
PP..HH..WWeellcchh aanndd FFrreedd BBaarrnneess

CCoommmmuunniiccaattiinngg PPrroocceesssseess,, SSaaffeettyy aanndd DDyynnaammiiccss::
tthhee NNeeww ooccccaamm
Abstract

This presentation reports continuing research on language design, compilation and kernel support for
highly dynamic concurrent reactive systems. The work extends the occam multiprocessing language, which
is both sufficiently small to allow for easy experimentation and sufficiently powerful to yield results that
are directly applicable to a wide range of industrial and commercial practice.

Classical occam was designed for embedded systems and enforced a number of constraints – such as
statically pre-determined memory allocation and concurrency limits – that were relevant to that generation
of application and hardware technology. Most of these constraints have been removed in this work and a
number of new facilities introduced (channel structures, mobile channels, channel ends, dynamic process
creation, the extended rendezvous and process priorities). These significantly broaden occam’s field of
application and raise the level of concurrent system design directly supported. Four principles were set for
modifications/enhancements of the language. They must be useful and easy to use. They must be
semantically sound and policed (ideally, at compile-time) to prevent misuse. They must have very
lightweight and fast implementation. Finally, they must be aligned with the concurrency model of the
original core language (i.e. they must not damage its safety and must not add significantly to the ultra-low
overheads for management of that concurrency). These principles have all been observed.

The presentation gives several examples to illustrate the new capabilities and show how safety (e.g. against
race hazards) has been preserved in this new dynamic and mobile environment. Micro-benchmark figures
for overheads are reported that remain (well) below 100 nanoseconds on an 800 MHz. Pentium III. Other
examples are taken from projects testing out these mechanisms in more complex applications (such as the
occWeb webserver and the Raw Metal occam eXperiment, RMoX).

Also mentioned are a number of other additions and extensions to the occam language that correct, tidy up
or complete facilities that have long existed. These include fixing the PRI ALT bug, allowing an
unconditional SKIP guard as the last in a PRI ALT, replicator SKIP sizes, run-time computed PAR
replication counts, RESULT parameters and abbreviations, nested PROTOCOL definitions, in-line array
constructors and parallel recursion. All these enhancements are available in the latest release (1.3.3) of
KRoC, freely available (GPL/open source) from:

www.cs.ukc.ac.uk/projects/ofa/kroc/

Commercial support is available via:

www.quickstone.com

http://www.cs.ukc.ac.uk/projects/ofa/kroc/
http://www.quickstone.com/

	P.H.Welch and Fred Barnes
	Abstract

