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Abstract. This paper presents the extended and re-integrated JCSP library of CSP
packages for Java. It integrates the differing advances made by Quickstone’s JCSP
Network Edition and the“core” library maintained at Kent. A more secure API
for connecting networks and manipulating channels is provided, requiring signifi-
cant internal re-structuring. This mirrors developments in theoccam-pi language for
mandated direction specifiers on channel-ends. For JCSP, promoting the concept of
channel-ends to first-class entities has both semantic benefit (the same as foroccam-
pi) and increased safety. Major extensions includealting barriers (classes support-
ing external choice over multiple multi-way synchronisations), channeloutput guards
(straightforward once we have the alting barriers), channelpoisoning(for the safe and
simple termination of networks or sub-networks) andextended rendezvouson channel
communications (that simplify the capture of several useful synchronisation design
patterns). Almost all CSP systems can now be directly captured with the new JCSP.
The new library is available under the LGPL open source license.
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Introduction

JCSP (Communicating Sequential Processes for Java1) [1,2,3,4] is a library of Java packages
providing a concurrency model that is a judicious combination of ideas from Hoare’s CSP
[5] and Milner’s π-calculus [6]. It follows many of the principles ofoccam-π [7,8,9,10],
exchanging compiler enforced security for programmer checked rules, losing some ultra-low
process management overheads but winning the model for a mainstream programming lan-
guage. Along with CTJ [11], JCSP is the forerunner of similar libraries for other environ-
ments – such as C++CSP [12], CTC++ [13] and the .NET CSP implementations [14,15].

JCSP enables the dynamic and hierarchic construction of process networks, connected
by and synchronising upon a small set of primitives – such as message-passing channels and
multiway events. Each process manages its own state and engages in patterns of communi-
cation with its environment (represented by channels, barriers etc.) that can be formally con-
tracted (in CSP). Each process is independently constructed and tested without concern for
multiprocessing side-effects – there is no need for locking mechanisms. In this way, our long
developed skills forsequentialdesign and programming transfer directly intoconcurrentde-
sign and programming. Whole system (multiprocessing) behaviour yields no surprises and
can be analysed for bad behaviour (e.g. deadlock) formally, with the option of assistance from
automated model checkers (such as FDR [16]). The model works unchanged whether the
concurrency isinternal to a single machine (including multicore architectures) ordistributed
across many machines (including workstation clusters and the Internet).

1Java is a trademark of Sun Microsystems
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JCSP is analternativeconcurrency model to the threads and monitor mechanisms built
into Java. It is alsocompatiblewith it – indeed, it is currently implemented on top of it! With
care, the two models can profitably be mixed2. Java 1.5 includes a whole new set of concur-
rency primitives – some at a very low level (e.g. theatomicswaps and counts). These also
provide an alternative to threads and monitors. Depending on the relative overheads between
the 1.5 and classical methods, it may be worthwhile re-implementing JCSP on the lowest
level 1.5 primitives. Meanwhile, we are confident in the current implementation, which has
been formalised and model checked [17].

JCSP was developed following WoTUG’sJava Threads Workshop[18] in 1996. Using
ideas kicked around at that workshop [19], the first library (JCSP 0.5, [20]) was designed and
put together by Paul Austin, a Masters student at Kent, some time in 1997. It has been under
continuous development ever since by a succession of undergraduate/Masters/PhD students
(Neil Fuller, Joe Aldous, John Foster, Jim Moores, David Taylor, Andrew Griffin) together
with the present authors. A major undertaking was the spin-off ofQuickstone Technologies
Limited(QTL), that crafted the JCSP Network Edition. This enables the dynamic distribution
of JCSP networks across any network fabric, with no change in semantics (compared with
a single JVM version) – only a change in performance and the size of the system that can
be run. Sadly, QTL is no more – but its work survives and is being re-integrated with the
core version (which had made several independent advances, some reported here) to form the
LGPL open-source new JCSP 1.1 release.

JCSP was designed for use with anything above and including Java 1.1. This compati-
bility with Java 1.1 has been maintained up to the currentcore release: JCSP 1.0-rc7. Given
that most modern mobile devices support at least Java 1.3, we may relax this self-imposed
constraint (and start, for example, using collection classes in the revised implementation).
Other new mechanisms available in Java 1.5 (e.g.generics) and their binding into the future
of JCSP are discussed in section 6.

In section 1 of this paper, we describe and motivate small changes in API and the re-
factoring of the channel classes and interfaces resulting from the merger of the JCSP Net-
work Edition and JCSP 1.0-rc7. Section 2 presents thealting barriers that are completely
new for JCSP, together with some implementation details. Section 3 shows how these facil-
itate channels that allowoutput guardsin external choice (alting). The addition ofextended
rendezvousto JCSP is given in section 4, including how this works with buffered channels of
various kinds. Section 5 presents the addition of channel poisoning for the safe and simple
termination of networks (or sub-networks). Finally, Section 6 considers opportunities for the
future of JCSP.

1. Class Restructure

1.1. JCSP 1.0-rc7

In JCSP 1.0-rc7, there are two interfaces for channel-ends:ChannelInput andChannelOutput.
There is also the abstract classAltingChannelInput, which extends the abstract classGuard3

and the interfaceChannelInput and enables channels to be used asinput guardsin external
choice (alting). All this remains in JCSP 1.1.

2For straightforwardmanagement of a shared resource, we have sometimes employed direct visibility with
synchronized blocks to serialise access – rather than accept the overheads of a very simple server process.
For more sophisticated management, we would always use a process. Using and reasoning about an object’s
wait, notify andnotifyAll methods should be avoided at all costs!

3This defines a publictypewith a set of method headers visible and used only withinorg.jcsp.lang –
sadly, Java does not permit such things in aninterface.
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JCSP 1.0-rc7 channel classes, such asOne2OneChannel, implement theAltingChannelInput
and ChannelOutput classes/interfaces and all the corresponding methods. Processes take
channel-end types, such asChannelOutput or AltingChannelInput, as arguments to their con-
structor. Actual channel instances are passed directly to these constructors – with Java im-
plicitly casting them down to the expected interface types.

This structure allows misuse: a process, having been given aChannelInput, can cast it to a
ChannelOutput – and vice-versa! Such tricks do enable a channel to be used in both directions,
but would probably lead to tears. They are prevented in JCSP 1.1.

Classical zero-buffered fully synchronising channels are provided along with a variety
of buffered versions (blocking, overwriting, overflowing). Zero-buffered channels are imple-
mented with a different (and faster) logic than the buffered ones. A memory inefficient feature
of the JCSP 1.0-rc7 implementation is that the buffered channelssub-classthe zero-buffered
classes, although that is not relevant (or visible) to the API. So, buffered classes retain fields
relevant only to the unused superclass logic. This does not happen in JCSP 1.1.

1.2. JCSP Network Edition

In the JCSP Network Edition, the channel-end interfaces and abstract classes are the same
as above. There are also extended interfaces,SharedChannelInput andSharedChannelOutput,
that do not reveal any extra functionality but indicate that the given channel-end can be safely
shared (internally) between multiple concurrent sub-processes. Channels with unshared ends,
such asOne2OneChannel, cannot be plugged into them.

A significant change is that channels, such asOne2OneChannel andAny2OneChannel, are
now interfaces(notclasses) with two methods:in() for extracting the reading-end andout()
for the writing-end. Implementations of these channel-end interfaces are package-only known
classes returned bystaticmethods of theChannel class (or actual instances ofclass factories,
such asStandardChannelFactory).

In fact, those package-only known channel-end implementing classes are the same as
the package-only known classes implementing channels – so, processes can still cast channel
inputs to outputs and vice-versa!

1.3. JCSP 1.1

JCSP 1.1 merges the two libraries. Channel-end interfaces and abstract classes remain the
same. Channels themselves are interfaces, as in the JCSP Network Edition. This time, how-
ever, channel-end implementations are package-only known classes thatdelegatetheir meth-
ods todifferentpackage-only known classes implementing the channels. Further, the input-
end implementing classes are different from the output-end classes. So, input-ends and
output-ends can no longer be cast into each other. Apart from this improvement in security,
the change is not apparent and the API remains the same as that for JCSP Network Edition.

Users of the library are only exposed to interfaces (or abstract classes) representing the
functionality of channels and channel-ends. Implementation classes are completely hidden.
This also allows for easier future changes without affecting the visible API.

1.4. Using Channels from within a Process

The JCSPprocessview of its external channels is unchanged. Here is a simple, butfair,
multiplexor:

public final class FairPlex implements CSProcess {

private final AltingChannelInput[] in;
private final ChannelOutput out;
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public FairPlex (AltingChannelInput[] in, ChannelOutput out) {
this.in = in;
this.out = out;

}

public void run () {
final Alternative alt = new Alternative (in);
while (true) {

final int i = alt.fairSelect ();
out.write (in[i].read ());

}
}

}

1.5. Building Networks of Processes

To build a network, channels must be constructed and used to wire together (concurrently
running) process instances. In JCSP 1.0-rc7, channels were directly plugged into processes.
Now, as inoccam-π and the JCSP Network Edition, we must specify whichendsof each
channel to use.

All channels are now constructed usingstatic methods of theChannel class (or an in-
stance of one the specialist channel factories):

final One2OneChannel[] a = Channel.one2oneArray (N); // an array of N channels
final One2OneChannel b = Channel.one2one (); // a single channel

Here is a network consisting of an array ofGenerator processes, whose outputs are mul-
tiplexed throughFairplex to aConsumer process4. They are connected using the above chan-
nels:

final Generator[] generators = new Generator[N];
for (int i = 0; i < N; i++) {
generators[i] = new Generator (i, a[i].out ());

}

final FairPlex plex = new FairPlex (Channel.getInputArray (a), b.out ());

final Consumer consumer = new Consumer (b.in ());

new Parallel (new CSProcess[] {new Parallel (generators), plex, consumer}).run ();

In JCSP 1.0-rc7, the actual channels (a andb) are passed to the process constructors.
Now, we must pass the correctends. The input-endof a channel is extracted using the
in() method; theoutput-endusingout()5. FairPlex needs an array of channelinput-ends,
which we could have constructed ourselves, applyingin() to the individual channel ele-
ments. However, this is simplified through thestatic helper methods,getInputArray() and
getOutputArray(), provided by theChannel factory.

4This example is to illustrate the use of channels, including channel arrays, in network construction. If we
really only need fair and straightforward multiplexing of individual messages, it would be much simpler and
more efficient to connect the generators directly to the consumer using a singleAny2OneChannel.

5These correspond to thedirection specifiers(? and!) mandated byoccam-π. The method namesin() and
out() must be interpreted from the point of view of theprocess– not thechannel. The input-endis the end
of the channel from which a process inputs messages –not the end of the channel into which message are put.
JCSP is aprocess-orientedmodel and our terms are chosen accordingly.
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2. Alting Barriers

JCSP has long provided aBarrier class, on which multiple processes can be enrolled. When
one process attempts tosynchroniseon a barrier, it blocks untilall enrolled processes do
the same thing. When the last arrives at the barrier,all processes are released. They allow
dynamic enrollment and resignation, following mechanisms introduced intooccam-π [8,21].

This corresponds to fundamental multiwayevent synchronisationin CSP. However, al-
though CSP allows processes to offer multiway events as part of anexternal choice, JCSP
does not permit this forBarrier synchronisation. Once a process engages with aBarrier, it
cannot back off (e.g. as a result of a timeout, an arriving channel communication or another
barrier). The reason is the same as whychannel output guardsare not allowed. Onlyoneparty
to any synchronisation is allowed to withdraw (i.e. to use that synchronisation as a guard in
external choice –alting). This enables event choice to be implemented with a simple (and
fast)handshakefrom the party making the choice to its chosen partner (who is committed to
waiting). Relaxing this constraint implies resolving a choice on which all parties must agree
and from which anyone can change their mind (after initially indicating approval). In general,
this requires atwo-phase commitprotocol, which is costly and difficult to get right [22].

This constraint has been universally applied in all practical CSP implementations to date.
It means that CSP systems involving external choice over multiway events cannot, generally,
be directly executed. Instead, those systems must be transformed (preserving their semantics)
into those meeting the constraints – which means adding many processes and channels to
manage the necessary two-phase commit.

JCSP 1.0-rc7 and 1.1 introduce theAltingBarrier class that overcomes that constraint,
allowing multiple barriers to be included in the guards of anAlternative – along with skips,
timeouts, channel communications andcall channel accepts. Currently, this is supported only
for a single JVM (which can be running on a multicore processor). It uses afastimplementa-
tion that is not a two-phase commit. It has overheads that are linear with respect to the num-
ber of barrier offers being made. It is based on theOraclemechanism described at [23,24,25]
and summarised in section 2.5.

2.1. User View of Alting Barriers

An alting barrier is represented by a family ofAltingBarrier front-ends. Each process using
the barrier must do so via its own front-end – in the same way that a process uses a channel via
its channel-end. A new alting barrier is created by thestatic create method, which returns
an array of front-ends – one for each enrolled process. If additional processes need later to be
enrolled, further front-ends may be made from an existing one (throughexpand andcontract
methods). As with the earlierBarrier class, processes may temporarilyresign from a barrier
and, later, re-enrol.

To use this barrier, a process simply includes its givenAltingBarrier front-end in a
Guard array associated with anAlternative. Its index will be selected if and only if all parties
(processes) to the barrier similarly select it (using their own front-ends).

If a process wishes to commit to this barrier (i.e. not offer it as a choice in an
Alternative), it may sync() on it. However, if all parties only do this, anon-altingBarrier

would be more efficient. A further shortcut (over using anAlternative) is provided topoll
(with timeout) this barrier for completion.

An AltingBarrier front-end may only be used by one process at a time (and this is
checked at run-time). A process may communicate anon-resignedfront-end to another pro-
cess; but the receiving process mustmarkit before using it and, of course, the sending process
must not continue to use it. If a process terminates holding a front-end, it may be recycled for
use by another process via areset.
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Full details of expanding/contracting the set of front-ends, temporary resignation and re-
enrolment, communication, marking and resetting of front-ends, committed synchronisation
and time-limited polling are given in the JCSP documentation (on-line at [26]).

2.2. Priorities

These do not– and cannot –apply to selection between barriers. ThepriSelect() method
works locally for the process making the offer. If this were allowed, one process might offer
barrierx with higher priority than barriery ... and another process might offer them with its
priorities the other way around. In which case, it would be impossible to resolve a choice in
favour ofx or y in any way that satisfied the conflicting priorities of both processes.

However, thepriSelect() method is allowed for choices including barrier guards. It
honours the respective priorities defined between non-barrier guards ... and those between a
barrier guard and non-barrier guards (which guarantees, for example, immediate response to a
timeout from ever-active barriers). Relative priorities between barrier guards areinoperative.

2.3. Misuse

The implementation defends against misuse, throwing anAltingBarrierError when riled.
Currently, the following bad things are prevented:

o different threads trying to operate on the same front-end;
o attempt to enrol whilst enrolled;
o attempt to use as a guard whilst resigned;
o attempt to sync, resign, expand, contract or mark whilst resigned;
o attempt to contract with an array of front-ends not supplied by expand.

Again, we refer to the documentation, [26], for further details and explanation.

2.4. Example

Here is a simple gadget with two modes of operation, switched by aclick event (operated
externally by abuttonin the application described below). Initially, it is inindividualmode –
represented here by incrementing a number and outputting it (as a string to change the label
on its controlling button) as often as it can. Its other mode isgroup, in which it can only work
if all associated gadgets are also in this mode. Group work consists of a single decrement and
output of the number (to its button’s label). It performs group work as often as the group will
allow (i.e. until it, or one of its partner gadgets, is clicked back toindividualmode).

import org.jcsp.lang.*;

public class Gadget implements CSProcess {

private final AltingChannelInput click;
private final AltingBarrier group;
private final ChannelOutput configure;

public Gadget (
AltingChannelInput click, AltingBarrier group, ChannelOutput configure

) {
this.click = click;
this.group = group;
this.configure = configure;

}
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public void run () {

final Alternative clickGroup =
new Alternative (new Guard[] {click, group});

final int CLICK = 0, GROUP = 1; // indices to the Guard array

int n = 0;
configure.write (String.valueOf (n));

while (true) {

configure.write (Color.green) // indicate mode change

while (!click.pending ()) { // individual work mode
n++; // work on our own
configure.write (String.valueOf (n)); // work on our own

}
click.read (); // must consume the click

configure.write (Color.red); // indicate mode change

boolean group = true; // group work mode
while (group) {

switch (clickGroup.priSelect ()) { // offer to work with the group
case CLICK:

click.read (); // must consume the click
group = false; // back to individual work mode

break;
case GROUP:

n--; // work with the group
configure.write (String.valueOf (n)); // work with the group

break;
}

}

}
}

}

The front-end to the alting barrier shared by other gadgets in our group is given by the
group parameter of the constructor, along withclick andconfigure channels from and to our
button process.

Note that in the above – and for most uses of these alting barriers – no methods are
explicitly invoked. Just having the barrier in the guard set of theAlternative is sufficient.

This gadget’s offer to work with the group is made by thepriSelect() call onclickGroup.
If all other gadgets in our group make that offer before a mouse click on our button, this gad-
get (together withall those other gadgets) proceed together on their joint work – represented
here by decrementing the count on its button’s label. All gadgets then make another offer to
work together.

This sequence gets interrupted if any button on any gadget gets clicked. The relevant
gadget process receives the click signal and will accept it in preference to further group
synchronisation. The clicked gadget reverts to itsindividualmode of work (incrementing the
count on its button’s label), until that button gets clicked again – when it will attempt to rejoin
the group. While any gadget is working on its own, no group work can proceed.
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Here is complete code for a system of buttons and gadgets, synchronised by analting
barrier. Note that thissingleevent needs anarray of AltingBarrier front-ends to operate –
one for each gadget:

import org.jcsp.lang.*;

public class GadgetDemo {

public static void main (String[] argv) {

final int nUnits = 8;

// make the buttons

final One2OneChannel[] event = Channel.one2oneArray (nUnits);

final One2OneChannel[] configure = Channel.one2oneArray (nUnits);

final boolean horizontal = true;

final FramedButtonArray buttons =
new FramedButtonArray (

"AltingBarrier: GadgetDemo", nUnits, 120, nUnits*100,
horizontal, configure, event

);

// construct an array of front-ends to a single alting barrier

final AltingBarrier[] group = AltingBarrier.create (nUnits);

// make the gadgets

final Gadget[] gadgets = new Gadget[nUnits];
for (int i = 0; i < gadgets.length; i++) {

gadgets[i] = new Gadget (event[i], group[i], configure[i]);
}

// run everything

new Parallel (
new CSProcess[] {

buttons, new Parallel (gadgets)
}

).run ();

}

}

This example only contains a single alting barrier. The JCSP documentation [26] pro-
vides many more examples – including systems with intersecting sets of processes offering
multiple multiway barrier synchronisations (one for each set to which they belong), together
with timeouts and ordinary channel communications. There are also somegames!

2.5. Implementation Oracle

A fast resolution mechanism of choice between multiple multiway synchronisations depends
on anOracle server process, [23,24,25]. This maintains information for each barrier and
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each process enrolled. A process offersatomicallya set of barriers with which it is prepared
to engage and blocks until theOracle tells it which one has been breached. TheOracle
simply keeps counts of, and records, all the offer sets as they arrive. If a count for a particular
barrier becomes complete (i.e. all enrolled processes have made an offer), it informs the lucky
waiting processes andatomicallywithdraws all their other offers –beforeconsidering any
new offers.

2.5.1. Adapting the Oracle for JCSP (andoccam-π)

For JCSP, these mechanics need adapting to allow processes to make offers to synchronise
that includeall varieties ofGuard – not justAltingBarriers. The logic of theOracleprocess
is also unravelled to work with the usualenable/disablesequences implementing theselect
methods invoked onAlternative. Note: the techniques used here for JCSP carry over to a
similar notion of alting barriers for an extendedoccam-π [27].

The AltingBarrier.create(n) method first constructs a hiddenbaseobject – the actual
alting barrier – before constructing and returning an array ofAltingBarrier front-ends. These
front-ends reference the base and are chained together. The base object is not shown to JCSP
users and holds the first link to the chain of front-ends. It maintains the number of front-ends
issued (which it assumes equals the number of processes currently enrolled) and a count-
down of how many offers havenot yet been made to synchronise. It has methods to expand
and contract the number of front-ends and manage temporary resignation and re-enrolment
of processes. Crucially, it implements the methods forenabling(i.e. receiving an offer to
synchronise) anddisabling(i.e. answering an enquiry as to whether the synchronisation has
completed and, if not, withdrawing the offer). These responsibilities are delegated to it from
the front-end objects.

EachAltingBarrier front-end maintains knowledge of the process using it (thread idand
resigned status) and checks that it is being operated correctly. If all is well, it claims the mon-
itor lock on the base object and delegates the methods. Whilst holding the lock, it maintains
a reference to theAlternative object of its operating process (which might otherwise be used
by another process, via the base object, upon a successful completion of the barrier).

The Oracle logic works because each full offer set from a process is handled atomi-
cally. Theselectmethods ofAlternative make individual offers (enables) from its guard ar-
ray in sequence. A global lock, therefore, must be obtained and held throughout any enable
sequence involving anAltingBarrier – to ensure that the processing of its set of offers (on
AltingBarriers) are not interleaved with those from any other set. If theenablesall fail, the
lock must be released before thealting process blocks. If an offer (enable) succeeds in com-
pleting one of the barriers in the guard set, the lock must continue to be held held throughout
the subsequentdisable(i.e. withdraw) sequenceand the disable sequences of all the other
partners in the successful barrier (which will be scheduled by the successfulenable)6. Other
disable sequences (i.e. those triggered by a successful non-barrier synchronisation) do not
need to acquire this lock – even if an alting barrier is one of the guards to be disabled.

2.5.2. Distributing the Oracle

The current JCSP release supportsAltingBarriers onlywithin a single JVM. Extending this
to support them across a distributed system has some issues.

A simple solution would be to install an actualOracle process at a network location
known to all. At the start of anyenablesequence, a network-wide lock on theOracle is ob-
tained (simply by communicating with it on a shared claim channel). Eachenable/disable
then becomes a communication to and from theOracle. The network lock is released follow-

6This means that multiple processes will need to hold the lock in parallel, so that a counting semaphore
(rather than monitor) has to be employed.
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ing the same rules outlined for the single JVM (two paragraphs back). However, the network
overheads for this (perenable/disable) and the length of time required to hold the network-
wide lock look bad.

A better solution may be to operate the fastOracle logic locally within each JVM –
except that, when a local barrier is potentially overcome (because all local processes have
offered to engage with it), the local JCSP kernel negotiates with its partner nodes through a
suitable two-phase commit protocol. This allows the local kernel to cancel safely any network
offer, should local circumstances change. Only if the network negotiation succeeds are the
local processes informed.

2.5.3. Take Care

The logic required for correct implementation of external choice (i.e. theAlternative class)
is not simple. The version just for channel input synchronisation required formalising and
model checking before we got it right [17]. Our implementation has not (yet) been observed
to break under stress testing, but we shall not feel comfortable until this has been repeated
for these multiway events. Full LGPL source codes are available by request.

3. Output Guards

It has long been an accepted constraint ofoccam-π and its derivative frameworks (e.g. JCSP,
C++CSP, the CSP implementations for .NET) that channels only support input guards for
use in alternatives, and not output guards. The decision allows a much faster and simpler
implementation for the languages/frameworks [23].

Now, however, alting barriers provide a mechanism on which channels with both in-
put and output guards can easily be built, as described in [22]. Because there are still ex-
tra run-time costs, JCSP 1.1 offers adifferentchannel for this – for the moment christened
One2OneChannelSymmetric.

This symmetricchannel is composed of two internal synchronisation objects: one stan-
dard non-buffered one-to-one channel and one alting barrier. Supporting this, a new channel-
end interface (actually abstract class),AltingChannelOutput, has been added and derives sim-
ply from Guard andChannelOutput. We are only providing zero-buffered one-to-one symmet-
rically alting channels for the moment.

The reading and writing processes are the only two enrolled on the channel’s internal
barrier – on which, of course, they canalt.

For anycommittedcommunication, a process first commits to synchronise on the internal
barrier. When/if that synchronisation completes, the real communication proceeds on the
internal one-to-one channel as normal.

If either process wants to use the channel as a guard in an alternative, itoffers to syn-
chronise on the internal barrier – an offer that can be withdrawn if one of the other guards
fires first. If its offer succeeds, the real communication proceeds on the internal channel as
before.

Of course, all these actions are invisible to the using processes. They use the standard
API for obtaining channel-ends and reading and writing. Either channel-end can be included
in a set of guards for anAlternative.

Here is a pathological example of its use. There are two processes,A andB, connected by
two opposite direction channels,c andd. From time to time, each process offers to commu-
nicate on both its channels (i.e. an offer to read and an offer to write). They do no other com-
munication on those channels. What must happen is that the processes resolve their choices
in compatible ways – one must do the writing and the other the reading. This is, indeed, what
happens. Here is theA process:
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class A implements CSProcess {

private final AltingChannelInput in;
private final AltingChannelOutput out;

... standard constructor

public void run () {
final Alternative alt = new Alternative (new Guard[] {in , out});
final int IN = 0, OUT = 1;
... other local declarations and initialisation
while (running) {

... set up outData
switch (alt.fairSelect ()) {

case IN:
inData = (InDataType) in.read ();
... reaction to this input

break;
case OUT:
out.write (outData);
... reaction to this output

break;
}

}
}

}

TheB process is the same, but with different initialisation and reaction codes and types. The
system must be connected withsymmetricchannels:

public class PathologicalDemo {

public static void main (String[] argv) {

final One2OneChannelSymmetric c = Channel.one2oneSymmetric ();
final One2OneChannelSymmetric d = Channel.one2oneSymmetric ();

new Parallel (
new CSProcess[] {

new A (c.in (), d.out ()),
new B (d.in (), c.out ())

}
).run ();

}

}

4. Extended Rendezvous

Extended rendezvous was an idea originally introduced inoccam-π [28]. After reading from
a channel, a process can perform some actionswithout scheduling the writing process –
extendingthe rendezvous between writer and reader. When it has finished those actions (and
it can take its own time over this), it must then schedule the writer. Only the reader may
perform this extension, and the writer is oblivious as to whether it happens.
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Extended rendezvous is made available in JCSP through theChannelInput.startRead()

and ChannelInput.endRead() methods. ThestartRead() method starts the extended ren-
dezvous, returning with a message when the writer sends it. The writer now remains blocked
(engaged in the extended rendezvous) until, eventually, the reader invokes theendRead()

method. They can be used in conjunction withalternation– following the (input) channel’s
selection, simply invokestartRead() andendRead() instead of the usualread().

4.1. Examples – a Message Logger and Debugging GUI

Consider the (unlikely) task of tracking down an error in a JCSP system. We want to delay
and/or observe values sent down a channel. We could insert a special process into the channel
to manage this, but that would normally introduce buffering into the system. In turn, that
changes the synchronisation behaviour of the system which could easily mask the error –
especially if that error was a deadlock.

However, if the inserted process were to use extended rendezvous, we can arrange for
there to be no change in the synchronisation. For example, the followingchannel tapping
process might be used for this task:

class Tap implements CSProcess {

private ChannelInput in; // from the original writer
private ChannelOutput out; // to the original reader
private ChannelOutput tapOut; // to a message logger

... standard constructor

public void run () {
while (true) {

Cloneable message = in.startRead (); // start of extended rendezvous
{

tapOut.write (message.clone ());
out.write (message);

}
in.endRead (); // finish of extended rendezvous

}
}

}

This process begins an extended rendezvous, copies the message to itstappingchannel
before writing it to the process for which it was originally intended. Only when this commu-
nication is complete does the extended rendezvous end. So long as the report to the message
logger is guaranteed to succeed, this preserves the synchronisation between the original two
processes: the original writer is releasedif-and-only-ifthe reader reads.

The extra code block and indentation in the above (and below) example is suggested to
remind us to invoke theendRead() method, matching the earlierstartRead().

Instead of a message logger, we could install a process that generates a GUI window to
display passing messages. As these message are only held during the extended rendezvous of
Tap, that process no longer needs tocloneits messages. For example:

class MessageDisplay implements CSProcess {

private ChannelInput in; // from the tap process

... standard constructor
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public void run () {

while (true) {
Object message = in.startRead (); // start of extended rendezvous
{

... display message in a pop-up message box

... only return when the user clicks OK
}
in.endRead (); // finish of extended rendezvous

}
}

}

Instead of performing communication in its extended rendezvous, the above process
interacts with the user through a GUI. The rendezvous is not completed until the user has
seen the data value and clicked OK. This in turn delays the tap process until the user clicks
OK, which in turn prevents the original communication between the original two processes
until the user has clicked OK.

The addition of these two processes has not altered the semantics of the original system
– apart from giving the GUI user visibility of, and delaying ability over, communications on
the tapped channel.

With trivial extra programming (e.g. writing anull to the tapping channel at the end of
the extended rendezvous inTap), theMessageDisplay could also clear its message box when
the reader process takes the message. If this were done for all channels, a deadlocked system
would show precisely where messages were stuck.

Such advanced debugging capabilities can be built entirely with the public API of JCSP.
There is no need to delve into the JCSP implementation.

4.2. Rules

The endRead() function must be called exactly once after each call tostartRead(). If the
readerpoisonsthe channel (section 5) between astartRead() andendRead(), the channelwill
be poisoned; but the current communication is deemed to have happened (which, indeed,
it has) and no exception is thrown. In fact,endRead() will never throw a poison exception.
Poison is explained in section 5.

4.3. Extended Rendezvous on Buffered Channels

Extended rendezvous and buffered channels have not previously been combined.occam-
π, which introduced the extended rendezvous concept, does not support buffered channels.
C++CSP originally disallowed extended rendezvous on buffered channels using a badly-
designed exception7. To distinguish between channel-ends that did, and did not, support ex-
tended rendezvous, a more complicated type system would have been necessary. In addi-
tion to AltingChannelInput and ChannelInput, we would needAltingExtChannelInput and
ExtChannelInput. Similarly, there would need to be two more classes for the shared versions.

Instead, we took the decision to allow extended rendezvous on buffered channels,
thereby eliminating any divide. The semantics of extended rendezvous on a buffered channel
are dependent on the semantics of the underlying buffer. The semantics for (some of) the
standard buffers provided with JCSP are explained in the following sub-sections.

7In the new C++CSP2 [29], the classes have been restructured and the implementation is identical to the new
JCSP implementation described here
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4.3.1. Blocking FIFO Buffers

The reasoning behind the implemented behaviour of extended rendezvous on FIFO buffered
channels with capacityN comes from the semantically equivalent pipeline ofN ‘id’ processes
(i.e. one-placeblocking buffers) connected by non-buffered channels. When an extended
rendezvous is begun by the process reading from the buffered channel, the first available (that
is, the oldest) item of data is read from the channel,but not removed from its internal buffer.
If no item of data is available, the process must block. Data is only removed from the channel
buffer when the extended rendezvous is completed. This mirrors the semantics of an extended
rendezvous on the (unbuffered) output channel of the one-place buffer pipeline.

4.3.2. Overwriting (Oldest) Buffers

When full, writing to these channels does not block – instead, the new data overwrites the
oldestdata in the channel. Thus, the channel always holds the freshest available data – which
is important for real-time (and other) systems.

There is no simple equivalent of such an overwriting buffer made from unbuffered chan-
nels, so we have no simple guidance for its semantics. Instead we choose to follow the prin-
ciple of least surprise. As with the FIFO buffers, when an extended rendezvous begins, the
least recent data item is read from the buffer but not removed. At any time, the writer writes
to the buffer as normal, overwriting data when full – the first such one overwritten being the
data just read. When the extended rendezvous completes, the data item is removed –unless
that data ‘slot’ has indeed been overwritten. This requires the channel buffer to keep track of
whether the data being read in an extended rendezvous has been overwritten or not.

An overwriting buffered channel breaks most of the synchronisation between reader and
writer. The writer can always write. The reader blocks when nothing is in the channel, but
otherwise obtains the latest data and must accept that some may have been missed. Extended
rendezvous is meant to block the writer for a period after a reader has read its message – but
the writer must never block!

The above implementation yields what should happen if the writer had come along after
the extended rendezvous had completed. Since the writer’s behaviour is independent from
the reader in this case, we take the view that an earlier write (during the rendezvous) is a
scheduling accident that should have no semantic impact – i.e. that it is proper to ignore it.

4.3.3. Zero Buffers

Extended rendezvous on a channel using aZeroBuffer is, of course, identical to extended
rendezvous on a normal unbuffered channel.

5. Poison and Graceful Termination

In [30], a general algorithm for the deadlock-free termination (and resetting) of CSP/occam
networks (or sub-networks) was presented. This worked through the distribution ofpoison
messages, resulting in poisonedprocesseshaving to take a defined set of termination actions
(in addition to anything needed for process specific tidyness). This logic, though simple, was
tedious to implement (e.g. in extending the channel protocol to introduce poison messages).
Furthermore, the poison could not distribute against the flow of its carrying channels, so
special changes had to be introduced to reach processesupstream.

The poison presented here applies tochannelsrather than processes – and it can spread
upstream. When a channel is poisoned, any processes waiting on the channel are woken up
and a poison exception thrown to each of them. All future reads/writes on the channel result
in a poison exception being thrown – there is no antidote! Further attempts to poison the
channel are accepted but ignored. This idea was orignally posted by Gerald Hilderink [31].
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Poison is used to shutdown a process network – simply andgracefully, with no danger of
deadlock. For example, processes can set a single poison exception catch block for the whole
of their normal operation. The handler responds just by poisoning all its external channels. It
doesn’t matter whether any of them have already been poisoned.

Poison spreads around a process network viewed as an undirected graph, rather than try-
ing to feed poison messages around a directed graph. These ideas have already been imple-
mented in C++CSP, and by Sputh and Allen for JCSP itself [32]. This revised JCSP 1.1 poi-
son builds on these experiences.

5.1. API Rationale

One option for adding poison to JCSP would have been to add poisonable channel-ends
as separate additional interfaces. This would cause a doubling in the number of channel-
end interfaces for JCSP. The reasoning presented in [33] still holds; a separation of poi-
sonable and non-poisonable channel-ends in the type system would lead to complex com-
mon processes, that would need to be re-coded for each permutation of poisonable and non-
poisonable channel-ends. Therefore,all channel-ends havepoison(strength) methods.

Although all channel-ends have the poison methods, they do not have to be functional.
Some channels do not permit poisoning – for example, the default ones: attempts to poison
them are ignored.

5.2. Poison Strength

In [32], Sputh and Allen proposed the idea of two levels of poison –local andglobal. Chan-
nels could be constructed immune to local poison. Thus, networks could be built with sub-
networks connected only bylocal-immunechannels. Individual sub-networks could then be
individually terminated (and replaced) by one of their components injectinglocal poison.
Alternatively, the whole system could be shut down byglobalpoison.

These ideas have been generalised to allow arbitrary (positive integer) levels of poison
in JCSP 1.1. This allows many levels of nested sub-network to be terminated/reset at any of
its levels. Poisonable channels are created with a specific level ofimmunity: they will only
be poisoned with a poison whosestrengthis greater than their immunity. Poison exceptions
carry the strength with which the channel has been poisoned: their handlers propagate poison
with that same strength.

Channels carry the current strength of poison inside them: zero (poison-free) or greater
than their immunity (poisoned). That strength can increase with subsequent poisoning, but is
not allowed to decrease (with a weaker poison).

Note that using different strengths of poison can have non-deterministic results. For ex-
ample, if different waves of poison, with different strengths, are propagating in parallel over
part of a network whose channels are not immune, the strength of the poison exception a
process receives will be scheduling dependent – which wave struck first! If a lower strength
were received, it may fail to propagate that poison to some of its (more immune) channels
before it terminates: without, of course, dealing with the stronger poison arriving later. Care
is needed here.

5.3. Trusted and Untrusted Poisoners

Channel-ends of poisonable channels can be created specificallywithout the ability to poi-
son (as in C++CSP [34]): attempts will be ignored (as if their underlying channel were not
poisonable). Disabling poisoning at certain channel-ends of otherwise poisonable channels
allows networks to be set up with trusted and untrusted poisoners. The former (e.g. a server
process) has the ability to shut down the network. The latter (e.g. remote clients) receive the
network poisoning but cannot initiate it.
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5.4. Examples

Here is a standardrunning-sum integratorprocess, modified to support network shutdown
after poisoning:

public class IntegrateInt implements CSProcess {

private final ChannelInput in;
private final ChannelOutput out;

public IntegrateInt (ChannelInput in, ChannelOutput out) {
this.in = in;
this.out = out;

}

public void run () {
try {

int sum = 0;
while (true) {

sum += in.read ();
out.write (sum);

}
} catch (PoisonException e) { // poison everything

int strength = e.getStrength ();
out.poison (strength);
in.poison (strength);

}
}

}

A guard for a channel is consideredready if the channel is poisoned. This poison will
only be detected, however, if the channel is selected and the channel communication at-
tempted. Here is a modification of theFairPlex process (from section 1.4) to respond suitably
to poisoning. The only change is the addition of thetry/catch block in therun() method:

public final class FairPlex implements CSProcess {

private final AltingChannelInput[] in;
private final ChannelOutput out;

... standard constructor

public void run () {
try {

final Alternative alt = new Alternative (in);
while (true) {

final int i = alt.fairSelect ();
out.write (in[i].read ());

}
} catch (PoisonException e) { // poison everything

int strength = e.getStrength ();
out.poison (strength);
for (int i = 0; i < in.length; i++) {

in[i].poison (strength);
}

}
}

}
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If the out channel is poisoned, the poison exception will be thrown on the next cycle
of FairPlex. If any of thein channels is poisoned, its guard becomesreadystraight away.
This maybe ignored if there is traffic from unpoisoned channels available andFairPlex will
continue to operate normally.. However, thefair selection guarantees that no other input
channel will be serviced twice before that poisoned (and ready) one. In the worst case, this
will be after (in.length - 1) cycles. When the poisoned channel is selected, the exception is
thrown.

5.5. Implementation

The central idea behind adding poison to all the existing channel algorithms is simple. Every
time a channel wakes up from await, it checks to see whether the channel is poisoned. If it
is, the current operation is abandoned and aPoisonException (carrying the poison strength)
is thrown.

However, with just the above approach, it would be possible for a writing process (that
was late in being rescheduled) to observe poison added by a readerafter the write had com-
pleted successfully. This was discovered (by one of the authors [35]) from formalising and
(FDR [16]) model checking this (Java) implementation against a more direct CSP model,
using techniques developed from [17].

Therefore, an extra field is added so that a successfully completed communication is
always recorded in the channel, regardless of any poison that may be injected afterwards.
Now, the writer can complete normally and without exception – the poison remaining in
the channel for next time. This correction has been model checked [35]. It has also been
incorporated in the revised C++CSP [36].

6. Conclusions and Future Work

The latest developments of JCSP have integrated the JCSP Network Edition and JCSP 1.0-
rc7, keeping the advances each had made separately from their common ancestor. New con-
cepts have been added: choice between multiple multiway synchronisations (alting barriers),
output guards (symmetric channels), extended rendezvous and poison. The revised library is
LGPL open sourced. We are working on further re-factorings to allow third parties to add
newaltablesynchronisation primitives, without needing to modify existing sources. We list
here a few extensions that are have been requested by various users and are likely for future
releases. Of course, with open source, we would be very pleased for others to complete these
with us.

6.1. Broadcast Channels

Primitive events in CSP may synchronisemanyprocesses. Channel communications are just
events and CSP permits any number of readers and writers. Many readers implies that all
readers receive thesamemessage: eitherall receive ornonereceive – this is multiway syn-
chronisation. Many writers is a little odd:all must write thesamemessage orno write can
occur – still multiway synchronisation.

All channels currently in JCSP restrict communications to point-to-point message trans-
fers betweenonewriter andonereader. TheAny channels allow any number of writers and/or
readers, but only one of each can engage in any individual communication.

Allowing CSPmany-reader(broadcasting) channels turns out to be trivial – so we may
as well introduce them. The only interesting part is making them as efficient as possible.

One way is to use a process similar toDynamicDelta from org.jcsp.plugNplay. This cy-
cles by waiting for an input and, then, outputtingin parallel on all output channels. That in-
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troduces detectable buffering which is easily eliminated by combining the input and outputs
in an extended rendezvous (Section 4). We still do not have multiway synchronisation, since
the readers do not have to wait for each other to take the broadcast. This can be achieved
by thedelta process outputting twice and the readers reading twice. The first message can
be null and is just to assemble the readers. Only when everyone has taking that is the real
message sent. Getting the second message tells each reader that every reader is committed
to receive. Thedeltaprocess can even send each messagein sequenceto its output channels,
reducing overheads (for unicore processors).

The above method has problems if we want to allowalting on the broadcast. Here is a
simpler and faster algorithm that shows the power ofbarrier synchronisation– an obvious
mechanism, in retrospect, for broadcasting!

public class One2ManyChannelInt

private int hold;
private final Barrier bar;

public One2ManyChannelInt (final int nReaders) {
bar = new Barrier (nReaders + 1);

}

public void write (int n) { -- no synchronized necessary
hold = n;
bar.sync (); -- wait for readers to assemble
bar.sync (); -- wait for readers to read

}

public int read () { -- no synchronized necessary
bar.sync (); -- wait for the writer and other readers
int tmp = hold;
bar.sync (); -- we’ve read it!
return tmp;

}

}

The abovebroadcasting channelsupports only a fixed number of readers and no alting.
This is easy to overcome using the dynamics of anAltingBarrier, rather thanBarrier –
but is left for another time. For simplicity, the above code is also notdressedin the full
JCSP mechanisms for separate channel-ends, poisoning etc.. It also carries integers. Object
broadcasting channels had better be carefully used! Probably, onlyimmutableobjects (or
clones) should be broadcast. Otherwise, the readers should only ever read (never change) the
objects they receive (and anything that they reference).

The above code uses the technique ofphased barrier synchronisation[8,21,37]. Reader
and writer processes share access to thehold field inside the channel. That access is controlled
through phases divided by the barriers. In the first phase, only the writer process may write
to hold. In the second, only the readers may read. Then, it’s back to phase one. No locks are
needed.

Most of the work is done by the first barrier, which cannot complete until all the readers
and writer assemble. If this barrier were replaced by analting one, that could be used to
enable external choice for all readers and the writer.

Everyone is always committed to the second barrier, which cannot therefore stick. It’s
only purpose is to prevent the writer exiting, coming back and overwritinghold before all the
readers have taken the broadcast. If the first barrier were replaced by anAltingBarrier, the
second could remain as this (faster)Barrier.
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However, other optimisations are possible – for example, by the readers decrementing a
reader-donecount (either atomically, using the new Java 1.5 concurrency utilities, or with a
standard monitor lock) and with the last reader resetting the count and releasing the writer
(waiting, perhaps, on a 2-wayBarrier).

6.2. Java 1.5 Generics

Java 1.5 (also known as Java 5) was a major release that introduced many new fea-
tures. The three main additions pertinent to JCSP are generics, autoboxing, and the new
java.util.concurrent package (and its subpackages).

Generics in Java are a weak form ofgenerictyping. Their primary use is to enhance
semantic clarity and eliminate some explicit type casting (whilst maintaining type safety).
They have been particularly successful in the revised collection classes.

Generics can be used to type more strongly JCSP channels (and avoid the cast usually
needed on the returnObject from aread/startRead() method). It would make the type of the
channel explicit and enforced by the compiler. Generics require a Java compiler of version
1.5 or later, but they can be compiled into earlier bytecode versions executable by Java 1.3.

6.3. Java 1.5 Autoboxing

Autoboxing is the term for the automatic conversion from primitive types (such asint or
double) into their class equivalents (Integer andDouble respectively). Particularly when com-
bined with generics, this allows primitive types directly to be used for communicating with
generic processes through object-carrying channels. For example, if both autoboxing and
generics are used in future versions of JCSP, the following codes would be legal. First, we
need a generic channel:

One2OneChannel<Double> c = Channel.<Double>one2one (new Buffer<Double> (10));

Then, a writing process could execute:

out.write (6.7);

whereout is the output-end of the above channel (i.e.c.out()). A reading process could
execute:

double d = in.read ();

wherein is the input-end of the above channel (i.e.c.in()). Note the lack of any casts in the
above codes.

Like generics, autoboxing requires a 1.5 compiler but can be compiled to be executable
by earlier versions, such as 1.3. This makes generics and autoboxing a potential candidate for
inclusion in JCSP that would still allow Java 1.3 compatibility to be maintained – although it
would mean that JCSP developers would need a Java 1.5 compiler.

6.4. Java 1.5 New Concurrency Utilities

Thejava.util.concurrent package contains new concurrency classes. Some classes comple-
ment JCSP well: theCopyOnWriteArrayList andCopyOnWriteArraySet classes can be safely
shared between processes to increase efficiency.

Some classes have close similarity to certain JCSP primitives.CyclicBarrier is one such
class, implementing a barrier (but with a useful twist in its tail). However, it does not sup-
port dynamic enrolment and resignation, nor any form of use in anything resemblingexter-
nal choice. Its support for the threadinterruption features of Java makes it, arguably, more
complex to use.
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BlockingQueue looks similar to a FIFO-buffered channel, withExchanger similar to an
unbuffered channel. However, they are not direct replacements since neither class supports
external choice.

Theatomicclasses (injava.util.concurrent.atomic) are tools on which JCSP primitives
might profitably be built. This is an avenue for future work.

6.5. Networking

Consideration must also be taken as to how the new features in the core can be implemented
into JCSP Network Edition. One of the strengths provided in JCSP is the transparency (to
the process) of whether a channel is networked or local. If (generic) typed channels are to be
implemented, then a method of typingnetworkchannels must also be available. This brings
with it certain difficulties. Guarantees between two nodes must be made to ensure that the
networked channel sends and receives the expected object type. However, of more impor-
tance at the moment is the implementation of networked barriers, and also networked alting
barriers, to allow the same level of functionality at the network level as there is at the local
level. Extended rendezvous and guarded outputs on network channels are also considerations.

If the move to exploit Java 1.5 is made in JCSP, then certain features of Java can be taken
advantage of in the network stack to improve resource usage, and possibly performance. Java
1.4 introduced a form of‘channel’, in itsjava.nio.channels package, that can be used to have
the native system do some of the work for us. These channels can be used for multiplexing.
Since they can represent network connections, we may be able to prune the current network-
ing infrastructure of JCSP to reduce the number of processes needed to route things around
– saving memory and run-time overheads.
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