
Computing Laboratory 4/1/2008

Title goes here 1

1-Apr-08 Copyright P.H.Welch 1

Process Oriented
Design for Java -

Concurrency for All

Process Oriented
Design for Java -

Concurrency for All
Peter Welch (p.h.welch@kent.ac.uk)

Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency Design and Practice)

1-Apr-08 Copyright P.H.Welch 2

Motivation and ApplicationsMotivation and Applications
ThesisThesis

Natural systems are robust, efficient, long-lived and
continuously evolving. We should take the hint!We should take the hint!
Look on concurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.

Some applicationsSome applications
Hardware design and modelling.
Static embedded systems and parallel supercomputing.
Field-programmable embedded systems and dynamic
supercomputing (e.g. SETI-at-home).
Dynamic distributed systems, eCommerce, operating
systems and games.
Biological system and nanite modelling.

1-Apr-08 Copyright P.H.Welch 3

Nature is not organised as a
single thread of control:

Nature is not organised as a
single thread of control:

joe.eatBreakfast ();
sue.washUp ();
joe.driveToWork ();
sue.phone (sally);
US.government.sue (bill);
sun.zap (office);

???

Computing Laboratory 4/1/2008

Title goes here 2

1-Apr-08 Copyright P.H.Welch 4

Nature is not bulk synchronous:Nature is not bulk synchronous:

bill.acquire (everything);
bill.invent (everything);
bill.run (the.NET);
bill.anti (trust);
bill.invade (canada);
UNIVERSE.SYNC ();

???

1-Apr-08 Copyright P.H.Welch 5

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

… nannite … human … astronomic ...

1-Apr-08 Copyright P.H.Welch 6

… nannite … human … astronomic ...

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

Computing Laboratory 4/1/2008

Title goes here 3

1-Apr-08 Copyright P.H.Welch 7

… nanite … human … astronomic ...

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

1-Apr-08 Copyright P.H.Welch 8

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system … it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

The Real World and ConcurrencyThe Real World and ConcurrencyThe Real World and Concurrency

1-Apr-08 Copyright P.H.Welch 9

This tradition is WRONG!This tradition is WRONG!

… which has (radical) implications on how we
should educate people for computer science …

… and on how we apply what we have learnt …

Computing Laboratory 4/1/2008

Title goes here 4

1-Apr-08 Copyright P.H.Welch 10

What we want from ParallelismWhat we want from Parallelism
A powerful tool for simplifying the description of
systems.

Performance that spins out from the above, but is not
the primary focus.

A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

1-Apr-08 Copyright P.H.Welch 11

Multi-PongMulti-Pong

1-Apr-08 Copyright P.H.Welch 12

collision
detect

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

Multi-
Pong
Multi-
Pong

Computing Laboratory 4/1/2008

Title goes here 5

1-Apr-08 Copyright P.H.Welch 13

Good News!Good News!
The good news is that we can worry about each process
on its own. A process interacts with its environment
through its channels. It does not interact directlydirectly
with other processes.

Some processes have serial implementations - these
are just like traditional serial programs.

Our skills for serial logic sit happily alongside our
new skills for concurrency - there is no conflict.
This willwill scale!

Some processes have parallel implementations -
networks of sub-processes (think hardware).

1-Apr-08 Copyright P.H.Welch 14

Easy to learn - but very difficult to apply … safely …

Monitor methods are tightly interdependent - their
semantics compose in complex ways … the whole skill
lies in setting up and staying in control of these complex
interactions …

Threads have no structure … there are no threads within
threads …

Big problems when it comes to scaling up complexity …

Java Monitors - CONCERNSJava Monitors - CONCERNS

1-Apr-08 Copyright P.H.Welch 15

count

state

ready

Most objects are
dead - they have
no life of their own.

All methods have to
be invoked by an
external thread of
control - they have to
be caller oriented …

Objects Considered HarmfulObjects Considered Harmful

… a somewhat curious
property of so-called
object oriented design.

Computing Laboratory 4/1/2008

Title goes here 6

1-Apr-08 Copyright P.H.Welch 16

count

state

ready

The object is at the
mercy of any thread
that sees it.

Objects Considered HarmfulObjects Considered Harmful

Nothing can be done
to prevent method
invocation ...

… even if the object is
not in a fit state to service
it. The object is not in The object is not in
control of its life.control of its life.

1-Apr-08 Copyright P.H.Welch 17

Objects Considered HarmfulObjects Considered Harmful
Each single thread of
control snakes around
objects in the system,
bringing them to life
transiently as their
methods are executed.

Threads cut across object
boundaries leaving
spaghetti-like trails,
paying no regard to the
underlying structure.

1-Apr-08 Copyright P.H.Welch 18

Multi-
Pong
Multi-
Pong

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

collision
detect

Computing Laboratory 4/1/2008

Title goes here 7

1-Apr-08 Copyright P.H.Welch 19

Almost all multi-threaded codes making direct use of the
Java monitor primitives that we have seen (including our
own) contained race or deadlock hazards.

Sun’s Swing classes are not thread-safe … why not?

One of our codes contained a race hazard that did not
trip for two years. This had been in daily use, its
sources published on the web and its algorithms
presented without demur to several Java literate
audiences.

Java Monitors - CONCERNSJava Monitors - CONCERNS

1-Apr-08 Copyright P.H.Welch 20

‘‘If you can get away with it, avoid using threads. Threads
can be difficult to use, and they make programs harder to
debug.’’

‘‘Component developers do not have to have an in-depth
understanding of threads programming: toolkits in which
all components must fully support multithreaded access,
can be difficult to extend, particularly for developers who
are not expert at threads programming.’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

1-Apr-08 Copyright P.H.Welch 21

‘‘It is our basic belief that extreme caution is warranted
when designing and building multi-threaded applications
… use of threads can be very deceptive … in almost all
cases they make debugging, testing, and maintenance
vastly more difficult and sometimes impossible. Neither
the training, experience, or actual practices of most
programmers, nor the tools we have to help us, are
designed to cope with the non-determinism … this is
particularly true in Java … we urge you to think twice
about using threads in cases where they are not
absolutely necessary …’’

Java Monitors - CONCERNSJava Monitors - CONCERNS
<java.sun.com/products/jfc/tsc/articles/threads/threads1.html>

Computing Laboratory 4/1/2008

Title goes here 8

1-Apr-08 Copyright P.H.Welch 22

No guarantee that any synchronized method will ever
be executed … (e.g. stacking JVMs)

Even if we had above promise (e.g. queueing JVMs),
standard design patterns for wait() / notify() fail to
guarantee liveness (“Wot, no chickens?”)

Java Monitors - CONCERNSJava Monitors - CONCERNS

See:
http://www.hensa.ac.uk/parallel/groups/wotug/java/discussion/3.html

http://www.nist.gov/itl/div896/emaildir/rt-j/msg00385.html

http://www. nist.gov/itl/div896/emaildir/rt-j/msg00363.html

1-Apr-08 Copyright P.H.Welch 23

Threads yield non-determinacy (and, therefore, scheduling
sensitivity) straight away ...
No help provided to guard against race hazards ...
Overheads too high (> 30 times ???)
Tyranny of Magic Names (e.g for listener callbacks)
Learning curve is long …
Scalability (both in logic and performance) ???
Theoretical foundations ???

(deadlock / livelock / starvation analysis ???)
(rules / tools ???)

Java Monitors - CONCERNSJava Monitors - CONCERNS

1-Apr-08 Copyright P.H.Welch 24

So, Java monitors are not something with which we want to
think - certainly not on a daily basis.

But concurrency should be a powerful tool for simplifying
the description of systems …

So it needs to be something I want to use So it needs to be something I want to use -- and am and am
comfortable with comfortable with -- on a daily basis!on a daily basis!

Java Monitors - CONCERNSJava Monitors - CONCERNS

Computing Laboratory 4/1/2008

Title goes here 9

1-Apr-08 Copyright P.H.Welch 25

Claim

Communicating Sequential
Processes (CSP)

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

1-Apr-08 Copyright P.H.Welch 26

Why CSP?Why CSP?
Encapsulates fundamental principles of communication.

Semantically defined in terms of structured mathematical
model.

Sufficiently expressive to enable reasoning about deadlock
and livelock.

Abstraction and refinement central to underlying theory.

Robust and commercially supported software
engineering tools exist for formal verification.

1-Apr-08 Copyright P.H.Welch 27

CSP libraries available for Java (JCSP, CTJ).

Ultra-lightweight kernels have been developed yielding
sub-microsecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

Easy to learn and easy to apply …

Why CSP?Why CSP?

* not yet available for JVMs (or Core JVMs!)

*

Computing Laboratory 4/1/2008

Title goes here 10

1-Apr-08 Copyright P.H.Welch 28

After 5 hours teaching:
exercises with 20-30 threads of control
regular and irregular interactions
appreciating and eliminating race hazards, deadlock, etc.

CSP is (parallel) architecture neutral:
message-passing
shared-memory

Why CSP?Why CSP?

1-Apr-08 Copyright P.H.Welch 29

So, what is CSP?So, what is CSP?

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
into the model. We benefit from this simply by using it.

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

1-Apr-08 Copyright P.H.Welch 30

ProcessesProcesses
A process is a component that encapsulates some data
structures and algorithms for manipulating that data.

Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not objects.]

The algorithms are executed by the process in its own
thread (or threads) of control.

So, how does one process interact with another?

myProcess

Computing Laboratory 4/1/2008

Title goes here 11

1-Apr-08 Copyright P.H.Welch 31

The simplest form of interaction is synchronised message-
passing along channels.

The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

But, we can have buffered channels (blocking/overwriting).

And any-1, 1-any and any-any channels.

And structured multi-way synchronisation (e.g. barriers) …

And high-level (e.g. CREW) shared-memory locks …

ProcessesProcesses myProcess

1-Apr-08 Copyright P.H.Welch 32

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

cAA BB

Synchronised CommunicationSynchronised Communication

BB may readread from cc at any time, but has to wait for a writewrite.

c ? x

AA may writewrite on cc at any time, but has to wait for a readread.

c ! 42

1-Apr-08 Copyright P.H.Welch 33

Synchronised CommunicationSynchronised Communication

Only when both AA and BB are ready can the communication
proceed over the channel cc.

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

BBAA c

c ? xc ! 42

Computing Laboratory 4/1/2008

Title goes here 12

1-Apr-08 Copyright P.H.Welch 34

‘Legoland’ Catalog‘Legoland’ Catalog

IdIntIdInt (in, out)(in, out)

in out
IdIntIdInt

SuccIntSuccInt (in, out)(in, out)

in out
SuccIntSuccInt

PlusIntPlusInt (in0, in1, out)(in0, in1, out)

in1

outin0
++

PrefixIntPrefixInt (n, in, out)(n, in, out)

outin
nn

TailIntTailInt (in, out)(in, out)

in out
TailIntTailInt

Delta2Int (in, out0, out1)Delta2Int (in, out0, out1)

out1

out0
in

1-Apr-08 Copyright P.H.Welch 35

‘Legoland’ Catalog‘Legoland’ Catalog
This is a catalog of fineThis is a catalog of fine--grained processes grained processes --
think of them as pieces of hardware (e.g. think of them as pieces of hardware (e.g.
chips). They process data (chips). They process data (intintss) flowing) flowing
through them.through them.

They are presented not because we suggest
working at such fine levels of granularity …

They are presented in order to build up
fluency in working with parallel logic.

1-Apr-08 Copyright P.H.Welch 36

‘Legoland’ Catalog‘Legoland’ Catalog
Parallel logic should become just as easy to Parallel logic should become just as easy to
manage as serial logic.manage as serial logic.

This is not the traditionally held view …

But that tradition is wrong.

CSP/occam people have always known this.

Let’s look at some CSP pseudo-code for these
processes …

Computing Laboratory 4/1/2008

Title goes here 13

1-Apr-08 Copyright P.H.Welch 37

outin IdIntIdInt
IdInt (in, out) = in?x --> out!x --> IdInt (in, out)

SuccIntin out

SuccInt (in, out) = in?x --> out!(x + 1) --> SuccInt (in, out)

in1

outin0
++

PlusInt (in0, in1, out) =
(in0?x0 --> SKIP || inl?x1 --> SKIP);
out!(x0 + x1) --> PlusInt (in0, in1, out)

Note the parallel input

1-Apr-08 Copyright P.H.Welch 38

Delta2Int (in, out0, out1) =
in?x --> (out0!x --> SKIP || out1!x --> SKIP);
Delta2Int (in, out0, out1)

out1

out0
in

outin
nn

PrefixInt (n, in, out) = out!n --> IdInt (in, out)

TailInt (in, out) = in?x --> IdInt (in, out)

in out
TailIntTailInt

Note the parallel output

1-Apr-08 Copyright P.H.Welch 39

A Blocking FIFO BufferA Blocking FIFO Buffer

FifoInt (n, in, out) =
IdInt (in, c[0]) ||
([||i = 0 FOR n-2] IdInt (c[i], c[i+1])) ||
IdInt (c[n-2], out)

Note: this is such a common idiom that it
is provided as a (channel) primitive in JCSP.

in outIdIntIdInt c[0] c[1] c[n-2]

FifoInt (n)
IdIntIdInt IdIntIdInt

Computing Laboratory 4/1/2008

Title goes here 14

1-Apr-08 Copyright P.H.Welch 40

The outside world can see no difference between
these two 2-place FIFOs …

A Simple EquivalenceA Simple Equivalence

(IdInt (in, c) || IdInt (c, out)) \ {c}

cin outIdIntIdIntIdIntIdInt

(PrefixInt (n, in, c) || TailInt (c, out)) \ {c}

cin
nn

out
TailIntTailInt

1-Apr-08 Copyright P.H.Welch 41

The proof that they are equivalent is a two-liner from
the definitions of !, ?, -->, \ and ||.

A Simple EquivalenceA Simple Equivalence

(IdInt (in, c) || IdInt (c, out)) \ {c}

cin outIdIntIdIntIdIntIdInt

(PrefixInt (n, in, c) || TailInt (c, out)) \ {c}

cin
nn

out
TailIntTailInt

1-Apr-08 Copyright P.H.Welch 42

Good News!Good News!
The good news is that we can ‘see’ this
semantic equivalence with just one glance.

[CLAIM] CSP semantics cleanly reflects
our intuitive feel for interacting systems.

This quickly builds up confidence …

Wot - no chickens?!!

Computing Laboratory 4/1/2008

Title goes here 15

1-Apr-08 Copyright P.H.Welch 43

SuccIntSuccInt

00

NumbersIntNumbersInt

out

NumbersInt (out) = NumbersInt (out) = PrefixIntPrefixInt (0, c, a) ||(0, c, a) ||
Delta2Int (a, out, b) ||Delta2Int (a, out, b) ||
SuccIntSuccInt (b, c)(b, c)

a

bc

0

1

2

3

4

.

.

.

Some Simple NetworksSome Simple Networks

Note: this pushes numbers out so long as the receiver is willing to take it.

1-Apr-08 Copyright P.H.Welch 44

x

x + y

x + y + z

.

.

.

IntegrateIntIntegrateInt

out
++

00

inx

y

z

.

.

.

IntegrateInt (out) = IntegrateInt (out) = PlusIntPlusInt (in, c, a) ||(in, c, a) ||
Delta2Int (a, out, b) ||Delta2Int (a, out, b) ||
PrefixIntPrefixInt (0, b, c)(0, b, c)

a

bc

Some Simple NetworksSome Simple Networks

Note: this outputs one number for every input it gets.

1-Apr-08 Copyright P.H.Welch 45

PairsIntPairsInt

out
TailIntTailInt

++
in

PairsInt (in, out) = Delta2Int (in, a, c) ||
TailInt (a, b) ||
PlusInt (b, c, out)

a b

c
y + x

z + y

.

.

.

x

y

z

.

.

Some Simple NetworksSome Simple Networks

Note: this needs two inputs before producing one output. Thereafter, it
produces one number for every input it gets.

Computing Laboratory 4/1/2008

Title goes here 16

1-Apr-08 Copyright P.H.Welch 46

0

1

1

2

3

5

8

13

21

34

.

.

Some Layered NetworksSome Layered Networks

FibonacciIntFibonacciInt

out

PairsIntPairsInt

0011

FibonacciIntFibonacciInt (out) = (out) = PrefixIntPrefixInt (1, d, a) ||(1, d, a) ||
PrefixIntPrefixInt (0, a, b) ||(0, a, b) ||
Delta2Int (b, out, c) ||Delta2Int (b, out, c) ||
PairsIntPairsInt (b, c)(b, c)

a

cd

b

Note: the two numbers needed by PairsInt to get started are provided
by the two PrefixInts. Thereafter, only one number circulates on the
feedback loop. If only one PrefixInt had been in the circuit, deadlock
would have happened (with each process waiting trying to input).

1-Apr-08 Copyright P.H.Welch 47

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt 1

4

9

16

25

36

49

64

81

.

.

SquaresIntSquaresInt (out) = NumbersInt (a) ||(out) = NumbersInt (a) ||
IntegrateInt (a, b) ||IntegrateInt (a, b) ||
PairsIntPairsInt (b, out)(b, out)

a b

Some Layered NetworksSome Layered Networks

Note: the traffic on individual channels:
<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, ...]
 = [0, 1, 3, 6, 10, 15, 21, 28, 36, ...]
<out> = [1, 4, 9, 16, 25, 36, 49, 64, 81, ...]

1-Apr-08 Copyright P.H.Welch 48

Quite a Lot of ProcessesQuite a Lot of Processes

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

a[1]

a[0]

a[2]

b

NumbersInt (a[0]) ||NumbersInt (a[0]) ||
SquaresIntSquaresInt (a[1]) ||(a[1]) ||
FibonacciIntFibonacciInt (a[2]) ||(a[2]) ||
ParaPlexIntParaPlexInt (a, b) ||(a, b) ||
TabulateInt (b)TabulateInt (b)

Computing Laboratory 4/1/2008

Title goes here 17

1-Apr-08 Copyright P.H.Welch 49

At this level, we have a network
of 5 communicating processes.

In fact, 28 processes are involved:
18 non-terminating ones and 10
low-level transients repeatedly
starting up and shutting down for
parallel input and output.

Quite a Lot of ProcessesQuite a Lot of Processes

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

1-Apr-08 Copyright P.H.Welch 50

Fortunately, CSP semantics
are compositional - which
means that we only have to
reason at each layer of the
network in order to design,
understand, code, and
maintain it.

Quite a Lot of ProcessesQuite a Lot of Processes

SquaresInt

NumbersInt

FibonacciInt

TabulateInt

ParaPlexInt

1-Apr-08 Copyright P.H.Welch 51

Putting CSP into practice …Putting CSP into practice …

Google:Google: JCSPJCSP

Computing Laboratory 4/1/2008

Title goes here 18

1-Apr-08 Copyright P.H.Welch 52

1-Apr-08 Copyright P.H.Welch 53

CSP for Java (JCSP)CSP for Java (JCSP)
A A processprocess is an object of a class is an object of a class
implementing theimplementing the CSProcessCSProcess interface:interface:

interface CSProcess {interface CSProcess {
public void run();public void run();

}}

The The behaviourbehaviour of the process is determined of the process is determined
by the body given to the by the body given to the run()run() method in method in
the implementing class.the implementing class.

1-Apr-08 Copyright P.H.Welch 54

... private shared ... private shared synchronisationsynchronisation objectsobjects
(channels etc.)(channels etc.)

... private state information... private state information

... public constructors... public constructors

... public ... public accessors(gets)/mutators(setsaccessors(gets)/mutators(sets))
(only to be used when not running)(only to be used when not running)

... private support methods (part of a run)... private support methods (part of a run)

... public void run() (process starts here)... public void run() (process starts here)

class Example implements CSProcess {class Example implements CSProcess {

}}

JCSP Process StructureJCSP Process Structure

Computing Laboratory 4/1/2008

Title goes here 19

1-Apr-08 Copyright P.H.Welch 55

ObjectObject channels channels
-- carrying (references to)carrying (references to)

arbitrary Java objectsarbitrary Java objects

intint channels channels
-- carrying Javacarrying Java intintss

Two Channel Interfaces
(classes are hidden)

Two Channel Interfaces
(classes are hidden)

1-Apr-08 Copyright P.H.Welch 56

Channel-End InterfacesChannel-End Interfaces

ChannelChannel--end interfaces are what the processes end interfaces are what the processes
see. Processes only need to care what kind of see. Processes only need to care what kind of
data they carry (data they carry (intintss or or ObjectObjects) and whether s) and whether
the channels are for the channels are for outputoutput, , inputinput or or ALTingALTing (i.e. (i.e.
choicechoice)) inputinput..

It is the network builderIt is the network builder’’s concern to choose the s concern to choose the
variety of channel (e.g. variety of channel (e.g. synchronoussynchronous, , bufferedbuffered, ,
sharedshared) to use when connecting processes) to use when connecting processes
together.together.

1-Apr-08 Copyright P.H.Welch 57

int Channelsint Channels
The int channels are convenient and secure.

As with occam-π, it’s difficult to introduce race
hazards.

For completeness, JCSP should provide
channels for carrying all of the Java primitive
data-types. These would be trivial to add. So
far, there has been no pressing need.

Computing Laboratory 4/1/2008

Title goes here 20

1-Apr-08 Copyright P.H.Welch 58

Object Aliasing – Danger !!!Object Aliasing – Danger !!!
Thing a = ..., b = ...;

a = b;aa and and bb are now are now aliasesaliases
for the same object!for the same object!

Java objects are Java objects are
referenced through referenced through
variable names.variable names.

a b

a b

1-Apr-08 Copyright P.H.Welch 59

ObjectObject channels channels
expose a danger not expose a danger not
present in present in occam-π..

Object Channels – Danger !!Object Channels – Danger !!

Channel communication Channel communication
only communicates the only communicates the
ObjectObject reference.reference.

Thing t = Thing t = ……
c.write (t); // c!tc.write (t); // c!t
... use t... use t

cc

Thing t;Thing t;
t = (Thing) c.read(); // c?tt = (Thing) c.read(); // c?t
... use t... use t

1-Apr-08 Copyright P.H.Welch 60

After the communication, After the communication,
each process has a each process has a
reference (in its variable reference (in its variable tt))
to the to the samesame object.object.

Object Channels – Danger !!Object Channels – Danger !!

If If oneone of these processes of these processes
modifies that object (its modifies that object (its tt),),
the the otherother one had better one had better
forget about it!forget about it!

Thing t = Thing t = ……
c.write (t); // c!tc.write (t); // c!t
... use t... use t

cc

Thing t;Thing t;
t = (Thing) c.read(); // c?tt = (Thing) c.read(); // c?t
... use t... use t

Computing Laboratory 4/1/2008

Title goes here 21

1-Apr-08 Copyright P.H.Welch 61

Otherwise, Otherwise, occam-π’’s s
parallel usage rule is parallel usage rule is
violated and we will be at violated and we will be at
the mercy of the mercy of whenwhen the the
processes get scheduled processes get scheduled
for execution for execution -- a a RACE RACE
HAZARDHAZARD!!

We have design
patterns to prevent
this.

Object Channels – Danger !!Object Channels – Danger !!

Thing t = Thing t = ……
c.write (t); // c!tc.write (t); // c!t
... use t... use t

cc

Thing t;Thing t;
t = (Thing) c.read(); // c?tt = (Thing) c.read(); // c?t
... use t... use t

1-Apr-08 Copyright P.H.Welch 62

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

before

1-Apr-08 Copyright P.H.Welch 63

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

after

Red and brown objects are parallel compromised!

Computing Laboratory 4/1/2008

Title goes here 22

1-Apr-08 Copyright P.H.Welch 64

cAA BB
x y

c ! x c ? y

Reference SemanticsReference Semantics

z

HEAP

after

Even if the source variable is nulled, brown is done for!!

1-Apr-08 Copyright P.H.Welch 65

Classical occamClassical occam
Different in-scope variables implies different pieces of data
(zero aliasing).

Overheads for large data communications:

- space (needed at both ends for both copies);

- time (for copying).

Automatic guarantees against parallel race hazards on
data access … and against serial aliasing accidents.

1-Apr-08 Copyright P.H.Welch 66

Java / JCSPJava / JCSP
Hey … it’s Java … so aliasing is endemic.

Overheads for large data communications:

- space (shared by both ends);

- time is O(1).

No guarantees against parallel race hazards on data
access … or against serial aliasing accidents. We must
look after ourselves.

Computing Laboratory 4/1/2008

Title goes here 23

1-Apr-08 Copyright P.H.Welch 67

interface ChannelOutput {
public void write (Object o);

}

interface ChannelInput {
public Object read ();

}

interface ChannelOutputInt {
public void write (int i);

}

interface ChannelInputInt {
public int read ();

}

abstract class
AltingChannelInput
extends Guard
implements ChannelInput {

}

abstract class
AltingChannelInputInt
extends Guard
implements ChannelInputInt {

}

Object and Int ChannelsObject and Int Channels
(interfaces)(interfaces)

1-Apr-08 Copyright P.H.Welch 68

Channel-End InterfacesChannel-End Interfaces
ChannelChannel--endsends are what the processes see are what the processes see ––
they only care what kind of data they carry they only care what kind of data they carry
((intintss or or ObjectObjects) and whether the channels s) and whether the channels
are for are for outputoutput, , inputinput or or ALTingALTing (i.e. (i.e. choicechoice))
inputinput..

It will be the network builderIt will be the network builder’’s concern to s concern to
decide the kinds of decide the kinds of channelschannels to be used and to be used and
construct them for connecting processes.construct them for connecting processes.

LetLet’’s review some of the s review some of the LegolandLegoland processes processes --
this time in this time in JCSPJCSP..

1-Apr-08 Copyright P.H.Welch 69

... private support methods (part of a run)... private support methods (part of a run)

... public void run() (process starts here)... public void run() (process starts here)

JCSP Process StructureJCSP Process StructureJCSP Process Structure
class Example implements CSProcess {class Example implements CSProcess {

}}

... private shared ... private shared synchronisationsynchronisation objectsobjects
(channels etc.)(channels etc.)

... private state information... private state information

... public constructors... public constructors

... public ... public accessors(gets)/mutators(setsaccessors(gets)/mutators(sets))
(only to be used when not running)(only to be used when not running)

reminderreminderreminder

Computing Laboratory 4/1/2008

Title goes here 24

1-Apr-08 Copyright P.H.Welch 70

publicpublic SuccIntSuccInt ((ChannelInputIntChannelInputInt in,in,
ChannelOutputIntChannelOutputInt out) {out) {

this.in = in;this.in = in;
this.out = out;this.out = out;

}}

public void run () {public void run () {
while (true) {while (true) {
intint n = in.read ();n = in.read ();
out.write (n + 1);out.write (n + 1);

}}
}}

private final private final ChannelInputIntChannelInputInt in;in;
private final private final ChannelOutputIntChannelOutputInt out;out;

class class SuccIntSuccInt implements CSProcess {implements CSProcess {

}}

SuccIntSuccIntin out

1-Apr-08 Copyright P.H.Welch 71

publicpublic PlusIntPlusInt ((ChannelInputIntChannelInputInt in0,in0,
ChannelInputIntChannelInputInt in1,in1,
ChannelOutputIntChannelOutputInt out) {out) {

this.in0 = in0;this.in0 = in0;
this.in1 = in1;this.in1 = in1;
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

private final private final ChannelInputIntChannelInputInt in0;in0;
private final private final ChannelInputIntChannelInputInt in1;in1;
private final private final ChannelOutputIntChannelOutputInt out;out;

class class PlusIntPlusInt implements CSProcess {implements CSProcess {

}}

in1

outin0
++

1-Apr-08 Copyright P.H.Welch 72

serial orderingserial ordering

... ... publicpublic PlusIntPlusInt ((ChannelInputIntChannelInputInt in0, ...)in0, ...)

public void run () {public void run () {
while (true) {while (true) {
intint n0 = in0.read ();n0 = in0.read ();
intint n1 = in1.read ();n1 = in1.read ();
out.write (n0 + n1);out.write (n0 + n1);

}}
}}

... private final channels (in0, in1, out)... private final channels (in0, in1, out)

class class PlusIntPlusInt implements CSProcess {implements CSProcess {

}}

Note: the inputs really need to be done in parallel Note: the inputs really need to be done in parallel -- later!later!

in1

outin0
++

Computing Laboratory 4/1/2008

Title goes here 25

1-Apr-08 Copyright P.H.Welch 73

publicpublic PrefixIntPrefixInt ((intint n, n, ChannelInputIntChannelInputInt in,in,
ChannelOutputIntChannelOutputInt out) {out) {

this.n = n;this.n = n;
this.in = in;this.in = in;
this.out = out;this.out = out;

}}

public void run () {public void run () {
out.write (n);out.write (n);
new new IdIntIdInt (in, out).run ();(in, out).run ();

}}

private final private final intint n;n;
private final private final ChannelInputIntChannelInputInt in;in;
private final private final ChannelOutputIntChannelOutputInt out;out;

class class PrefixIntPrefixInt implements CSProcess {implements CSProcess {

}}

outin
nn

1-Apr-08 Copyright P.H.Welch 74

Process NetworksProcess Networks
We now want to be able to take instances of We now want to be able to take instances of
these these processesprocesses (or components) and connect (or components) and connect
them together to form a network.them together to form a network.

The resulting network will itself be a The resulting network will itself be a processprocess..

To do this, we need to construct some real wires To do this, we need to construct some real wires --
these are instances of (JCSP internal) these are instances of (JCSP internal) channelchannel
classesclasses –– we only get (Java) we only get (Java) interfacesinterfaces to them.to them.

We also need a way to compose everything We also need a way to compose everything
together together –– the the ParallelParallel constructor.constructor.

1-Apr-08 Copyright P.H.Welch 75

ParallelParallel
ParallelParallel is a is a CSProcessCSProcess whose constructor whose constructor
takes an array of takes an array of CSProcessCSProcesseses..

Its Its runrun()() method is the parallel composition of method is the parallel composition of
its given its given CSProcessCSProcesseses..

The semantics is the same as for the The semantics is the same as for the occamoccam--ππ
PARPAR (or CSP (or CSP ||||).).

The The runrun()() terminates when and only when all of terminates when and only when all of
its component processes have terminated.its component processes have terminated.

Computing Laboratory 4/1/2008

Title goes here 26

1-Apr-08 Copyright P.H.Welch 76

publicpublic NumbersInt (NumbersInt (ChannelOutputIntChannelOutputInt out) {out) {
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

private final private final ChannelOutputIntChannelOutputInt out;out;

class NumbersInt implements CSProcess {class NumbersInt implements CSProcess {

}}

SuccIntSuccInt

00

NumbersIntNumbersInt

out

1-Apr-08 Copyright P.H.Welch 77

SuccIntSuccInt

00

NumbersIntNumbersInt

out

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new new PrefixIntPrefixInt (0, (0, c.inc.in(), (), a.outa.out()),()),
new Delta2Int (new Delta2Int (a.ina.in(), out, (), out, b.outb.out()),()),
new new SuccIntSuccInt ((b.inb.in(), (), c.outc.out())())

}}
).run ();).run ();

public void run () {public void run () {

}}

One2OneChannelInt a = Channel.one2oneInt ();One2OneChannelInt a = Channel.one2oneInt ();
One2OneChannelInt b = Channel.one2oneInt ();One2OneChannelInt b = Channel.one2oneInt ();
One2OneChannelInt c = Channel.one2oneInt ();One2OneChannelInt c = Channel.one2oneInt ();

aa

bbcc

1-Apr-08 Copyright P.H.Welch 78

publicpublic IntegrateInt (IntegrateInt (ChannelInputIntChannelInputInt in,in,
ChannelOutputIntChannelOutputInt out) {out) {

this.in = in;this.in = in;
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

private final private final ChannelInputIntChannelInputInt in;in;
private final private final ChannelOutputIntChannelOutputInt out;out;

class IntegrateInt implements CSProcess {class IntegrateInt implements CSProcess {

}}

IntegrateIntIntegrateInt

out
++

00

in

Computing Laboratory 4/1/2008

Title goes here 27

1-Apr-08 Copyright P.H.Welch 79

IntegrateIntIntegrateInt

out
++

00

in

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new new PlusIntPlusInt (in, (in, c.inc.in(), (), a.outa.out()),()),
new Delta2Int (new Delta2Int (a.ina.in(), out, (), out, b.outb.out()),()),
new new PrefixIntPrefixInt (0, (0, b.inb.in(), (), c.outc.out())())

}}
).run ();).run ();

public void run () {public void run () {

}}

One2OneChannelInt a = Channel.one2oneInt ();One2OneChannelInt a = Channel.one2oneInt ();
One2OneChannelInt b = Channel.one2oneInt ();One2OneChannelInt b = Channel.one2oneInt ();
One2OneChannelInt c = Channel.one2oneInt ();One2OneChannelInt c = Channel.one2oneInt ();

aa

bbcc

1-Apr-08 Copyright P.H.Welch 80

11

44

99

1616

2525

3636

4949

6464

8181

..

..

publicpublic SquaresIntSquaresInt ((ChannelOutputIntChannelOutputInt out) {out) {
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

private final private final ChannelOutputIntChannelOutputInt out; out;

class class SquaresIntSquaresInt implements CSProcess {implements CSProcess {

}}

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt

1-Apr-08 Copyright P.H.Welch 81

SquaresIntSquaresInt

outIntegrateIntIntegrateIntNumbersIntNumbersInt PairsIntPairsInt

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new NumbersInt (new NumbersInt (a.outa.out()),()),
new IntegrateInt (new IntegrateInt (a.ina.in(), (), b.outb.out()),()),
new new PairsIntPairsInt ((b.inb.in(), out)(), out)

}}
).run ();).run ();

11

44

99

1616

2525

3636

4949

6464

8181

..

..

public void run () {public void run () {

}}

One2OneChannelInt a = Channel.one2oneInt ();One2OneChannelInt a = Channel.one2oneInt ();
One2OneChannelInt b = Channel.one2oneInt ();One2OneChannelInt b = Channel.one2oneInt ();

aa bb

Computing Laboratory 4/1/2008

Title goes here 28

1-Apr-08 Copyright P.H.Welch 82

Quite a Lot of ProcessesQuite a Lot of ProcessesQuite a Lot of Processes

a[1]a[1]

a[0]a[0]

a[2]a[2]

bb

One2OneChannelInt[] a =One2OneChannelInt[] a =
Channel.one2oneIntArray(3);Channel.one2oneIntArray(3);

One2OneChannel b =One2OneChannel b =
Channel.one2one();Channel.one2one();

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new NumbersInt (a[0].out()),new NumbersInt (a[0].out()),
new new SquaresIntSquaresInt (a[1].out()),(a[1].out()),
new new FibonacciIntFibonacciInt (a[2].out()),(a[2].out()),
new new ParaPlexIntParaPlexInt ((a_ina_in, , b.outb.out()),()),
new TabulateInt (new TabulateInt (b.inb.in())())

}}
).run ();).run ();

SquaresIntSquaresInt

NumbersIntNumbersInt

FibonacciIntFibonacciInt

TabulateIntTabulateInt

ParaPlexIntParaPlexInt

ChannelInputIntChannelInputInt[] [] a_ina_in ==
Channel.getInputIntArray(aChannel.getInputIntArray(a););

1-Apr-08 Copyright P.H.Welch 83

serial orderingserial ordering

... ... publicpublic PlusIntPlusInt ((ChannelInputIntChannelInputInt in0, ...)in0, ...)

public void run () {public void run () {
while (true) {while (true) {
intint n0 = in0.read ();n0 = in0.read ();
intint n1 = in1.read ();n1 = in1.read ();
out.write (n0 + n1);out.write (n0 + n1);

}}
}}

... private final channels (in0, in1, out)... private final channels (in0, in1, out)

class class PlusIntPlusInt implements CSProcess {implements CSProcess {

}}

Note: the inputs really need to be done in parallel Note: the inputs really need to be done in parallel -- now!now!

in1

outin0
++

1-Apr-08 Copyright P.H.Welch 84

public void run () {public void run () {

}}

in1

outin0
++

while (true) {while (true) {
parRead.runparRead.run ();();
out.write (readIn0.value + readIn1.value);out.write (readIn0.value + readIn1.value);

}}

ProcessReadIntProcessReadInt readIn0 = new readIn0 = new ProcessReadIntProcessReadInt (in0);(in0);
ProcessReadIntProcessReadInt readIn1 = new readIn1 = new ProcessReadIntProcessReadInt (in1);(in1);

CSProcess CSProcess parReadparRead = =
new Parallel (new CSProcess[] {readIn0, readIn1});new Parallel (new CSProcess[] {readIn0, readIn1});

this process this process
does one input does one input
and terminatesand terminates

Note: the inputs are now done in parallel. Note: the inputs are now done in parallel.

Computing Laboratory 4/1/2008

Title goes here 29

1-Apr-08 Copyright P.H.Welch 85

Implementation NoteImplementation Note
As in the As in the transputertransputer (and (and KRoCKRoC occam-π etc.), a etc.), a JCSPJCSP
ParallelParallel object runs its first (nobject runs its first (n--1) components in 1) components in
separateseparate Java threads and its last component in Java threads and its last component in its ownits own
thread of control.thread of control.

When a When a Parallel.run()Parallel.run() terminates, the terminates, the ParallelParallel
object parks all its threads for reuse in case the object parks all its threads for reuse in case the
ParallelParallel is run again.is run again.

So processes like So processes like PlusIntPlusInt incur the overhead of Java incur the overhead of Java
thread creation thread creation only during its first cycleonly during its first cycle..

ThatThat’’s why we named the s why we named the parReadparRead process before loop process before loop
entry, rather than constructing it anonymously each time entry, rather than constructing it anonymously each time
within the loop.within the loop.

1-Apr-08 Copyright P.H.Welch 86

PROC P (CHAN STUFF out!, ...)
... local state
SEQ
... initialise state
WHILE running
SEQ
... do stuff
out ! value
... more stuff

:

PROC P (CHAN STUFF out!, ...)PROC P (CHAN STUFF out!, ...)
... local state... local state
SEQSEQ
... initialise state... initialise state
WHILE runningWHILE running
SEQSEQ
... do stuff... do stuff
out ! valueout ! value
... more stuff... more stuff

::

PROC Q (CHAN STUFF in?, ...)
... local state
SEQ
... initialise state
WHILE running
SEQ
... do stuff
in ? x
... more stuff

:

PROC Q (CHAN STUFF in?, ...)PROC Q (CHAN STUFF in?, ...)
... local state... local state
SEQSEQ

... initialise state... initialise state
WHILE runningWHILE running

SEQSEQ
... do stuff... do stuff
in ? xin ? x
... more stuff... more stuff

::

Channel “Ends” in occam-πChannel Channel ““EndsEnds”” inin occamoccam--ππ
outout

PP

Each process gets its own Each process gets its own ““endsends”” of its external channelsof its external channels

QQinin

1-Apr-08 Copyright P.H.Welch 87

cPP QQ

CHAN STUFF c:
... other channels
PAR

P (c!, ...)
Q (c?, ...)
... other processes

CHAN STUFF c:CHAN STUFF c:
... other channels... other channels
PARPAR

P (P (c!c!, ...), ...)
Q (Q (c?c?, ...), ...)
... other processes... other processes

Channel “Ends” in occam-πChannel Channel ““EndsEnds”” inin occamoccam--ππ

Each process gets its own Each process gets its own ““endsends”” of its external channelsof its external channels

Computing Laboratory 4/1/2008

Title goes here 30

1-Apr-08 Copyright P.H.Welch 88

class P implements CSProcess {

private final ChannelOutput out;
... other channels and local state

public P (ChannelOutput out, ...) {
this.out = out;
...

}

public void run () {...}

}

class P implements CSProcess {class P implements CSProcess {

private final private final ChannelOutputChannelOutput out;out;
... other channels and local state... other channels and local state

public P (public P (ChannelOutputChannelOutput out, ...) {out, ...) {
this.outthis.out = out;= out;
......

}}

public void run () {...}public void run () {...}

}}

Channel “Ends” in JCSPChannel Channel ““EndsEnds”” inin JCSPJCSP
outout

PP

EachEach
process gets process gets

its own its own ““endsends””
of its external of its external

channelschannels

1-Apr-08 Copyright P.H.Welch 89

class P implements CSProcess {

... external channels and local state

public P (ChannelOutput out, ...) {...}

public void run () {
... initialise local state
while (running) {
... do stuff
out.write (value);
... more stuff

}

}

class P implements CSProcess {class P implements CSProcess {

... external channels and local state... external channels and local state

public P (public P (ChannelOutputChannelOutput out, ...) {...}out, ...) {...}

public void run () {public void run () {
... initialise local state... initialise local state
while (running) {while (running) {
... do stuff... do stuff
out.writeout.write (value);(value);
... more stuff... more stuff

}}

}}

Channel “Ends” in JCSPChannel Channel ““EndsEnds”” inin JCSPJCSP
outout

PP

EachEach
process gets process gets

its own its own ““endsends””
of its external of its external

channelschannels

1-Apr-08 Copyright P.H.Welch 90

class Q implements CSProcess {

private final ChannelInput in;
... other channels and local state

public Q (ChannelInput in, ...) {
this.in = in;
...

}

public void run () {...}

:

class Q implements CSProcess {class Q implements CSProcess {

private final private final ChannelInputChannelInput in;in;
... other channels and local state... other channels and local state

public Q (public Q (ChannelInputChannelInput in, ...) {in, ...) {
this.inthis.in = in;= in;
......

}}

public void run () {...}public void run () {...}

::

Channel “Ends” in JCSPChannel Channel ““EndsEnds”” inin JCSPJCSP

QQinin

EachEach
process gets process gets

its own its own ““endsends””
of its external of its external

channelschannels

Computing Laboratory 4/1/2008

Title goes here 31

1-Apr-08 Copyright P.H.Welch 91

Channel “Ends” in JCSPChannel Channel ““EndsEnds”” inin JCSPJCSP

QQinin

class Q implements CSProcess {

... external channels and local state

public Q (ChannelInput in, ...) {...}

public void run () {
... initialise local state
while (running) {
... do stuff
x = (Stuff) in.read ();
... more stuff

}

}

class Q implements CSProcess {class Q implements CSProcess {

... external channels and local state... external channels and local state

public Q (public Q (ChannelInputChannelInput in, ...) {...}in, ...) {...}

public void run () {public void run () {
... initialise local state... initialise local state
while (running) {while (running) {

... do stuff... do stuff
x = (Stuff) x = (Stuff) in.readin.read ();();
... more stuff... more stuff

}}

}}

EachEach
process gets process gets

its own its own ““endsends””
of its external of its external

channelschannels

1-Apr-08 Copyright P.H.Welch 92

cPP QQ

final One2OneChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out (), ...),
new Q (c.in (), ...),
... other processes

}
).run ();

final One2OneChannel c = Channel.one2one ();final One2OneChannel c = Channel.one2one ();
... other channels... other channels

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new P (new P (c.outc.out ()(), ...),, ...),
new Q (new Q (c.inc.in ()(), ...),, ...),
... other processes... other processes

}}
).run ();).run ();

Channel “Ends” in JCSP 1.1Channel Channel ““EndsEnds”” inin JCSP 1.1JCSP 1.1

Each process gets its own Each process gets its own ““endsends”” of its external channelsof its external channels

1-Apr-08 Copyright P.H.Welch 93

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

One2OneChannelOne2OneChannel

public public ChannelOutputChannelOutput out ()out ()
public public ChannelInputChannelInput in ()in ()

NO DANGER:NO DANGER: users see only Java interfaces. The classes behind users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cthem are invisible, unrelated by class hierarchy and cannot be cast ast
into each other. Processes must be given correct channel into each other. Processes must be given correct channel ““endsends””..

* Ignoring * Ignoring AltingAlting

**

**

Computing Laboratory 4/1/2008

Title goes here 32

1-Apr-08 Copyright P.H.Welch 94

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputIntChannelInputInt

public public intint read ()read ()

One2OneChannelIntOne2OneChannelInt

public public ChannelOutputIntChannelOutputInt out ()out ()
public public ChannelInputIntChannelInputInt in ()in ()

NO DANGER:NO DANGER: users see only Java interfaces. The classes behind users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cthem are invisible, unrelated by class hierarchy and cannot be cast ast
into each other. Processes must be given correct channel into each other. Processes must be given correct channel ““endsends””..

* Ignoring * Ignoring AltingAlting

ChannelOutputIntChannelOutputInt

public void write (public void write (intint i)i)

**

**

1-Apr-08 Copyright P.H.Welch 95

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

One2OneChannelOne2OneChannel

public public ChannelOutputChannelOutput out ()out ()
public public ChannelInputChannelInput in ()in ()

NO DANGER:NO DANGER: users see only Java interfaces. The classes behind users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cthem are invisible, unrelated by class hierarchy and cannot be cast ast
into each other. Processes must be given correct channel into each other. Processes must be given correct channel ““endsends””..

* Ignoring * Ignoring AltingAlting

**

**

1-Apr-08 Copyright P.H.Welch 96

final One2OneChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out (), ...),
new Q (c.in (), ...),
... other processes

}
).run ();

final One2OneChannel c = Channel.one2one ();final One2OneChannel c = Channel.one2one ();
... other channels... other channels

new Parallel (new Parallel (
new CSProcess[] {new CSProcess[] {
new P (new P (c.outc.out ()(), ...),, ...),
new Q (new Q (c.inc.in ()(), ...),, ...),
... other processes... other processes

}}
).run ();).run ();

cPP QQ

Channel “Ends” in JCSP 1.1Channel Channel ““EndsEnds”” inin JCSP 1.1JCSP 1.1

Each process gets its own Each process gets its own ““endsends”” of its external channelsof its external channels

channel channel
manufacturemanufacture

Computing Laboratory 4/1/2008

Title goes here 33

1-Apr-08 Copyright P.H.Welch 97

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

Decide whether the Decide whether the ““endsends”” are to be shared:are to be shared:

Channel.one2one ()Channel.one2one ()

Channel.any2one ()Channel.any2one ()

Channel.one2any ()Channel.one2any ()

Channel.any2any ()Channel.any2any ()

1-Apr-08 Copyright P.H.Welch 98

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

Decide whether the channels are to be buffered and, if so, how:Decide whether the channels are to be buffered and, if so, how:

Channel.one2one (new Buffer (42))Channel.one2one (new Buffer (42))

Channel.any2one (new Channel.any2one (new OverWriteOldestBufferOverWriteOldestBuffer (8)(8)))

Channel.one2any (new Channel.one2any (new OverFlowingBufferOverFlowingBuffer (100)(100)))

Channel.any2any (new Channel.any2any (new InfiniteBufferInfiniteBuffer ()()))

1-Apr-08 Copyright P.H.Welch 99

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

Decide whether the channels are Decide whether the channels are poisonablepoisonable and, if so, their immunity:and, if so, their immunity:

Channel.one2one (10)Channel.one2one (10)

Channel.any2one (5)Channel.any2one (5)

Channel.one2any (1000)Channel.one2any (1000)

Channel.any2any (0)Channel.any2any (0)

Immunity Level: Immunity Level:
the channel is the channel is
immune to immune to
poisons up to poisons up to
this strength ...this strength ...

Computing Laboratory 4/1/2008

Title goes here 34

1-Apr-08 Copyright P.H.Welch 100

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

The channels may be buffered and The channels may be buffered and poisonablepoisonable::

Channel.one2one (new Buffer (42), 10)Channel.one2one (new Buffer (42), 10)

immunity level ...immunity level ...buffer typebuffer type
and capacity ...and capacity ...

1-Apr-08 Copyright P.H.Welch 101

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

Arrays of channels Arrays of channels –– all kinds all kinds –– may be built in one go:may be built in one go:

Channel.one2oneArray (100)Channel.one2oneArray (100)

Channel.any2oneArray (200, new Buffer (42), 10)Channel.any2oneArray (200, new Buffer (42), 10)

immunity level ...immunity level ...buffer typebuffer type
and capacity ...and capacity ...array size ...array size ...

1-Apr-08 Copyright P.H.Welch 102

Channel ManufactureChannel Manufacture

All channels are made usingAll channels are made using staticstatic methods of themethods of the ChannelChannel class.class.

Channels may be specialised to carry Channels may be specialised to carry intintss::

Channel.one2oneInt ()Channel.one2oneInt ()

Channel.any2oneIntArray (200, new Buffer (42), 10)Channel.any2oneIntArray (200, new Buffer (42), 10)

In future, channels will be specialised using Java In future, channels will be specialised using Java genericsgenerics

Computing Laboratory 4/1/2008

Title goes here 35

1-Apr-08 Copyright P.H.Welch 103

Channel SummaryChannel Summary
The JCSP process view and use of its external channels:The JCSP process view and use of its external channels:

Sees: ChannelInput, AltingChannelInput,
ChannelOutput, ChannelInputInt, etc.

Sees:Sees: ChannelInputChannelInput,, AltingChannelInputAltingChannelInput,,
ChannelOutputChannelOutput,, ChannelInputIntChannelInputInt,, etc.etc.

Increased safety – cannot violate “endianness” ...Increased safety Increased safety –– cannot violate cannot violate ““endiannessendianness””

A process does not (usually*) care about the kind of channel
– whether it is shared, buffered, poisonable, ...
A process does not (usuallyA process does not (usually**) care about the kind of channel) care about the kind of channel
–– whether it is shared, buffered, whether it is shared, buffered, poisonablepoisonable, ..., ...

** If a process needs to share an external channelIf a process needs to share an external channel--end end
between many subbetween many sub--processes, it must be given one that is processes, it must be given one that is
shareable shareable –– i.e. an i.e. an AnyAny end. JCSP 1.1 does cater for this.end. JCSP 1.1 does cater for this.

1-Apr-08 Copyright P.H.Welch 104

Channel SummaryChannel Summary
The JCSP network view of channels:The JCSP network view of channels:

The correct channel “ends” must be extracted from channels
and plugged into the processes using them ...
The correct channel The correct channel ““endsends”” must be extracted from channels must be extracted from channels
and plugged into the processes using them ...and plugged into the processes using them ...

Increased safety – cannot violate “endianness” ...Increased safety Increased safety –– cannot violate cannot violate ““endiannessendianness””

A wide range of channel kinds (fully synchronised, buffered,
poisonable, typed) are built from the Channel class...
A wide range of channel kinds (fully synchronised, buffered, A wide range of channel kinds (fully synchronised, buffered,
poisonablepoisonable, typed) are built from the , typed) are built from the ChannelChannel class...class...

JCSP processes work only with JCSP processes work only with interfacesinterfaces both for channels both for channels
(whatever their kind) and for channel(whatever their kind) and for channel--ends. We think this will ends. We think this will
prove safer than providing prove safer than providing classesclasses..

1-Apr-08 Copyright P.H.Welch 105

the values in the output streams depend only on
the values in the input streams;
the semantics is scheduling independent;
no race hazards are possible.

So far, our parallel systems have been deterministic:

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Deterministic Processes (CSP)Deterministic Processes (CSP)

Computing Laboratory 4/1/2008

Title goes here 36

1-Apr-08 Copyright P.H.Welch 106

what happened in the past;
when (or, at least, in what order) things happened.

In the real world, it is sometimes the case that
things happen as a result of:

In this world, things are scheduling dependent.

CSP (and JCSP) addresses these issues explicitly.

Non-Deterministic Processes (CSP)Non-Deterministic Processes (CSP)

Non-determinism does not arise by default.

1-Apr-08 Copyright P.H.Welch 107

A Control ProcessA Control Process

Coping with the real world - making choices …

In ReplaceInt, data normally flows from in to out
unchanged.

However, if something arrives on inject, it is
output on out - instead of the next input from in.

ReplaceInt (in, out, inject)

in out

inject?

?

1-Apr-08 Copyright P.H.Welch 108

A Control ProcessA Control Process

The out stream depends upon:

ReplaceInt (in, out, inject)

in out

inject?

?

The values contained in the in and inject streams;
the order in which those values arrive.

a
b
c
d
e
.
.

x
b
c
d
e
.
.

x
a
x
c
d
e
.
.

a
b
x
d
e
.
.

a
b
c
x
e
.
.

a
b
c
d
x
.
.

The out stream is not determined just by the in and
inject streams - it is non-deterministic.

Computing Laboratory 4/1/2008

Title goes here 37

1-Apr-08 Copyright P.H.Welch 109

A Control ProcessA Control Process

ReplaceInt (in, out, inject) =
(inject?x --> ((in?a --> SKIP) || (out!x --> SKIP))
[PRI]
in?a --> out!a --> SKIP
);

ReplaceInt (in, out, inject)

ReplaceInt (in, out, inject)

in out

inject?

?

a
b
c
d
e
.
.

x
b
c
d
e
.
.

x
a
x
c
d
e
.
.

a
b
x
d
e
.
.

a
b
c
x
e
.
.

a
b
c
d
x
.
.

Note:[] is the (external) choice operator of CSP.
[PRI] is a prioritised version - giving priority to the event on its left.

1-Apr-08 Copyright P.H.Welch 110

Another Control ProcessAnother Control Process

Coping with the real world - making choices …

In ScaleInt, data flows from in to out, getting
scaled by a factor of s as it passes.

Values arriving on inject, reset that s factor.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

1-Apr-08 Copyright P.H.Welch 111

The out stream depends upon:
The values contained in the in and inject streams;
the order in which those values arrive.

a
b
c
d
e
.
.

n*a
n*b
n*c
n*d
n*e
.
.

n

The out stream is not determined just by the in and
inject streams - it is non-deterministic.

Another Control ProcessAnother Control Process
s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

Computing Laboratory 4/1/2008

Title goes here 38

1-Apr-08 Copyright P.H.Welch 112

ScaleInt (s, in, out, inject) =
(inject?s --> SKIP
[PRI]
in?a --> out!s*a --> SKIP
);

ScaleInt (s, in, out, inject)

Another Control ProcessAnother Control Process
a
b
c
d
e
.
.

n

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

Note:[] is the (external) choice operator of CSP.
[PRI] is a prioritised version - giving priority to the event on its left.

n*a
n*b
n*c
n*d
n*e
.
.

s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

1-Apr-08 Copyright P.H.Welch 113

Some Resettable NetworksSome Resettable Networks
inject

ReNumbersIntReNumbersInt

out

SuccIntSuccInt

00

This is a resettable version of the NumbersInt
process.

If nothing is sent down inject, it behaves as before.

But it may be reset to count from But it may be reset to count from anyany numbernumber
at at anyany time.time.

1-Apr-08 Copyright P.H.Welch 114

Some Resettable NetworksSome Resettable Networks

This is a resettable version of the IntegrateInt
process.

If nothing is sent down inject, it behaves as before.

But its running sum may be reset to But its running sum may be reset to anyany numbernumber
at at anyany time.time.

in

inject

ReIntegrateIntReIntegrateInt

out
++

00

Computing Laboratory 4/1/2008

Title goes here 39

1-Apr-08 Copyright P.H.Welch 115

Some Resettable NetworksSome Resettable Networks

This is a resettable version of the PairsInt process.

By sending -1 or +1 down inject, we can toggle its
behaviour between PairsInt and DiffentiateInt
(a device that cancels the effect of IntegrateInt
if pipelined on to its output).

RePairsIntRePairsInt

outin

inject

TailIntTailInt

++*1

1-Apr-08 Copyright P.H.Welch 116

A Controllable MachineA Controllable Machine

0 0 -1+1

Reset Nos Reset Int Toggle Pairs

Plug-n-Play

TabulateInt

ParaplexInt

ReIntegrateIntReNumbersInt RePairsInt

1-Apr-08 Copyright P.H.Welch 117

An Inertial Navigation ComponentAn Inertial Navigation Component

ReIntegrateInt ReIntegrateInt

NavComp

accIn

accOut

velOut

posOut

posResetvelReset

accIn: carries regular accelerometer samples;
velReset: velocity initialisation and corrections;
posReset: position initialisation and corrections;
posOut/velOut/accOut: regular outputs.

Computing Laboratory 4/1/2008

Title goes here 40

1-Apr-08 Copyright P.H.Welch 118

the values in the output streams depend only on
the values in the input streams;
the semantics is scheduling independent;
no race hazards are possible.

So far, our JCSP systems have been determistic:

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.

Deterministic Processes (JCSP)Deterministic Processes (JCSP)

1-Apr-08 Copyright P.H.Welch 119

what happened in the past;
when (or, at least, in what order) things happened.

In the real world, it is sometimes the case that
things happen as a result of:

In this world, things are scheduling dependent.

CSP (JCSP) addresses these issues explicitly.

Non-Deterministic Processes (JCSP)Non-Deterministic Processes (JCSP)

NonNon--determinismdeterminism does not arise by default.

1-Apr-08 Copyright P.H.Welch 120

Alternation - the CSP ChoiceAlternation - the CSP Choice
public abstract class Guard {public abstract class Guard {
... package... package--only abstract methods (enable/disable)only abstract methods (enable/disable)

}}

Six Six JCSPJCSP classes are (i.e. classes are (i.e. extendextend)) GuardGuards:s:
AltingChannelInputAltingChannelInput (Objects) (Objects)
AltingChannelInputIntAltingChannelInputInt ((intsints))
AltingChannelAcceptAltingChannelAccept ((CALLsCALLs))
AltingBarrierAltingBarrier (Barriers)(Barriers)
CSTimerCSTimer (timeouts) (timeouts)
SkipSkip (polling)(polling)

The The in()in() methods of methods of One2OneOne2One and and Any2OneAny2One channels channels
return return AltingAlting (rather than ordinary) channel(rather than ordinary) channel--ends.ends.

The The in()in() methods of methods of One2AnyOne2Any and and Any2Any Any2Any channels channels
return ordinary channelreturn ordinary channel--ends ends –– no no AltingAlting on them.on them.

Computing Laboratory 4/1/2008

Title goes here 41

1-Apr-08 Copyright P.H.Welch 121

The The in()in() methods of methods of One2AnyOne2Any and and Any2Any Any2Any channels channels
return ordinary channelreturn ordinary channel--ends ends –– no no AltingAlting on them.on them.

Alternation - the CSP ChoiceAlternation - the CSP Choice
public abstract class Guard {public abstract class Guard {
... package... package--only abstract methods (enable/disable)only abstract methods (enable/disable)

}}

Six Six JCSPJCSP classes are (i.e. classes are (i.e. extendextend)) GuardGuards:s:
AltingChannelInputAltingChannelInput (Objects) (Objects)
AltingChannelInputIntAltingChannelInputInt ((intsints))
AltingChannelAcceptAltingChannelAccept ((CALLsCALLs))
AltingBarrierAltingBarrier (Barriers)(Barriers)
CSTimerCSTimer (timeouts) (timeouts)
SkipSkip (polling)(polling)

**Alternation is named after the occam ALT Alternation is named after the occam ALT ……

**

The The in()in() methods of methods of One2OneOne2One and and Any2OneAny2One channels channels
return return AltingAlting (rather than ordinary) channel(rather than ordinary) channel--ends.ends.

1-Apr-08 Copyright P.H.Welch 122

Ready/Unready GuardsReady/Unready Guards
A A channelchannel guard is ready guard is ready iffiff data is data is
pendingpending -- i.e. a process at the other end i.e. a process at the other end
has output to (or called) the channel and has output to (or called) the channel and
this has not yet been input (or accepted).this has not yet been input (or accepted).

A A timertimer guard is ready guard is ready iffiff its timeout has its timeout has
expiredexpired..

A A skipskip guard is guard is always readyalways ready..

1-Apr-08 Copyright P.H.Welch 123

AlternationAlternation
For For ALTALTinging, a , a JCSPJCSP process must have a process must have a Guard[]Guard[]
array array -- this can be any mix of channel inputs, call this can be any mix of channel inputs, call
channel accepts, timeouts or skips:channel accepts, timeouts or skips:
final Guard[] guards = {...};final Guard[] guards = {...};

It must construct an It must construct an AlternativeAlternative object for each such object for each such
guard array:guard array:
final Alternative alt =final Alternative alt =
new Alternative (guards);new Alternative (guards);

The The ALTALT is carried out by invoking one of the three is carried out by invoking one of the three
varieties of select methods on the alternative.varieties of select methods on the alternative.

Computing Laboratory 4/1/2008

Title goes here 42

1-Apr-08 Copyright P.H.Welch 124

alt.select()alt.select()alt.select()

Same as above Same as above -- except that if there is more than except that if there is more than
one ready guard, it chooses the one with the one ready guard, it chooses the one with the lowest lowest
indexindex..

This blocks passively until one or more of the guards This blocks passively until one or more of the guards
are ready. Then, it makes an are ready. Then, it makes an ARBITRARYARBITRARY choice choice
of one of these ready guards and returns the index of one of these ready guards and returns the index
of that chosen one. If that guard is a of that chosen one. If that guard is a channelchannel, the , the
ALTingALTing process must then process must then readread fromfrom (or (or acceptaccept)) it.it.

alt.priSelect()alt.priSelectalt.priSelect()()

1-Apr-08 Copyright P.H.Welch 125

alt.fairSelect()alt.fairSelectalt.fairSelect()()

FairFair alternation is possible because an alternation is possible because an AlternativeAlternative
object is tied to object is tied to oneone set of guards.set of guards.

Same as above Same as above -- except that if there are more except that if there are more
than one ready guards, it makes a than one ready guards, it makes a FAIRFAIR choice.choice.

This means that, in successive invocations ofThis means that, in successive invocations of
alt.fairSelectalt.fairSelect ()(), no ready guard will be chosen , no ready guard will be chosen
twice if another ready guard is available. At worst, twice if another ready guard is available. At worst,
no ready guard will miss out on no ready guard will miss out on nn successive successive
selections (where selections (where nn is the number of guards).is the number of guards).

1-Apr-08 Copyright P.H.Welch 126

ALTing Between EventsALTing Between Events

event

ButtonButton

ButtonButton is a (GUI widget) process that outputs a is a (GUI widget) process that outputs a
pingping whenever itwhenever it’’s clicked. s clicked.
FreezeControlFreezeControl controls a datacontrols a data--stream flowing stream flowing
from its from its inin to to outout channels. Clicking the channels. Clicking the ButtonButton
freezes the datafreezes the data--stream stream -- clicking again resumes it.clicking again resumes it.

outin
FreezeControlFreezeControl

Computing Laboratory 4/1/2008

Title goes here 43

1-Apr-08 Copyright P.H.Welch 127

while (true) {

switch (alt.priSelect ()) {

case EVENT:
event.read ();
event.read ();

break;

case IN:
out.write (in.read ());

break;

}

}

while (true) {while (true) {

switch (switch (alt.priSelectalt.priSelect ()()) {) {

case case EVENTEVENT::
event.read ();event.read ();
event.read ();event.read ();

break;break;

case case ININ::
out.write (in.read ());out.write (in.read ());

break;break;

}}

}}

ALTing Between EventsALTing Between Events

final Alternative alt =
new Alternative (

new Guard[] {event, in};
);

final int EVENT = 0, IN = 1;

final Alternative final Alternative altalt ==
new Alternative (new Alternative (

new Guard[] {new Guard[] {eventevent, , inin};};
););

final final intint EVENTEVENT = 0, = 0, ININ = 1;= 1;

outin

event

FreezeControlFreezeControl

Indices to the Guard arrayIndices to the Guard array
No No SPINSPIN

when frozenwhen frozen

1-Apr-08 Copyright P.H.Welch 128

ALTing Between EventsALTing Between Events

The The sliderslider (GUI widget) process outputs an integer (GUI widget) process outputs an integer
((00....100100) whenever its) whenever its sliderslider--keykey is moved.is moved.

event

SpeedControlSpeedControl controls the speed of a datacontrols the speed of a data--stream stream
flowing from its flowing from its inin to to outout channels. Moving the channels. Moving the
sliderslider--keykey changes that speed changes that speed –– from from frozenfrozen ((00) to) to
some defined some defined maximummaximum ((100100).).

outin
SpeedControlSpeedControl

1-Apr-08 Copyright P.H.Welch 129

long timeout = tim.read () + interval;
tim.setAlarm (timeout);

while (true) {

switch (alt.priSelect ()) {

case EVENT:
... handle the slider event

case TIM:
... handle the timeout event

}

}

long timeout = long timeout = tim.readtim.read () + interval;() + interval;
tim.setAlarmtim.setAlarm (timeout);(timeout);

while (true) {while (true) {

switch (switch (alt.priSelectalt.priSelect ()()) {) {

case case EVENTEVENT::
...... handle the slider eventhandle the slider event

case case TIMTIM::
... handle the timeout event... handle the timeout event

}}

}}

out
SpeedControlSpeedControlin

event

ALTing
Between
Events
ALTing

Between
Events

final CSTimer tim =
new CSTimer ();

final Alternative alt =
new Alternative (

new Guard[] {event, tim};
);

final int EVENT = 0, TIM = 1;

final final CSTimerCSTimer timtim ==
new new CSTimerCSTimer ();();

final Alternative final Alternative altalt ==
new Alternative (new Alternative (

new Guard[] {new Guard[] {eventevent, , timtim};};
););

final final intint EVENTEVENT = 0, = 0, TIMTIM = 1;= 1;

Computing Laboratory 4/1/2008

Title goes here 44

1-Apr-08 Copyright P.H.Welch 130

long timeout = tim.read () + interval;
tim.setAlarm (timeout);

while (true) {

switch (alt.priSelect ()) {

case EVENT:
... handle the slider event

case TIM:
... handle the timeout event

}

}

long timeout = long timeout = tim.readtim.read () + interval;() + interval;
tim.setAlarmtim.setAlarm (timeout);(timeout);

while (true) {while (true) {

switch (switch (alt.priSelectalt.priSelect ()()) {) {

case case EVENTEVENT::
...... handle the slider eventhandle the slider event

case case TIMTIM::
... handle the timeout event... handle the timeout event

}}

}}

long timeout = tim.read () + interval;
tim.setAlarm (timeout);

while (true) {

switch (alt.priSelect ()) {

case EVENT:
int position = event.read ();
while (position == 0) {
position = event.read ();

}
speed = (position*maxSpd)/maxPos
interval = 1000/speed; // ms
timeout = tim.read ();
// fall through

case TIM:
timeout += interval;
tim.setAlarm (timeout);
out.write (in.read ());

break;

}

}

long timeout = long timeout = tim.readtim.read () + interval;() + interval;
tim.setAlarmtim.setAlarm (timeout);(timeout);

while (true) {while (true) {

switch (switch (alt.priSelectalt.priSelect ()()) {) {

case case EVENTEVENT::
intint position = event.read ();position = event.read ();
while (position == 0) {while (position == 0) {

position = event.read ();position = event.read ();
}}
speed = (position*speed = (position*maxSpd)/maxPosmaxSpd)/maxPos
interval = 1000/speed;interval = 1000/speed; //// msms
timeout = timeout = tim.readtim.read ();();
//// fall throughfall through

case case TIMTIM::
timeout += interval;timeout += interval;
tim.setAlarmtim.setAlarm (timeout);(timeout);
out.write (in.read ());out.write (in.read ());

break;break;

}}

}}

out
SpeedControlSpeedControlin

event

ALTing
Between
Events
ALTing

Between
Events

final CSTimer tim =
new CSTimer ();

final Alternative alt =
new Alternative (

new Guard[] {event, tim};
);

final int EVENT = 0, TIM = 1;

final final CSTimerCSTimer timtim ==
new new CSTimerCSTimer ();();

final Alternative final Alternative altalt ==
new Alternative (new Alternative (

new Guard[] {new Guard[] {eventevent, , timtim};};
););

final final intint EVENTEVENT = 0, = 0, TIMTIM = 1;= 1;
No No SPINSPIN

when frozenwhen frozen

1-Apr-08 Copyright P.H.Welch 131

ScaleInt (s, in, out, inject) =
(inject?s --> SKIP
[PRI]
in?a --> out!s*a --> SKIP
);

ScaleInt (s, in, out, inject)

Another Control ProcessAnother Control Process
a
b
c
d
e
.
.

n*a
n*b
n*c
n*d
n*e
.
.

n
s*a
n*b
n*c
n*d
n*e
.
.

s*a
s*b
n*c
n*d
n*e
.
.

ScaleInt (s, in, out, inject)

in out

inject?

?
*s

Note:[] is the (external) choice operator of CSP.
[PRI] is a prioritised version - giving priority to the event on its left.

1-Apr-08 Copyright P.H.Welch 132

class class ScaleIntScaleInt implements CSProcess {implements CSProcess {

}}

in out

inject?

?
*s

private private intint s;s;
private final private final AltingChannelInputIntAltingChannelInputInt in, inject;in, inject;
private final private final ChannelOutputIntChannelOutputInt out;out;

publicpublic ScaleIntScaleInt ((intint s, s, AltingChannelInputIntAltingChannelInputInt in,in,
AltingChannelInputIntAltingChannelInputInt inject,inject,
ChannelOutputIntChannelOutputInt out) {out) {

this.s = s;this.s = s;
this.in = in;this.in = in;
this.inject = inject;this.inject = inject;
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

Computing Laboratory 4/1/2008

Title goes here 45

1-Apr-08 Copyright P.H.Welch 133

final final intint a = in.read ();a = in.read ();
out.write (s*a);out.write (s*a);

final Alternative alt =final Alternative alt =
new Alternative (new Guard[] {inject, in});new Alternative (new Guard[] {inject, in});

final final intint INJECT = 0, IN = 1; // guard indicesINJECT = 0, IN = 1; // guard indices

while (true) {while (true) {
switch (switch (alt.priSelectalt.priSelect ()) {()) {
case INJECT:case INJECT:

break;break;
case IN:case IN:

break;break;
}}

}}

in out

inject?

?
*s

public void run () {public void run () {

}}

Note theseNote these
are in priority are in priority

order.order.

s = inject.read ();s = inject.read ();

1-Apr-08 Copyright P.H.Welch 134

Real-Time SamplerReal-Time Sampler

This process services any of 3 events This process services any of 3 events (2 inputs and (2 inputs and
1 timeout)1 timeout) that may occur.that may occur.
Its Its tt parameter represents a time interval. Every parameter represents a time interval. Every tt
time units, it must output the time units, it must output the lastlast object that arrived object that arrived
on its on its inin channel during the previous time slice. If channel during the previous time slice. If
nothing arrived, it must output a nothing arrived, it must output a nullnull..
The length of the The length of the timeslicetimeslice, , tt, may be reset at any , may be reset at any
time by a new value arriving on its time by a new value arriving on its resetreset channel. channel.

outin

reset

Sample (t)

1-Apr-08 Copyright P.H.Welch 135

class Sampleclass Sample implements CSProcess {implements CSProcess {

}}

private final long t;private final long t;
private final private final AltingChannelInputAltingChannelInput in;in;
private final private final AltingChannelInputIntAltingChannelInputInt reset;reset;
private final private final ChannelOutputChannelOutput out;out;

publicpublic SampleSample (long t,(long t,
AltingChannelInputAltingChannelInput in,in,
AltingChannelInputIntAltingChannelInputInt reset,reset,
ChannelOutputChannelOutput out) {out) {

this.t = t;this.t = t;
this.in = in;this.in = in;
this.reset = reset;this.reset = reset;
this.out = out;this.out = out;

}}

... public void run ()... public void run ()

in out

reset

Sample (t)

Computing Laboratory 4/1/2008

Title goes here 46

1-Apr-08 Copyright P.H.Welch 136

Object sample = null;Object sample = null;
long timeout = long timeout = tim.readtim.read () + t;() + t;
tim.setAlarmtim.setAlarm (timeout);(timeout);

final final CSTimerCSTimer timtim = new = new CSTimerCSTimer ();();

final Alternative alt =final Alternative alt =
new Alternative (new Guard[] {reset, new Alternative (new Guard[] {reset, timtim, in});, in});

final final intint RESET = 0, TIM = 1, IN = 2; // indicesRESET = 0, TIM = 1, IN = 2; // indices

Note theseNote these
are in priority are in priority

order.order.
public void run () {public void run () {

}}

... main loop... main loop

in out

reset

Sample (t)

1-Apr-08 Copyright P.H.Welch 137

t = reset.read ();t = reset.read ();

sample = in.read ();sample = in.read ();

out.write (sample);out.write (sample);
sample = null;sample = null;
timeout += t;timeout += t;
tim.setAlarmtim.setAlarm (timeout);(timeout);

switch (switch (alt.priSelectalt.priSelect ()) {()) {
case RESET:case RESET:

break;break;
case TIM:case TIM:

break;break;
case IN:case IN:

break;break;
}}

while (true) {while (true) {

}}

in out

reset

Sample (t)

1-Apr-08 Copyright P.H.Welch 138

out.write (sample);out.write (sample);
sample = null;sample = null;
timeout += t;timeout += t;
tim.setAlarmtim.setAlarm (timeout);(timeout);

t = reset.read ();t = reset.read ();
timeout = timeout = tim.readtim.read (); (); // // fall throughfall through

sample = in.read ();sample = in.read ();

while (true) {while (true) {
switch (switch (alt.priSelectalt.priSelect ()) {()) {

case RESET:case RESET:

case TIM:case TIM:

break;break;
case IN:case IN:

break;break;
}}

}}

in out

reset

Sample (t)

Computing Laboratory 4/1/2008

Title goes here 47

1-Apr-08 Copyright P.H.Welch 139

Final Stage ActuatorFinal Stage Actuator

Sample(t)Sample(t):: everyevery tt time units, output time units, output latestlatest ininput (or put (or
nullnull if noneif none); the value of); the value of tt may be may be resetreset;;

Monitor(m)Monitor(m):: copy input to output counting copy input to output counting nullnulls s -- if if mm in in
a rowa row, send panic message and terminate;, send panic message and terminate;

Decide(n)Decide(n):: copy noncopy non--nullnull input to output and input to output and rememberremember
last n outputs last n outputs -- convert convert nullnulls to a s to a best guessbest guess depending on depending on
those last n outputs.those last n outputs.

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

1-Apr-08 Copyright P.H.Welch 140

class Actuatorclass Actuator implements CSProcess {implements CSProcess {

}}

... private state (t, m and n)... private state (t, m and n)

... public void run ()... public void run ()

... private interface channels ... private interface channels
(in, reset, panic and out)(in, reset, panic and out)

... public constructor ... public constructor
(assign parameters t, m, n, in, reset,(assign parameters t, m, n, in, reset,
panic and out to the above fields)panic and out to the above fields)

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

1-Apr-08 Copyright P.H.Welch 141

new Sample (t, in, reset, new Sample (t, in, reset, a.outa.out()),()),
new Monitornew Monitor (m, (m, a.ina.in(), panic, (), panic, b.outb.out()),()),
new Decide (n, new Decide (n, b.inb.in(), out)(), out)

new CSProcess[] {new CSProcess[] {

}}

Actuator (t, m, n)

in out

panicreset

Monitor (m) Decide (n)Sample (t)

public void run ()public void run ()

}}

new Parallel (new Parallel (

).run ();).run ();

final One2OneChannel a = Channel.One2One ();final One2OneChannel a = Channel.One2One ();
final One2OneChannel b = Channel.One2One ();final One2OneChannel b = Channel.One2One ();

aa bb

Computing Laboratory 4/1/2008

Title goes here 48

1-Apr-08 Copyright P.H.Welch 142

We may set an array of We may set an array of booleanboolean prepre--conditionsconditions on on
any of the any of the selectselect operations of an operations of an AlternativeAlternative::

The The dependsdepends array must have the same length as array must have the same length as
the the GuardGuard array to which the array to which the altalt is bound.is bound.

The The dependsdepends array, set at runarray, set at run--time, time, enables/disablesenables/disables
the guards at corresponding indices. If the guards at corresponding indices. If depends[i]depends[i]
is is falsefalse, that guard will be ignored , that guard will be ignored -- even if even if readyready. .
This gives considerable flexibility to how we program This gives considerable flexibility to how we program
the willingness of a process to service events.the willingness of a process to service events.

switch (switch (alt.fairSelectalt.fairSelect (depends)) {...}(depends)) {...}

Pre-conditioned AlternationPre-conditioned Alternation

1-Apr-08 Copyright P.H.Welch 143

Shared ChannelsShared Channels
So far, all our channels have been pointSo far, all our channels have been point--toto--point, point,
zerozero--buffered and buffered and synchronisedsynchronised (i.e. standard (i.e. standard CSPCSP
primitives);primitives);

JCSPJCSP also offers multialso offers multi--way shared channels (in the way shared channels (in the
style of style of occamoccam--ππ););

JCSPJCSP also offers buffered channels of various wellalso offers buffered channels of various well--
defined forms.defined forms.

1-Apr-08 Copyright P.H.Welch 144

One2OneChannelOne2OneChannel

Any2OneChannelAny2OneChannel

Computing Laboratory 4/1/2008

Title goes here 49

1-Apr-08 Copyright P.H.Welch 145

One2AnyChannelOne2AnyChannel

Any2AnyChannelAny2AnyChannel

No ALTing!

1-Apr-08 Copyright P.H.Welch 146

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

One2OneChannelOne2OneChannel

public public ChannelOutputChannelOutput out ()out ()
public public AltingChannelInputAltingChannelInput in ()in ()

The abstract class AltingChannelInput extends the abstract class
Guard and implements the interface ChannelInput.
TheThe abstract classabstract class AltingChannelInputAltingChannelInput extendsextends thethe abstract classabstract class
GuardGuard andand implementsimplements thethe interfaceinterface ChannelInputChannelInput..

1-Apr-08 Copyright P.H.Welch 147

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

Any2OneChannelAny2OneChannel

public public SharedChannelOutputSharedChannelOutput out ()out ()
public public AltingChannelInputAltingChannelInput in ()in ()

The interface SharedChannelOutput extends the interface
ChannelOutput. It may be safely shared by internal processes.
TheThe interfaceinterface SharedChannelOutputSharedChannelOutput extendsextends thethe interfaceinterface
ChannelOutputChannelOutput. It may be safely shared by internal processes.. It may be safely shared by internal processes.

Computing Laboratory 4/1/2008

Title goes here 50

1-Apr-08 Copyright P.H.Welch 148

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

One2AnyChannelOne2AnyChannel

public public ChannelOutputChannelOutput out ()out ()
public public SharedChannelInputSharedChannelInput in ()in ()

The interface SharedChannelInput extends the interface
ChannelInput. It may be safely shared by internal processes.
TheThe interfaceinterface SharedChannelInputSharedChannelInput extendsextends thethe interfaceinterface
ChannelInputChannelInput. It may be safely shared by internal processes.. It may be safely shared by internal processes.

1-Apr-08 Copyright P.H.Welch 149

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputChannelInput

public Object read ()public Object read ()

ChannelOutputChannelOutput

public void write (Object o)public void write (Object o)

Any2AnyChannelAny2AnyChannel

public public SharedChannelOutputSharedChannelOutput out ()out ()
public public SharedChannelInputSharedChannelInput in ()in ()

Neither interface SharedChannelInput nor SharedChannelOutput
may be used for ALTing.
NeitherNeither interfaceinterface SharedChannelInputSharedChannelInput nornor SharedChannelOutputSharedChannelOutput
may be used for may be used for ALTingALTing..

1-Apr-08 Copyright P.H.Welch 150

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputIntChannelInputInt

public public intint read ()read ()

One2OneChannelIntOne2OneChannelInt

public public ChannelOutputIntChannelOutputInt out ()out ()
public public AltingChannelInputIntAltingChannelInputInt in ()in ()

ChannelOutputIntChannelOutputInt

public void write (public void write (intint i)i)

The abstract class AltingChannelInputInt extends the abstract
class Guard and implements the interface ChannelInputInt.
TheThe abstract classabstract class AltingChannelInputIntAltingChannelInputInt extendsextends thethe abstract abstract
classclass GuardGuard andand implementsimplements thethe interfaceinterface ChannelInputIntChannelInputInt..

Computing Laboratory 4/1/2008

Title goes here 51

1-Apr-08 Copyright P.H.Welch 151

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

ChannelInputIntChannelInputInt

public public intint read ()read ()

ChannelOutputIntChannelOutputInt

public void write (public void write (intint i)i)

Any2OneChannelIntAny2OneChannelInt

public public SharedChannelOutputIntSharedChannelOutputInt out ()out ()
public public AltingChannelInputIntAltingChannelInputInt in ()in ()

The interface SharedChannelOutputInt extends the interface
ChannelOutputInt. It may be safely shared by internal processes.
TheThe interfaceinterface SharedChannelOutputIntSharedChannelOutputInt extendsextends thethe interfaceinterface
ChannelOutputIntChannelOutputInt. It may be safely shared by internal processes.. It may be safely shared by internal processes.

1-Apr-08 Copyright P.H.Welch 152

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

One2AnyChannelIntOne2AnyChannelInt

public public ChannelOutputIntChannelOutputInt out ()out ()
public public SharedChannelInputIntSharedChannelInputInt in ()in ()

The interface SharedChannelInputInt extends the interface
ChannelInputInt. It may be safely shared by internal processes.
TheThe interfaceinterface SharedChannelInputIntSharedChannelInputInt extendsextends thethe interfaceinterface
ChannelInputIntChannelInputInt. It may be safely shared by internal processes.. It may be safely shared by internal processes.

ChannelInputIntChannelInputInt

public public intint read ()read ()

ChannelOutputIntChannelOutputInt

public void write (public void write (intint i)i)

1-Apr-08 Copyright P.H.Welch 153

Channel Interfaces in JCSP 1.1Channel Interfaces Channel Interfaces inin JCSP 1.1JCSP 1.1

Any2AnyChannelIntAny2AnyChannelInt

public public SharedChannelOutputIntSharedChannelOutputInt out ()out ()
public public SharedChannelInputIntSharedChannelInputInt in ()in ()

Neither interface SharedChannelInputInt nor
SharedChannelOutputInt may be used for ALTing.
NeitherNeither interfaceinterface SharedChannelInputIntSharedChannelInputInt nornor
SharedChannelOutputIntSharedChannelOutputInt may be used for may be used for ALTingALTing..

ChannelInputIntChannelInputInt

public public intint read ()read ()

ChannelOutputIntChannelOutputInt

public void write (public void write (intint i)i)

Computing Laboratory 4/1/2008

Title goes here 52

1-Apr-08 Copyright P.H.Welch 154

Graphics and GUIsGraphics and GUIs

jcsp.awt = java.awt + channels

GUI events channel communications

Widget configuration channel communications

Graphics commands channel communications

(String)
event

configure
(String)

(Boolean)
(Poison)

(Configure)

keyEvent
(KeyEvent)

focusEvent
(FocusEvent)

mouseEvent
(MouseEvent)

mouseMotionEvent
(MouseEvent)

componentEvent
(ComponentEvent)

ActiveButtonActiveButton

java.awt.events

shortcuts

general
purpose

displayList

(GraphicsCommand)

toGraphics
(GraphicsProtocol)

fromGraphics
(Object)

keyEvent
(KeyEvent)

focusEvent
(FocusEvent)

mouseEvent
(MouseEvent)

mouseMotionEvent
(MouseEvent)

componentEvent
(ComponentEvent)

ActiveCanvasActiveCanvas

java.awt.events

general
drawing

house-keeping
(e.g. size?)

Computing Laboratory 4/1/2008

Title goes here 53

1-Apr-08 Copyright P.H.Welch 157

InfectionInfection

1-Apr-08 Copyright P.H.Welch 158

idid

pseudoButton

InfectionInfection

?
?

infection canvas

infectionControl

randomcentre reset freeze

rateinfo

1-Apr-08 Copyright P.H.Welch 159

MandelbrotMandelbrot

Computing Laboratory 4/1/2008

Title goes here 54

1-Apr-08 Copyright P.H.Welch 160

MandelbrotMandelbrot

1-Apr-08 Copyright P.H.Welch 161

MandelbrotMandelbrot

...

farmer

harvester

graphics

mouseMovement

key
mouse

displayList

control

cancel

>>>

<<<

top

scale

left

canvas

scrolling

iterations

target

colours

1-Apr-08 Copyright P.H.Welch 162

R
E
C
A
L
L

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

… nuclear … human … astronomic ...

Computing Laboratory 4/1/2008

Title goes here 55

1-Apr-08 Copyright P.H.Welch 163

Good News!Good News!
The good news is that we can worry about
each process on its own. A process interacts
with its environment through its channels. It
does not interact directly with other processes.

Some processes have serial implementations -
these are just like traditional serial programs.

Our skills for serial logic sit happily
alongside our new skills for concurrency -
there is no conflict. This will scale!

Some processes have parallel implementations -
networks of sub-processes.

R
E
C
A
L
L

1-Apr-08 Copyright P.H.Welch 164

Other WorkOther Work
A CSP model for the Java monitor mechanisms
(synchronized, wait, notify, notifyAll)
has been built.
This enables any Java threaded system to be
analysed in CSP terms - e.g. for formal verification
of freedom from deadlock/livelock.
Confidence gained through the formal proof of
correctness of the JCSP channel implementation:

a JCSP channel is a non-trivial monitor - the CSP model for
monitors transforms this into an even more complex system
of CSP processes and channels;
using FDR, that system has been proven to be a refinement
of a single CSP channel and vice versa - Q.E.D.

1-Apr-08 Copyright P.H.Welch 165

Other WorkOther Work
Higher level synchronisation primitives (e.g. JCSP
CALL channels, barriers, buckets, …) that capture
good patterns of working with low level CSP events.
Proof rules and design tool support for the above.
CSP kernels and their binding into JVMs to support
JCSP.
Communicating Threads for Java (CTJ):

this is another Java class library based on CSP principles;
developed at the University of Twente (Netherlands) with
special emphasis on real-time applications - it’s excellent;
CTJ and JCSP share a common heritage and reinforce each
other’s on-going development - we do talk to each other!

Computing Laboratory 4/1/2008

Title goes here 56

1-Apr-08 Copyright P.H.Welch 166

Distributed JCSP.netDistributed JCSP.net
Network channels + plus simple brokerage service
for letting JCSP systems find and connect to each
other transparently (from anywhere on the Internet).
Virtual channel infrastructure to support this. All
application channels auto-multiplexed over single
(auto-generated) TCP/IP link between any two JVMs.
Channel Name Server (CNS) provided. Participating
JCSP systems just need to know where this is. More
sophisticated brokers are easily bootstrapped on top
of the CNS (using JCSP).
Killer Application Challenge:

second generation Napster (no central control or database) …

1-Apr-08 Copyright P.H.Welch 167

SummarySummary
WYSIWYGWYSIWYG PlugPlug--nn--PlayPlay

CSP has a compositional semantics.

CSP concurrency can simplify design:
data encapsulation within processes does not break down
(unlike the case for objects);
channel interfaces impose clean decoupling between
processes (unlike method interfaces between objects).

JCSP enables direct Java implementation of CSP
design.

1-Apr-08 Copyright P.H.Welch 168

SummarySummary
CSP kernel overheads are sub-100-nanosecond
(KRoC/CCSP). Currently, JCSP depends on the
underlying Java threads/monitor implementation.
Rich mathematical foundation:

20 years mature - recent extensions include simple priority
semantics;
higher level design rules (e.g. client-server, resource
allocation priority, IO-par) with formally proven guarantees
(e.g. freedom from deadlock, livelock, process starvation);
commercially supported tools (e.g. FDR).

We don’t need to be mathematically sophisticated
to take advantage of CSP. It’s built-in. Just use it!

Computing Laboratory 4/1/2008

Title goes here 57

1-Apr-08 Copyright P.H.Welch 169

SummarySummary
Process Oriented Design (processes, syncs,
alts, parallel, layered networks).
WYSIWYG:

each process considered individually (own data, own control
threads, external synchronisation);
leaf processes in network hierarchy are ordinary serial
programs - all our past skills and intuition still apply;
concurrency skills sit happily alongside the old serial ones.

Race hazards, deadlock, livelock, starvation
problems: we have a rich set of design patterns,
theory, intuition and tools to apply.

1-Apr-08 Copyright P.H.Welch 170

ConclusionsConclusions
We are not saying that Java’s threading
mechanisms need changing.
Java is sufficiently flexible to allow many
concurrency paradigms to be captured.
JCSP is just a library - Java needs no language
change to support CSP.
CSP rates serious consideration as a basis for any
real-time specialisation of Java:

quality (robustness, ease of use, scalability, management of
complexity, formalism);
lightness (overheads do not invalidate the above benefits -
they encourage them).

1-Apr-08 Copyright P.H.Welch 171

AcknowledgementsAcknowledgements
Paul Austin - the original developer of JCSP
(p_d_austin@hotmail.com).

Andy Bakkers and Gerald Hilderink - the CTJ library
(bks@el.utwente.nl, G.H.Hilderink@el.utwente.nl).

Jeremy Martin - for the formal proof of correctness of the
JCSP channel (Jeremy.Martin@comlab.ox.ac.uk)

Nan Schaller (ncs@cs.rit.edu), Chris Nevison
(chris@cs.colgate.edu) and Dyke Stiles
(dyke.stiles@ece.usu.edu) - for pioneering the teaching.

The WoTUG community - its workshops, conferences and
people.

Computing Laboratory 4/1/2008

Title goes here 58

1-Apr-08 Copyright P.H.Welch 172

URLsURLs

www.cs.ukc.ac.uk/projects/ofa/jcsp/

www.rt.el.utwente.nl/javapp/

www.cs.ukc.ac.uk/projects/ofa/java-threads/

www.comlab.ox.ac.uk/archive/csp.html

www.cs.ukc.ac.uk/projects/ofa/kroc/

wotug.ukc.ac.uk/

CSP

JCSP

CTJ

KRoC

java-threads@ukc.ac.uk

WoTUG

1-Apr-08 Copyright P.H.Welch 173

Stop PressStop Press

www.quickstone.com
JCSP.netJCSP.net

JCSP Networking EditionJCSP Networking Edition

