Integrating
and

Extending JCSP

Peter Welch, Neil Brown (University of Kent)
James Moores
Kevin Chalmers (Napier University)
Bernhard Sputh (University of Aberdeen)

CPA 2007, University of Surrey (10™- July, 2007)




Talk roadmap

History ...
EXplicit channel "ends” ...
Alting barriers ...

Qu'tpu't guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



1996: Java Threads Workshop (= JCSP, CTJ ...)

A4
1997:. JCSP 0.5 (early APl and logic ... )
A4
1999: JCSP 0.94 (call chans, barriers, crew, tutorials ... )
4
2001: JCSP 1.0-rc4 (major refactoring and documentation ... )

\d

2004: Quickstone JCSP Network Edition (channel
“ends” , dynamic networking ... )

2006: JCSP 1.0-rc7 (AltingBarriers, “spurious wakeup”
protection ... )

\d

2007: JCSP 1.1 (output guards, extended
rendezvous, poison ... )




Talk roadmap

History ...
Explicit channel "ends”
Alting barriers ...

Qu'tpu't guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



Channel “Ends” in occam-m

3 P out

i_".Q':

@pro?ess gets its own “ends” of its exterm

7

\

PROC P (CHAN STUFF out!, ...)
... local state
SEQ
... OInitialise state
WHILE running
SEQ
... do stuff
out ! value
... Mmore stuff

PROC Q (CHAN STUFF in?, ...)
... [local state
SEQ
... initialise state
WHILE running

SEQ
... do stuff
in ? X
... Mmore stuff




Channel “Ends” in occam-m

mss gets its own “ends” of its exterm

CHAN STUFF c: /
.= = OthW
/

PAR

other processes




Channel “Ends” in JCSP

3 P out

class P implements CSProcess { |

private final ChannelOutput out;
... other channels and local state
Each
—
public P (ChannelOutput out, ...) { _process gets
this.out = out: its own “ends”
- of its external
} channels
public void run () {...}
}




Channel “Ends” in JCSP

3 P out

class P implements CSProcess {

... external channels and local state

public P (ChannelOutput out, ...) {...}

Each
process gets
its own “ends”
of its external
channels

public void run () {
... OInitialise local state
while (running) {
... do stuff
out.write (value);
... Mmore stuff




Channel “Ends” in JCSP

Each
process gets
its own “ends”
of its external
channels

i_".Q':

class Q implements CSProcess {

=y,
private final Channellnput in;

——<-_other channels and local state

public Q (Channellnput in, ...) {
this.in = in;

}
public void run () {...}




Channel “Ends” in JCSP

Each
process gets
its own “ends”
of its external
channels

i_".Q':

class Q implements CSProcess {

... external channels and local state

\
public Q (Channellnput in, ...) {...}

public void run () {
... (Initialise local state
while (running) {
... do stuff
X = (Stuff) in.read (;
... Mmore stuff




Channel “Ends” in JCSP 1.0-rc7

=" | o=
mprocess gets “all” of its external chm

final One20neChannel ¢ = new One20neChannel ();
... other channels

new Parallel (
new CSProcess|[] {
new P (¢, ...).
new Q (c,~<..),
... other processes
}
).run ();




Channel “Ends” in JCSP 1.1

=° ° s
@?ess gets its own “ends” of its exterm

final One20neChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out (), ..
new Q (c.in Oy ...),
... other processes
}
).run ();




Class Hierarchy in JCSP 1.0-rc7

ChannelOutput

public write (Object o)

~

Channel Input

public Object read ()

~

One20neChannel

public void write (Object o)
public Object read ()

Interface

Class = |Mplements

* Ignoring Alting



Class Hierarchy in JCSP 1.0-rc7

ChannelOutput

public write (Object o)

Channel Input

public Object read ()

~

~

One20neChannel

public void write (Object o)
public Object read ()

DANGER: any process, having been given a Channel Input, can
cast it into a ChannelOutput and write to it! And vice-versa.




Class Hierarchy in JCSP 1.0-rc7

class Q implements CSProcess {
external channels and local state

public Q (Channellnput in, ...) {...}

public void run () {
.- initialise local state
whille (running) {
-.- do stuff
((ChannelOutput) in).write (value);
more stuff

}

lbqt

CRCNCUCHCRC)

DANGER: any process, having been given a Channel Input, can
cast it into a ChannelOutput and write to it! And vice-versa.



Class Hierarchy in JCSP 1.1

ChannelOutput

Channel Input

public write (Object o) public Object read ()

One20neChannel

public ChannelOutput out ()
public Channellnput In ()

NO DANGER: users see only Java interfaces. The classes behind
them are invisible, unrelated by class hierarchy and cannot be cast
into each other. Processes must be given correct channel “ends”.

* Ignoring Alting




Channel “Ends” in JCSP 1.1

=° ° s
@?ess gets its own “ends” of its exterm

final One20neChannel c = Channel.one2one ();
... other channels

new Parallel (
new CSProcess[] {
new P (c.out ),
new Q (c.in Q5 ...), channel
... other processes manufacture
3
).run O;




Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the “ends” are to be shared:

Channel .one2one () ————

Channel .any2one () M
Channel .one2any () 1 I I I I

Channel .any2any () —rLrLrLrLlJ—



Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the channels are to be buffered and, if so, how:

Channel .one2one (new Buffer (42))
Channel .any2one (new OverWriteOldestBuffer (8))
Channel .one2any (new OverFlowingBuffer (100))

Channel .any2any (new InfiniteBuffer ())



Channel Manufacture

All channels are made using static methods of the Channel class.

Decide whether the channels are poisonable and, if so, their immunity:

Channel .one2one (10) .

Immunity Level:
the channel is
Immune to
poisons up to
this strength ...

Channel .any2one (5)

Channel .one2any (1000) -

Channel .any2any (0) '



Channel Manufacture

All channels are made using static methods of the Channel class.

The channels may be buffered and poisonable:

Channel .one2one (new Buffer (42), 10)
/

buffer type

: immunity level ...
and capacity ... v




Channel Manufacture

All channels are made using static methods of the Channel class.

Arrays of channels — all kinds — may be built in one go:

Channel .one2oneArray (100)
/

buffer type

array size ... :
y and capacity ...

immunity level ...

\

SN A\ N
Channel .any2oneArray (200, new Buffer (42), 10)




Channel Manufacture

All channels are made using static methods of the Channel class.

Channels may be specialised to carry ints:
Channel .one2onelnt ()

Channel .any2onelntArray (200, new Buffer (42), 10)

In future, channels will be specialised using Java generics ...



Channel Summary

The JCSP process view and use of its external channels:

Unchanged — sees Channel Input, AltingChannel Input,
ChannelOutput, Channel Inputint, etc.

Increased safety — cannot violate “endianness” ...

A process does not (usually*) care about the kind of channel
— whether it is shared, buffered, poisonable, ...

* If a process needs to share an external channel-end

between many sub-processes, it must be given one that is
shareable — i.e. an Any end. JCSP 1.1 does cater for this.



Channel Summary

The JCSP network view of channels:

Changed — the correct channel “ends” must be extracted from
channels and plugged into the processes using them ...

Increased safety — cannot violate “endianness” ...

A wide range of channel kinds (fully synchronised, buffered,
poisonable, typed) are built from the Channel class...

JCSP processes work only with interfaces both for channels
(whatever their kind) and for channel-ends. We think this will
prove safer than providing classes.



Talk roadmap

History ...
EXplicit channel "ends” ...
Alting barriers ...

Qu'tpu't guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



Barrier Synchronisation

The existing JCSP Barrier type corresponds to a multiway
CSP event, though some higher level design patterns (such
as resignation) have been built in.

worker (0) worker (1) nEa worker (n-1)

_—

Basic CSP semantics apply. When a process synchronises
on a barrier, it blocks until all other processes enrolled on
the barrier have also synchronised. Once the barrier has
completed (i.e. all enrolled processes have synchronised),
all blocked processes are rescheduled for execution.




Barrier Synchronisation

The existing JCSP Barrier type corresponds to a multiway
CSP event, though some higher level design patterns (such
as resignation) have been built in.

worker (0) worker (1) nEa worker (n-1)

_—

However, once a process offers to synchronise on a Barrier,

it is committed. In particular, it cannot offer this as part of an
Alternative — so that it could timeout or choose another

synchronisation (e.g. a channel communication or a different
barrier) that was ready to complete! This is allowed by CSP.




Barrier Synchronisation

The existing JCSP Barrier type corresponds to a multiway
CSP event, though some higher level design patterns (such
as resignation) have been built in.

worker (0) worker (1) nEa worker (n-1)

_—

Disallowing more than one party in a synchronisation from
withdrawing an offer to synchronise ... has been a constraint
applied to all practical CSP implementations to date.

The JCSP AltingBarrier overcomes this constraint — at least
within a single JVM. It uses the fast ‘Oracle’ mechanism for
choice over multiway synchronisations (presented last year).




Alting Barriers — the User View

An AltingBarrier is represented by a family of front-ends.
Each process must use its own front-end (in the same way as
a process must use a channel via one or other channel-end).

worker (0) worker (1) I worker (n-1)

—_—

final AltingBarrier[] b = AltingBarrier.create (n);

final Worker[] workers = new Worker[n];
for (int i = 0; i < n; i++) {
workers[i] = new Worker (i, b[i]):;

}

new Parallel (workers).run ();




Alting Barriers — the User View

To offer to synchronise on an AltingBarrier, a process
simply includes its front-end in a Guard array associated with
an Alternative and invokes a select() method.

That is all !

Its index will be returned if-and-only-if all processes currently
enrolled on the AltingBarrier have made the same offer

(using their front-ends). Either all these processes select their
front-end’s index — or none do.




Alting Barriers — the User View

Two shortcuts:

If a process is able to commit to synchronise on an
AltingBarrier, it may sync() on its front-end (rather than
set up an Alternative with one Guard).

A further shortcut (over an Alternative) is provided to poll-
with-timeout its front-end for completion of the AltingBarrier.



Alting Barriers — the User View

Further front-ends to an AltingBarrier may be made from an
existing one (through expand() and contract() methods).

As for the earlier (committed-only) Barrier class, processes

may temporarily resign() from an AltingBarrier and, later,
re-enrol ().

A process may communicate a (non-resigned) AltingBarrier
front-end to another process, which must mark() it before use.

Only one process at a time may use a front-end. This is
checked!



Alting Barriers — the User View

The priSelect() method prioritises the guards locally for the
process making the offers.

Suppose process A offers alting barrier x with higher priority
than alting barrier y ... and process B offers y with higher
priority than x. It would be impossible to resolve the choice in
favour of either x or y in any way that satisfied the conflicting
requirements of A and B.



Alting Barriers — the User View

However, priSelect() is allowed for choices including barrier
guards.

It honours the respective priorities defined between non-barrier
guards.

It honours the respective priorities defined between a barrier
guard and non-barrier guards (enabling, for example, priority
response to timeouts or channel interrupts over ever-offered
barriers).

Relative priorities between barrier guards are inoperative.



Alting Barriers — the User View

The implementation guards against misuse, throwing an
AltingBarrierError when riled:

Different threads trying to use the same front-end ...

Attempt to enrol whilst enrolled ...

Attempt to use as a guard whilst resigned ...

Attempt to resign, sync, expand, contract or mark whilst resigned ...




Alting Barriers — Example

An array of gadgets control and react to an array of display
buttons.

Each gadget may configure its button with colour and text and
receives click signals if the button is pressed.

The gadgets coordinate “group actions™ with an AltingBarrier.

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget NEn gadget

% group




Alting Barriers — Example

Each gadget maintains an individual count. Each gadget has
two modes of operation, switched at any time by a click event.

In individual mode, a gadget sets its button green and
increments its count as fast as possible, displaying the value
as text upon its button.

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget SRl gadget

% group




Alting Barriers — Example

Each gadget maintains an individual count. Each gadget has
two modes of operation, switched at any time by a click event.

In group mode, a gadget sets its button red and waits for all
other gadgets to get into group mode. Whilst waiting, a click
on its button would return it to individual mode.

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

% group

gadget




Alting Barriers — Example

Each gadget maintains an individual count. Each gadget has
two modes of operation, switched at any time by a click event.

In group mode, a gadget sets its button red and waits for all
other gadgets to get into group mode. Whilst waiting, a click
on its button would return it to individual mode.

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

% group

gadget




Alting Barriers — Example

Each gadget maintains an individual count. Each gadget has
two modes of operation, switched at any time by a click event.

Whilst all are in group mode, each gadget decrements its
count in synchrony with all gadgets and as fast as possible,
displaying the value as text upon its button.

click[O] click[1] click[n-1]
configure[1] configure[n-1]

gadget gadget

% group

configure[0]

gadget




Alting Barriers — Example

Each gadget maintains an individual count. Each gadget has
two modes of operation, switched at any time by a click event.

If any gadget clicks back to individual mode, the group work
ceases.

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

% group

gadget




Play game ...




Alting Barriers — Example

click[0] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

% group

gadget




Alting Barriers — Example

public class Gadget implements CSProcess {

private final AltingChannellnput click;
private final AltingBarrier group;
private final ChannelOutput configure;

public Gadget (
AltingChannellnput click, AltingBarrier group,
ChannelOutput configure

) { .

this.click = click; click
this.group = group; configure
this.configure = configure;

} gadget

--- public void run I_t_lgroup

} i




Alting Barriers — Example

public void run ) {

final Alternative clickGroup =
new Alternative (new Guard[] {click, group}):;

final int CLICK = 0, GROUP = 1;

int count = O;

«-. individual mode

while (true) { _
click
--- group mode conﬁwﬂe‘l

) gadget

}
group




Alting Barriers — Example

{{{ individual mode
configure.write (Color.green);

whille (Iclick.pending Q) {

count++;
configure.write (String.valueOf (count));
+
click.read ();
113} click
configure

gadget

% group




Alting Barriers — Example

{{{ group mode

configure.write (Color.red);

boolean group = true;
whille (group) {

case CLICK:

offer to work with
the group

switch (clickGroup.priSelect () {

\

click.read (;
group = false;

break;
case GROUP:
count--:;

configure.write (
String.valueOf (count)
);
break;

}
¥ group work

1335

click
configure

gadget

% group




Alting Barriers — Example

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget gadget

% group

final int n = 8;

new Parallel (

)-run Q;

-. make the buttons (and its configure and click channels)
-. make the AltingBarrier (front-ends)

.. make the gadgets

new CSProcess[] {
buttons, new Parallel (gadgets)

}




Alting Barriers — Example

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

{{{ make the buttons (and its configure and click channels)
final One20neChannel[] event = Channel .one2oneArray (n);

final One20neChannel[] configure = Channel.one2oneArray (n);

final boolean horizontal = true;
final FramedButtonArray buttons = Jcsp-plughp La/y
new FramedButtonArray ( '

“"AltingBarrier: GadgetDemo'™, n, 120, n*100,
horizontal, configure, event

)
13




Alting Barriers — Example

% group

{{{ make the AltingBarrier (front-ends)

final AltingBarrier[] group = AltingBarrier.create (n);

1335




Alting Barriers — Example

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget nEa gadget

% group

{{{ make the gadgets

final Gadget[] gadgets = new Gadget[nUnits];

for (int 1 = 0; 1 < gadgets.length; i++) {
gadgets[i] = new Gadget (event[i], group[i], configure[i]);
3

1335




Alting Barriers — Example

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

% group

gadget

{{{ run everything

new Parallel (
new CSProcess[] {
buttons, new Parallel (gadgets)

}
)-run O;

1335




Alting Barriers — Example

click[O] click[1] click[n-1]
configure[0] configure[1] configure[n-1]

gadget gadget

gadget

% group

This example has only a single alting barrier. The JCSP
documentation provides many more examples — including
systems with intersecting sets of processes offering multiple
multiway barrier synchronisations (one for each set to which
they belong), together with timeouts and ordinary channel
communications. There are also some games ... © © ©.




Alting Barriers — Implementation

The fast Oracle for choice over multiway synchronisations is a
server database holding information for each barrier and for each
process enrolled on a barrier. Its decisions have time complexity
linearly dependent on the number of barriers offered — it does not
use a two-phase commit protocol.

A process atomically offers the Oracle a set of barriers with
which it is prepared to engage and blocks until the Oracle tells
It which one has been breached.

The Oracle simply keeps counts of, and records, all the offer sets
as they arrive. If a count for a particular barrier becomes complete
(i.e. all enrolled processes have made an offer), it informs the
lucky waiting processes and atomically withdraws all their other
offers — before considering any new offers.



Alting Barriers — Implementation

For JCSP, the Oracle mechanism needs adapting to allow
processes to make offers to synchronise that include all varieties
of Guard — not just AltingBarriers.

The logic of the single Oracle process is also distributed to work

with the usual enable/disable sequences implementing the select
methods invoked on Alternative. These sequences already

record all the offers that have been made — so we just need to
maintain countdowns for each AltingBarrier.

The techniques used here for JCSP carry over to a similar notion
of alting barriers for an extended occam-Tr.



Alting Barriers — Implementation

The AltingBarrier.create(n) method first constructs a

hidden base object — the actual alting barrier — before
constructing and returning the array of AltingBarrier front-

ends. These front-ends reference the base and are chained
together. The base object is not shown to JCSP users and holds
the first link to the chain of front-ends.

___— AB front-end
AB base % -

int nEnrolled .___— | ABfront-end

Int nOffersLeft

bool enable (O

ool disable () — | 1
AB front-end




Alting Barriers — Implementation

The AltingBarrier front-ends delegate their enable() and
disable() to the base. The base enable() decrements its
nOffersLeft count and, if zero, resets it to nEnrol led and
returns true. The disable() returns true if nOffersLeft
equals nEnrol led - otherwise, it increments nOffersLeft
and returns false.

___—— AB front-end
AB base % -

int nEnrolled .___— | ABfront-end

Iint nOffersLeft

bool enable (O

bool disable () — | 1
AB front-end




Alting Barriers — Implementation

For the Oracle logic to work, each full offer set from a process to
all its guards must be handled automically.

A global lock, therefore, must be obtained and held throughout
any enable sequence involving an AltingBarrier.

___— AB front-end
AB base % -

int nEnrolled .___— | ABfront-end

Iint nOffersLeft

bool enable (O e
|

bool disable (O \
AB front-end




Alting Barriers — Implementation

For the Oracle logic to work, each full offer set from a process to
all its guards must be handled automically.

A global lock, therefore, must be obtained and held throughout
any enable sequence involving an AltingBarrier.

If the enables all fail, the lock must be released before the alting
process blocks.

If a barrier enable succeeds, the barrier is complete and selected —
ignoring any higher priority guards that may become enabled later.
The lock must continue to be held throughout the consequent
disable sequence and throughout the disable sequences of all the
other processes that are enrolled on this barrier (triggered by the
successful enable). This lock needs to be a counting semaphore.

Disable sequences (triggered by the successful non-barrier enable)
do not need to acquire this lock — even if an AltingBarrier

guard is in the list.



Alting Barriers — Implementation

The logic required for a correct implementation of CSP external
choice is never easy ...

The JCSP version just for channel input synchronisation required
formalising and model checking before we got it right.

Our implementation has not (yet) been observed to break under
stress testing, but we shall not feel comfortable until this has been
repeated for these multiway events. Full LGPL source codes are
available from the JCSP website.



Talk roadmap

History ...
EXplicit channel "ends” ...
Alting barriers ...

Qu't;ur guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



Output Guards

Channel output guards were not supported by CSP languages or
libraries for the same reason that general multiway sync guards
were not supported — they enable more than one party to a
synchronisation to withdraw, which spoils implementation via
simple handshake.

One20neChannel + AltingBarrier
= SymmetricOne20neChannel

A SymmetricOne20neChannel is the same as an ordinary
One20neChannel — except that both its input and output ends
may be offered as guards in an ALT.

However:




Output Guards

One20neChannel + AltingBarrier
= SymmetricOne20neChannel

A SymmetricOne20neChannel consists of a One20neChannel
and an alting barrier with two front-ends (Al tingBarriers)—one
for the input-end of the channel and one for the output-end.

Offering the input-end of the channel simply means offering to
synchronise on the input-end AltingBarrier. If selected, the
read() operation is then delegated to the One20neChannel.

Offering the output-end of the channel simply means offering to
synchronise on the output-end Al tingBarrier. If selected, the
write() operation is then delegated to the One20neChannel.



Output Guards

One20neChannel + AltingBarrier
= SymmetricOne20neChannel

A SymmetricOne20neChannel consists of a One20neChannel
and an alting barrier with two front-ends (Al tingBarriers)—one
for the input-end of the channel and one for the output-end.

A non-alting (i.e. committed) read() or write() operation must

still be prefixed by a (committed) synchronisation on the alting
barrier — because neither side knows whether the other party is
actually committed!

This is a direct application of ideas and theorems proven in Alistair
McEwan’s thesis (and presented at CPA 2005).




Talk roadmap

History ...
EXplicit channel "ends” ...
Alting barriers ...

Qu'tpu't guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



Standard Communication

Data

Writer )—Gﬁ Reader




Extended Rendezvous

Data

Writer )—Gﬁ Reader

Extended
Action




Extended Rendezvous API

Channel I nput has two new methods:

Object startRead();
void endRead();

_ Extended
For example: (::::;;;“;;\j:::)
Object x = cO.startRead();
System.out.printin(x);
cl.write(®);
c0.endRead();




Buffered Extended Rendezvous

» Extended rendezvous is now allowed on buffered
channels.

= FIFO
startRead() only “peeks” on FIFO buffers

endRead() then removes

= Qverwriting
startRead() gets and removes
endRead()  does nothing



Talk roadmap

History ...
EXplicit channel "ends” ...

Alting barriers ...

Qu'tpu't guaras ...

networking) ...

16-Feb-09 Copyright P.H.Welch



Poison

» Used for terminating process networks.

» Poison renders a channel unusable ...
¢ No antidote

« Attempting to use a poisoned channel throws a
poison exception in the using process ...
¢ Normal action on catching a poison exception:
= Poison all channel-ends
= Terminate



Poison Propagation




Poison

= JCSP introduces poison strength and channel immunity

¢ Each channel-end has a level of immunity:
= |t only succumbs to poison stronger than its immunity
- Used to contain network poisoning within sub-regions

¢ Poison strength propagates throughout network:

= Normally, a process poisons with the strength of the poison in
the channel it tried to use.

« This can result in non-deterministic behaviour if two (or more)
wave fronts of poison are spreading at the same time.

- Propagation may depend on the strength of the poison wave
front that hits a process first.



Poison Non-determinism

Here’s a happy system ...

_ 2 A e X Y B

The channels are labelled with their immunity levels ...



Schedule 1: all are poisoned

Poison (strength 10) hits B, then X, then Y ... all terminate.

Then, poison (strength 5) hits A ... but no further (X is dead).

Poison, str 10

|

7

0 0 0 0
B

The channels are labelled with their immunity levels ...



Schedule 2: one survives

Poison (strength 5) hits A, then X ... but can’t reach Y.

Then, poison (strength 10) hits B ... but no further (X is dead).

Y

Poison, str 10
1
0 0 0 0
_ B

The channels are labelled with their immunity levels ...




Poison API

s Channel-ends have a new method:
¢ void poison (int strength)

= All other channel methods may now throw a
PoisonException

¢ only if poisoned channels are used (not mandatory)
¢ PoisonException has a getStrength() method

» Implementation uses Sputh’s algorithm.



Poison, Buffered Channels

Reader

Writer




Poison, Buffered Channels

Reader

Poison

Writer




Poison, Buffered Channels

Reader

Writer




Poison, Buffered Channels

Poison

Writer

Reader




Talk roadmap

History ...
EXplicit channel "ends” ...

Alting barriers ...

Qu'tpu't guaras ...

Poison ...

Future (broadcast channels, generics, networking) ...

16-Feb-09 Copyright P.H.Welch



Broadcast Channels

= One-to-many channels

= Implemented with a write phase, then read phase:
¢ enforced by barrier synchronisation.

Writer \

Data
Reader A M

Reader B /

A




Broadcast Channels

= ALTing should be possible (via ALTing Barriers)

- Poison needs more work
¢ Need to make barriers poisonable

Writer \

Data
Reader A M

Reader B /

A




Java 1.5

Channels could use generics
¢ like C++CSP’s templated channels

New java.util.concurrent package

¢ has channel-like objects
= but no ALTing!

¢ has a barrier object
- but no dynamic enrollment / resignation
= or ALTing

¢ has very low level atomic operations (e.g. CAS)
+ consider re-implementing JCSP sync primitives using these
- may win some performance



Networking

» Networked barriers
¢ currently only supported within a single JVM

= Networked ALTing barriers

¢ distribute the Oracle structures?
- implies network traffic for each enable/disable ®
¢ use correct two-phase commit protocol
- may imply as much network traffic as above ®
= plus cancelation overheads ®
¢ combine local Oracle logic with the two-phase commit
+ fast local synchronisation with secure global synchronisation
- imposing network traffic only when local syncs complete
+ tricky !!!



Summary

Class re-organisation (internal), channel-ends, new API
(for channel creation)

ALTing barriers
¢ Symmetric channels (output guards)

Extended Rendezvous
Poison

Network integrated and extended (JCSP 1.1) released

See paper for attribution and thanks (lots!)



Resolution Oracle: occam-m

ask

P(0)

PROTOCOL ORACLE.

D e
PROTOCOL ", W - OFFER:
A\ _——

PROC OBILE []ENROLLED enrolled,
CHAN ORACLE.ASK ask?, X

1
[ICHAN ORACLE.ANS ans!) \__|

the chosen event

\

\

setup care needed




