
PP..HH..WWeellcchh aanndd FFrreedd BBaarrnneess

CCoommmmuunniiccaattiinngg MMoobbiillee PPrroocceesssseess

Abstract

This presentation develops the dynamic mechanisms introduced into occam that were reported at the last
meeting of this group in Dagstuhl. The main focus is on mobile processes, as opposed to the mobile
channels that were introduced last time. Language design and semantics for the mobile mechanisms of the
new occam, christened occam-M for the moment, are motivated – before going on to consider safety,
performance and some applications.

The formal semantics of our mobile processes (and mobile channels) do not follow the pi-calculus and its
derivatives. Instead, we are working with Jim Woodcock to ensure that the ideas fit cleanly within a
mobile-extended CSP framework – which means that the semantics remains compositional and
denotational and that proof/development techniques, including the notion of refinement, continue to apply.

The safety and performance aspects are critical to the applications described, which require very large scale
and highly dynamic networks of processes. The key safety guarantees of classical (but static) occam are
preserved for systems using the mobile extensions. These include ttoottaall aalliiaass ccoonnttrrooll by compiler, which
leads to zero aliasing accidents, zero race hazards, zero nil-pointer exceptions and zero garbage collection.
Zero buffer overruns, of course, also remain guaranteed. Higher-level safety requirements – such as the
absence of deadlocks, livelocks and process starvation – are not promised (as yet) by the language.
However, a range of proven application design patterns, with widespread coverage, are on offer and do
make those promises.

Performance overheads for all concurrency mechanisms are mostly unit time with the order of between 50
and 150 nanoseconds on moderate processors (e.g. an 800 MHz P3). The single exception is for waiting on
multiple events – which is linear on the number of events when not much is happening, reducing to unit
(100 nanosecond) time as the waiter comes under stress (i.e. when all the events start firing continuously).

Three application areas are discussed. The first is communicating process operating system design for both
general purpose and (real-time) embedded – an outline of our Raw Metal occam eXperience (RMoX)
project, which makes heavy use of the new dynamics, is given. Also presented are two modeling subjects:
bio-mechanisms and nanotechnology assemblies (for building real artifacts and/or doing real jobs). These
require vast numbers (>10 million, at least) of network elements (channels and processes), continually
growing and decaying in response to both environmental and internal pressures as the modeled
organisms/assemblies are born, combine, split and die. Design solutions to the problems of location (or,
rather, neighbourhood) awareness are proposed – which are essential to allow mobile processes to find each
other, interact and decide what to do next.

URLs:

 http://www.cs.ukc.ac.uk/projects/ofa/kroc/ -- official KRoC occam
 http://frmb.org/kroc.html -- latest KRoC occam
 http://wotug.ukc.ac.uk/ocweb/ -- occam web server
 http://www.cs.ukc.ac.uk/projects/ofa/jcsp/ -- core JCSP
 http://www.quickstone.com/ -- JCSP Networking Edition (Java / J#)
 http://www.wotug.org/ -- user community
 http://www.wotug.org/cpa2004/ -- last CPA conference

http://www.cs.ukc.ac.uk/projects/ofa/kroc/
http://frmb.org/kroc.html
http://wotug.ukc.ac.uk/ocweb/
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/
http://www.cs.ukc.ac.uk/projects/ofa/kroc/
http://www.wotug.org/
http://www.wotug.org/cpa2004/

	P.H.Welch and Fred Barnes
	Abstract

