JREAL6G4
poison

But C2 is not the same as C ... its messages have the
same structure as those in A or B, but C2 is not a formal
extension of them. A channel carrying the C2 protocol could
not be used by processes sending to A or B channels.

Protocol Inheritance (Variant)

Rule: protocols being extended together either have no
tag names in common or the structures associated with

common tags must be identical:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

PROTOCOL B
CASE

poison

blue; INT::[]JREAL6G4

N S

PROTOCOL C EXTENDS A, B:

©OO

mpile: compatible variants (poison) from

Protocol Inheritance (Variant)

Rule: protocols being extended together either have no
tag names in common or the structures associated with
common tags must be identical:

PROTOCOL AX
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison; INT

PROTOCOL BX
CASE
blue; INT::[]JREAL6G4
poison; BYTE

PROTOCOL CX EXTENDS AX, BX: ®®

CX will not compile: incompatible variants (poison) from AX and BX

Protocol Inheritance (Variant)

Protocols extending other protocols may also add Iin
their own variants:

PROTOCOL D EXTENDS A, B
CASE
mustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTE

Rule: extra variants so added must have either different
tag names to any variants being inherited or identical
structures.

Protocol Inheritance (Variant)

Current implementation restriction: all protocols in an
Inheritance hierarchy must be declared in the same

compilation unit.

PROTOCOL A =
CASE e
red; INT; BYTE::[]BYTE _ B
green; BYTE; BYTE; INT b(')lilzanlNT.-[]REAL64
poison) P

| N/

PROTOCOL D EXTENDS A, B
CASE
mustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTE

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

24-Nov-11

Process Structures

There are 6 process constructors ...

Copyright P.H.Welch

45

CASE Process
& \

must be of a
discrete type ...

CASE <expression>
<case-list> _—

<process>

<case-list> ———

BOOL, BYTE, INT,
<process>

INT16, INT32, INT64

<case-list> - ——

<process>

<case-list> -— —

<process> a comma-separated list of

compiler-known (different)
values from that type ...

CASE Process

CASE <expression>
<case-list>

<process>

[

<case-list>

<process>

[

<case-list>

<process>

[

<case-list>

[

<process>

The <expression>
IS evaluated.

The <process>
whose <case-list>

contains the value of
that <expression>

IS executed.

If no <case-list>
contains the value of
that <expression>,

a run-time error Is
raised.

CASE Process

CASE <expression>

<case-list> An optional ELSE
< >
appended ...
<case-list>
<case-list> comawstheva@ecﬁ
that <expression>,
the ELSE <process>
<case-list> IS executed.

<process>

ELSE

<process>

CASE Process

CASE ch

IaI, IeI, IiI, .0., IuI

... deal with lower-case vowels
“A*. “E". "1°, "0", "U°

... deal with upper-case vowels
0", "1°, "2°, "3°. "4°

... deal with these digits
-?-, -!-, .h., .H., W Jdede W

... deal with these symbols
ELSE

... none of the above

Java / C has a similar mechanism — the swi tch statement ...

Java switch Statement

switch (ch) {

case "a": case "e": case "iI": case
... deal with lower-case vowels
break:;

case “"A": case "E": case °l": case
... deal with upper-case vowels
break:;

case "0": case "1": case "2°: case
... deal with these digits
break:;

case "?": case "!": case "h": case
... deal with these symbols
break:;

default:
... hone of the above

.0.:

'O' :

'3':

.H.:

case

case

case

case

'U.

'4.

Wy W

CASE Process

CASE ch

.a., .e., .i., .0., .u.

... deal with lower-case vowels

.A., .E., .l., .O., .U.

... deal with upper-case vowels

IOI, I1I, I2I, I3I, I4I
... deal with these digits
I?I, I!I, IhI, IHI, LE & |

... deal with these symbols

ELSE

... hone of the above

This could, of course,
be done with an IF ...

... but it would be
more complicated and
slower in execution.

IF

(ch
(ch

(cﬂ-
(ch

(cﬂ-
(ch

(cﬂ-
(ch

TRUE

CASE Process

*a") OR (ch = "e") OR (ch = "1") OR
"0") OR (ch = "u")

deal with lower-case vowels

"A") OR (ch = "E") OR (ch = "1%) OR
"0") OR (ch = "U")

deal with upper-case vowels

0") OR (ch = "1) OR (ch = "2") OR
*3") OR (ch = "4%)

deal with these digits

"?") OR (ch = "!") OR (ch = *h") OR
"H*) OR (ch = "**%)

deal with these symbols

... but it would be
none of the above more complicated and
slower in execution.

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Parallel Assignment

Multiple expressions can be assigned to multiple variables
(of compatible types) in parallel:

a, b, c := x, y+1, z-2

First: the RHS
expressions are
evaluated in parallel.
Second: the values
are assigned to the
target variables in
parallel.

REAL32 a.tmp:
INT b.tmp, c.tmp:
SEQ
PAR
a.tmp = Xx
b.tmp :=
c.tmp :=
PAR
a = a.tmp
b :=b.
C = c.tmp

Parallel Assignment

Multiple expressions can be assigned to multiple variables
(of compatible types) in parallel:

a, b, c := x, y+1, z-2

Note: parallel usage
rules implied by the
expanded definition
apply to the parallel
assignment.

REAL32 a.tmp:
INT b.tmp, c.tmp:

SEQ
PAR

a.tmp :=
b.tmp :=
c.tmp :

PAR

a .

b :=

c .

a.
b.
C.

Parallel Assignment

Swapping variables breaks no parallel usage rules and is,
therefore, allowed:

b, c :=c, b INT b.tmp, c.tmp:
SEQ
= PAR
b.tmp :=
Note: parallel mp -= ¢
:) c.tmp :=Db
assignment is not PAR
necessarily implemented .
: : : b := b.tmp
In this way. This
C := c.tmp

transformation just
defines semantics.

Parallel Assignment

Here’s an example that breaks the parallel usage rules and,
therefore, does not compile:

a[i], i := 4.2, 8 REAL32 a.i.tmp:
INT ¥2.tmp:
= | SEQ
PAR

a.i.tmp = 4.2
lllegal: variable ‘i’ is i.tmp := 8
being changed and PAR
observed in parallel. . afi] := a.i.tmp

i = 1.tmp

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Extended Rendezvous

This is a convenience — and it’s free (no impact on run-time).

SEQ

wait for input; when
it arrives, do not

in ?? X ——

- rendezvous block outputting process!

The outputting process
IS unaware of the
extended nature of the
rendezvous.

reschedule the

reschedule outputting process
only after the rendezvous block
has terminated.

Extended Rendezvous

They can be used as ALT guards:

ALT
a? x <
react
in ?2? %

rendezvous block
react (optional and outside the rendezvous)

tim ? AFTER timeout

react \

Extended Rendezvous

Here is an informal operational semantics:

c 1 42 Cc J C ??7 X
- ... rendezvous block
BOOL any: c SEQ
SEQ PEERC Y X
c! 42 < ... rendezvous block
c.ack ? any| C-ack c.ack ! TRUE

The second version requires an extra channel and for both
the sender and receiver processes to be modified.

Extended Rendezvous

Of course, it’s not implemented that way!

(03 7 X
c !l 42 >

rendezvous block

= No new run-time overheads for normal channel
communication.

» Implementation is very lightweight (approx. 30 cycles):
¢ no change In outputting process code;
¢ new occam Virtual Machine instructions for “?7?".

Extended Rendezvous Tap
Take any communication channel ...

Question: can we tap the information flowing through the
channel in a way that is not detectable by the existing
network?

We may need to do this for data logging (auditing/de-bugging)
or for inserting network drivers to implement the channel over
a distributed system or ...

Extended Rendezvous Tap
Take any communication channel ...

e

Question: can we tap the information flowing through the
channel in a way that is not detectable by the existing
network?

Answer: insert a process that behaves similarly to an id
process, but uses an extended rendezvous to forward the
messages ... and anything else it fancies (so long as it
doesn't get blocked indefinitely) ...

Extended Rendezvous Tap

Take any communication channel ...

41_ logger

PROC tap (VAL INT id,

CHAN INT in?, out!, 0 4o cigy 225
SHARED CHAN LOG log!)

tap body llog

Extended Rendezvous Tap

Take any communication channel ...

41_ logger

{{{ tap body
WHILE TRUE

INT x:

in ?? in . out
mPl‘xl‘R X —p tap (id) |

CLAIM log!
log ! id: x l'°g
out ! x

133

Extended Rendezvous Tap

Take any communication channel ...

41_ logger

Note: the channel has been tapped with no change to the
sending and receiving processes.

The semantics of communication between the original

processes are unaltered. The sender cannot complete its
communication until the receiver takes it ... and vice-versa.

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Abbreviations and Anti-Aliasing

Aliasing means having different names for the same thing.

Aliasing is uncontrolled in most existing languages (such as

Java, C++, Pascal, ...) and gives rise to semantic complexities
that are underestimated. These complexities are subtle, easy
to overlook and cause errors that are hard to find and remove.

Aliasing Is strictly controlled in eccam-7. Only VAL constants
may have different names. Anything else (variable data,
channels, timers, ...) is only allowed one name in any one
context. If a new name is introduced (e.g. through parameter
passing), the old name cannot be used within the scope of
that new name.

As a result, occam-m variables behave in the way we expect
variables to behave: they vary if and only if we vary them. ©

Abbreviations and Anti-Aliasing

Reference Abbreviation: <data-type>

CHAN <protocol>
TIMER

<specifier> <new-name> 1S <old-name>:

<process>

scope of
<new-name>

<old-name>
Is not allowed in here

Abbreviations and Anti-Aliasing

Reference Abbreviation:

<specifier> <new-name> 1S <old-name>: \\\

<process>

Any variables (e.g. array indices)
used in determining <old-name> ...

d

are frozen in
the scope of
<new-name>

<old-name>
Is not allowed in here

Abbreviations and Anti-Aliasing

Reference Abbreviation: @
Example

-

[200][100]REALB4 X CHAN MY .PROTOCOL c!

INT result IS n:
REAL64[] row.i IS x[i]:
CHAN MY .PROTOCOL out! IS c!:

Cannot refer
to n, x[[i] or

c! in here.
Can refer to i
in here, but can’t
change it.

Abbreviations and Anti-Aliasing

Reference Abbreviation: @ -
Example

[200][100]REALB4 X CHAN MY .PROTOCOL c!

INT result IS n:
REAL64[] row.i IS x[i]:
CHAN MY .PROTOCOL out! IS c!:

Can refer to x| j] here ... but
<process> - only if (i <> j). If the compiler
doesn’t know, a run-time

check will be made.

Abbreviations and Anti-Aliasing

Value Abbreviation:

<expression>
must match the
<data-type>

scope of
<name>

<name> cannot be
changed in here

VAL <data-type> <name> IS <expression>:

<process>

Abbreviations and Anti-Aliasing

Value Abbreviation:

Any variables used in
<expression> ...

VAL <data-type> <name> 1S <expression>: \\\

are frozen in
the scope of
<name>

<process>

<name> cannot be
changed in here

Abbreviations and Anti-Aliasing

Value Abbreviation: REALG4 a REAL6G4 b

Example
[200] [100]REAL64 X

VAL REAL64 hypotenuse IS SQRT ((a*a) + (b*b)):
VAL REAL64[] row.i IS x[i]:
VAL INT n IS SIZE row.i:

<process>

Cannot change
hypotenuse,
row. i or nin here.

Also, cannot
change a, b, i or
x[i] in here.

Abbreviations and Anti-Aliasing

Careful use of abbreviations can clarify code and increase
efficiency.

Here’s simple code for adding up the elements of a 1-D array:

a sum
0 1 2 3 4 - (n-1)

SEQ
sum := 0

SEQ I = 0 FOR SIZE a
sum = sum + a[i]

Abbreviations and Anti-Aliasing

Now, let’s add up the rows of a 2-D array:

a
0
1
(m-1)
0 1 2 3 4 ... (n-1)
SEQ row = 0 FOR SIZE a
SEQ
sumfrow] = 0

SEQ col = 0 FOR SIZE a[row]
sumfrow] := sum[row] + afrow][col]

(m-1)

sum

Abbreviations and Anti-Aliasing

This code contains some wasteful re-computations:

SEQ row = 0 FOR SIZE a

SEQ
sumfrow] = 0
SEQ col = 0 FOR SIZE a[row]

sumfrow] := sum[row] + afrow][col]

For each ‘row’, the address of ‘sum[row]’ is calculated (2n+1)
times — where ‘n’ is the size of the ‘row’.

For each ‘row’, the address of ‘a[row]’ is calculated (n+1)
times — where ‘n'’ is the size of the ‘row'.

With abbreviations, the addresses of ‘sum[row]’ and ‘a[row]’
need only be calculated once for each ‘row’ ... a saving of
(3*n*m) array index computations, over ‘m' rows. © © ©

Abbreviations and Anti-Aliasing

We just abbreviate ‘sum[row]’ and ‘a[row]’:

SEQ row = 0 FOR SIZE a
INT sum.row IS sum[row]: <
VAL [JINT a.row IS afJrow]:

calculated once
PEr row ...

SEQ
sum.row = 0
SEQ col = 0 FOR SIZE a.row
sum.row := sum.row + a.row|[col]

The neat thing is that, following the abbreviations, the inner
loop code is exactly the same (bar variable names) as the
original summation code for the 1-D loop:

SEQ
sum =0
SEQ I = 0 FOR SIZE a
sum = sum + a[i]

Parameters and Abbreviations

An occam-n PROC call is formally defined as the in-line
replacement of the invocation with the body of the PROC,

proceeded by a sequence of abbreviations associating the
formal parameters (<new-names>) with the actual arguments
(<old-names> Or <expressions>) from the call.

Consider:

foo (id, a, b, row) —t

PROC foo (VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)

body of foo (using id, a, b, row, out!)

Parameters and Abbreviations

PROC foo (VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)
... body of foo (using id, a, b, row, out!)

Now consider an invocation of foo:

lts context
(inside a SEQ, PAR, ALT,
IF, CASE, ...) is not
relevant.

foo (i+1l, n, m, x[i1], c})

This is formally defined to be:

VAL INT id IS i+1: /
INT a IS n: '

INT b IS m:

REALG4[] row IS Xx[i]:

CHAN MY.PROTOCOL out! IS c!:

... body of foo (using id, a, b, row, out!)

Parameters and Abbreviations

PROC foo (VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)
body of foo (using id, a, b, row, out!)

The point is that the anti-aliasing
rules carry over (from abbreviations)
to parameter passing ...

Parameters and Abbreviations

PROC foo (VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)
... body of foo (using id, a, b, row, out!)

The following invocation is illegal:

This attempts to set up
a and b as aliases of n.

foo (i+1l, n, n, x[i1], c!)

This is formally defined to be:

VAL INT id IS i+1:
INT a IS n: (—

INT b IS n: (= We are not allowed to
REALG4[] row IS x[i]: wtion n here.
CHAN MY.PROTOCOL out! IS ci:

... body of foo (using id, a, b, row, out!)

Parameters and Abbreviations

PROC foo (VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)
... body of foo (using id, a, b, row, out!)

The following invocation is illegal:

©0O0O

Therefore, this does
not compile.

foo (i+l1l, n, n, x[i1], c})

This is formally defined to be:

VAL INT id IS i+1:
INT a IS n: (—

INT b IS n: (= We are not allowed to
REAL64[] row IS x[i]: —K\\\EETMOnr1hema
CHAN MY.PROTOCOL out! IS c!:

... body of foo (using id, a, b, row, out!)

Anti-Aliasing

Recall, occam-7 variables behave in the way we expect
variables to behave: they vary if and only if we vary them.

Consider the fragment of code:

SEQ Assume the arithmetic
a:=a+b . does not overflow.
a:=a-b

Everything we feel about algebra, variables, assignment and
sequencing tells us: the above code changes nothing.

For all languages providing algebra, variables, assignment
and sequencing — apart (currently) from eccam-m — that
Intuition is not safe.

Anti-Aliasing

There is a potential semantic singularity below:

SEQ Assume the arithmetic
a:=a+b . does not overflow.
a:=a-b

The above code changes nothing ... only if a and b reference

diff

erent numbers.

If 2 and b reference the same number, they would both end
up with zero! The value of b would vary without it being
explicitly varied.

Anti-Aliasing

There is a potential semantic singularity below:

SEQ Assume the arithmetic
a:=a+b . does not overflow.
a:=a-b

up with zero! The value of b would Ve ' it being
explicitly varied. &

Anti-Aliasing

What You See Is What You Get (WYSIWYG)

That kind of nonsense does not happen in occam=7:

SEQ Assume the arithmetic
a:=a+b . does not overflow.
a:=a-b

The above code changes nothing ... we know that a and b
reference different numbers.

The anti-aliasing rules mean that different variables in the
same context must refer to different items.

Aliasing and Java etc.

What You See Is Not What You Get (WYSINWYG)

Java has no aliasing problems with its primitive types ... but

aliasing is part of the culture of ‘Object Orientation’ ... we must
work to control it.

Consider:
Assume the arithmetic
a.plus (b); ' does not overflow.
a.minus (b);

where a and b are object variables of the same class ... with

some private field holding an integer whose value is updated
by the plus and minus methods in the obvious way ...

Aliasing and Java etc.

What You See Is Not What You Get (WYSINWYG)

class Thing {
private integer sum = 0;
public void plus (Thing t) {sum = sum + t.sum;}
public void minus (Thing t) {sum = sum - t.sum;}
... other methods

}

If Thing variables a and b

reference the same object, they

would end up holding zero in their
sum field! The value of b varies

a.plus (b);
a.minus (b);

without it being (explicitly)
updated.

Aliasing and Java etc.

What You See Is Not What You Get (WYSINWYG)

If Thing variables a and b

reference the same object, they

would end up holding zero in their
sum field! The value of b varies

a.plus (b);
a.minus (b);

without it being (explicitly)
updated.

Aliasing and Java etc.

What You See Is Not What You Get (WYSINWYG)

If Thing variables a and b
reference the same object, they

would end up holding zero in their
sum field! The value of b varies

without it being (explicitly)
updated.

a.pllus (b);
a.minus (b);

This iIs not an uncommon piece of coding ... we often write:

with data from “other” objects
set up object a /

) _ don’t change a or
use a for something -) L
N _ the “other” objects
restore a to its previous state

el =~ | withdatafromthe
“unchanged” “others”

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONSs ...
RECORD data types ...

Array slices ...

VALOF Expressions

¢ <local-declarations>
VALOF
N RESULT | <list-of-expressions>

This allows us to declare variables in the middle of
expressions and perform calculations (serial logic only).
If the result list has more than one item, this can only
be the Right-Hand-Side of a parallel assignment.

VALOF Expressions

REAL64 total [1000]REALEZ\%::::)

total := total +
(REALB4 sum:
VALOF
SEQ
sum = 0
SEQ 1 = 0 FOR SIZE x
sum := sum + Xx[i]
RESULT sum

VALOF Expressions

a, b, c := (BYTE ch, sh:
REAL32 z:
VALOF

<compute ch, z, sh>

RESULT ch, z, sh
)

Functions

<type-list> FUNCTION <id> (<params>)

<local-declarations>

must match the

VALOF <type-list>

<process>

RESULT <list-of-expressions>

The <params> may only be VAL data types (no reference
data, channels, ...).

Functions are deterministic and side-effect free (i.e. its
body may not assign to global variables,
communicate on global channels, use timers or engage in
any internal concurrency using ALT or SHARED channels.)

Short Functions

<type.list> FUNCTION <id> (<params>) IS

<list-of-expressions> | :

Gr example B

BOOL FUNCTION capital (VAL BYTE ch) IS
(°*A® <= ch) AND (ch <= "Z°):

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTION:S ...
RECORD data types ...

Array slices ...

occam-7t Data Types

Revision;

occam-n has a set of primitive types:
BOOL, BYTE, INT, INT16, INT32, INT64, REAL32, REAL64

occam-r has fixed-size anonymous array types:
[n]<type>

where n is a compiler-known INT value and <type> is a
compiler-known type (which could itself be an array type).

New:

occam-r allows new named types to be declared.

occam-7t Data Types

Records:

An array type groups together elements of the same type.
A record type groups together elements of different types:

DATA TYPE FOO
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

This gives a record with 5 named fields: two INT ones,
one BYTE, one REAL64 and one BYTE array (e.g. a string).

occam-7t Data Types

Records:

Now, we can declare variables of this new type:

FOO x, y, z:
[42]FOO0 database:

To access individual fields of a record, the notation is like

array indexing:

SEQ
X[size] := 42
y[weight] := 77
z[name] := "'Susan *
z[size] := x[size]
y[name] := z[name]

DATA TYPE FOO
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

occam-7t Data Types

Records:

Now, we can declare variables of this new type:

FOO x, y, z:
[42]FOO0 database:

Record literals let us assign all fields at once:

x = [42, 77, green,
99.7158214,
"*Josephson "]

where, perhaps:
VAL BYTE green IS 6:

DATA TYPE FOO
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

occam-7t Data Types

Records:

Record data types are first class types. We can assign
them to each other or send them down appropriately
typed channels:

FOO x, y:

SEQ
x = [42, 77, green, 99.7158214, "Josephson "]
... Stuff

Y 1= X <
All the data in X is
copied into y.

Note: in Java, assignment between object variables just copies the reference.
The source and target variables end up referring to the same object.

occam-7t Data Types

Records:

Record data types are first class types. We can assign
them to each other or send them down appropriately
typed channels:

FOO x, y:

SEQ
x = [42, 77, green, 99.7158214, "Josephson "]
... Stuff

Y 1= X <
All the data in X is
copied into y.

Note: in eccam-n, assignment between variables copies the data.
The source and target variables end up referring to different pieces of data.

occam-7t Data Types

Records:

All the data in x is

copied into y.

Note: in eccam-n, assignment between variables copies the data.
The source and target variables end up referring to different pieces of data.

occam-7t Data Types

Records:

Record data types are first class types. We can assign
them to each other or send them down appropriately
typed channels:

RO 1 Rl

CHAN FOO c:
PAR
RO (c!)
Rl (c?)

occam-rt Data Types

Records:

Record data types are first class types. We can assign
them to each other or send them down appropriately
typed channels:

PROC RO (CHAN FOO out!)
FOO x:

SEQ out
... Sset up X FQ()

out ! Xx
... more stuff
out ! [21, 72, blue, 3.142, "Junction "]

occam-rt Data Types

Records:

Record data types are first class types. We can assign
them to each other or send them down appropriately
typed channels:

PROC R1 (CHAN FOO in?)

FOO x, y:

SEQ in
in ? X 1 Fz]-

stuff
in?y
more stuff

occam-= Data Types

Renamed Types:

We can just define a new type to be implemented by an
existing type:

DATA TYPE COLOUR IS BYTE:

DATA TYPE MATRIX IS [20][30]REAL64:
DATA TYPE BAR IS FOO:

Now, COLOUR, MATRIX and BAR are new types, different to
their underlying BYTE, [20] [30]REAL64 and FOO types.

occam-r enforces strong typing. So, COLOUR and BYTE
variables are not assignment compatible. Also, a COLOUR

variable cannot be the target of an input from a CHAN BYTE
(or vice-versa).

occam-7t Data Types

Example:

User re-named data
types can give extra
security against
careless errors.

DATA TYPE COLOUR IS BYTE:
BYTE b:

COLOUR c:
SEQ
... Sstuuff
b :=c --illegal: will not compile
-- more stuff
c :=b --illegal: will not compile

occam-r enforces strong typing. So, COLOUR and BYTE
variables are not assignment compatible. Also, a COLOUR
variable cannot be the target of an input from a CHAN BYTE

(or vice-versa).

occam-7t Data Types

Example:

PROC foo (CHAN COLOUR colour.in?, colour.out!,
CHAN BYTE byte.in?, byte.out!)

BYTE b:

COLOUR c:

SEQ
colour.in ? b -- illegal:
colour.out ' b -- illegal:
byte.in ? cC --— illegal:
byte.out ! c -- illegal:

occam-r enforces strong typing. So, COLOUR and BYTE
variables are not assignment compatible. Also, a COLOUR
variable cannot be the target of an input from a CHAN BYTE

(or vice-versa).

will
will
will
will

not compile
not compile
not compile
not compile

occam-7t Data Types

Example:

PROC foo (CHAN COLOUR colour.in?, colour.out!,
CHAN BYTE byte.in?, byte.out!)

BYTE b:

COLOUR c:

SEQ User re-named data
colour.in ? ¢ -- legal types can give extra
colour.out ! ¢ -- legal security against
byte.in ? b -- legal careless errors.
byte.out ! b -- legal

occam-r enforces strong typing. So, COLOUR and BYTE
variables are not assignment compatible. Also, a COLOUR
variable cannot be the target of an input from a CHAN BYTE

(or vice-versa).

occam-7t Data Types

Type Equivalence:

occam-r types are equivalent if and only if they have the

same name.

DATA TYPE BAR

IS FOO:

DATA TYPE FOO
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

DATA TYPE WIPPY
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

Data types FOO, BAR and WIPPY have the same structure
but are not equivalent.

occam-7t Data Types

Type Equivalence:

occam-r types are equivalent if and only if they have the

same name.

DATA TYPE BAR

IS FOO:

DATA TYPE FOO
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

DATA TYPE WIPPY
RECORD
INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

FOO, BAR and WIPPY variables may not be directly assigned
to each other — but their values may be cast.

occam-7t Data Types

Type Equivalence:

occam-r types are equivalent if and only if they have the
same name.

FOO f:
WIPPY w:
SEQ
set up f
w:=F -- illegal: will not compile
.- more stuff
w == WIPPY f -- legal

FOO, BAR and WIPPY variables may not be directly assigned
to each other — but their values may be cast.

occam-7t Data Types

Type Equivalence:

occam-r types are equivalent if and only if they have the
same name.

DATA TYPE MATRIX 1S [20][30]REAL64:

MATRIX m:
[20][30]REALG4 x:
SEQ
set up x
m = X -- illegal: will not compile
.- more stuff
m = MATRIX x -- legal

MATRIX and [20] [30]REAL64 variables may not be directly
assigned to each other — but their values may be cast.

occam-= Data Types

Type Equivalence:

occam-r types are equivalent if and only if they have the
same name.

Array types are anonymous — but any particular array type
has an implicit (hidden) name that is the same for all
occurrences of that type.

So, [20][30]REALG4 variables are always assignable to
each other — wherever they happen to have been declared.

occam-7t Data Types

Operator Inheritance:

All arithmetic and logical operators on primitive types are
inherited by types renaming them.

DATA TYPE COLOUR IS BYTE:

COLOUR red, green, yellow:
SEQ
set up red and green
yellow := read /\ green
stuff

occam-rt Data Types

Operator Inheritance:

All indexing and size operations on array types are inherited
by types renaming them.

DATA TYPE MATRIX 1S [20][30]REAL64:

MATRIX m:
SEQ
SEQ i = O FOR SIZE m
SEQ j = 0 FOR SIZE m[i]

mjJ1[i] := some.real64
stuff

occam-rt Data Types

Operator Inheritance:

All field indexing operations on record types are inherited
by types renaming them.

DATA TYPE FOO
BAR b: RECORD
SEQ INT size, weight:
- o BYTE colour:
b[Sl?e] 1= 42 REAL64 frequency:
b[weight] := 77 [10]BYTE name:
b[colour] := yellow :
... stuff
DATA TYPE BAR 1S FOQO:

A Few More Bits of occam-=

SHARED channels ...
PROTOCOL inheritance ...
CASE processes ...

Parallel assignment ...

Extended rendezvous ...

Abbreviations and anti-aliasing ...

FUNCTIONS ...
RECORD data types ...

Array slices ...

Array Slices

Let a be an array. Then, the expression:

[a FROM start FOR n]

represents the slice of the array a from element a[start]
through a[start + (n - 1)] inclusive. Also:

[a FOR n]

represents the slice consisting of the first n elements. Also:

[a FROM start]

represents the slice from element a[start] to its end.

The defined slices must lie within the bounds of the array.

Array Slices

max—1

max—2
[a2 FROM 6 FOR 5]

\
.

PR RPRR
ORPNWAUONOOORNWH

Array Slices

max—1

PR RPRR
ORPNWAUONOOORNWH

Array Slices

\

max—1
max—2

PR RPRR
ORPNWAUONOOORNWH

Array Slices

An array slice may be the source or target of assignment:

[a FROM i FOR n] := [b FROM j FOR n]

@93 must b@

[2 FROM i@ FOR n] := [a FROM j FOR n]

@s must no@

Array Slices

An array slice may be the source or target of communication:

out ! [b FROM j FOR n]

The channel must carry @

in ? [a FROM i FOR n]

... where n is a compiler known value.

Array Slices

More flexible (and usual) would be a counted array protocol:

out ! n::[b FROM j]

@Iements fro@

in ? m::[a FROM i]

Input m elements starting at af[i] ...

	Shared Channels etc.
	A Few More Bits of occam-
	Unshared Channel-Ends
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	A Few More Bits of occam-
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	A Few More Bits of occam-
	Process Structures
	CASE Process
	CASE Process
	CASE Process
	CASE Process
	Java switch Statement
	CASE Process
	CASE Process
	A Few More Bits of occam-
	Parallel Assignment
	Parallel Assignment
	Parallel Assignment
	Parallel Assignment
	A Few More Bits of occam-
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	A Few More Bits of occam-
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Anti-Aliasing
	Anti-Aliasing
	Anti-Aliasing
	Anti-Aliasing
	Aliasing and Java etc.
	Aliasing and Java etc.
	Aliasing and Java etc.
	Aliasing and Java etc.
	A Few More Bits of occam-
	VALOF Expressions
	VALOF Expressions
	VALOF Expressions
	Functions
	Short Functions
	A Few More Bits of occam-
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	A Few More Bits of occam-
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices

