
Communicating Process Architectures – 2002
James Pascoe, Peter Welch, Roger Loader and Vaidy Sunderam (Eds.)
IOS Press, 2002

321

Prioritised Dynamic Communicating Processes:
Part I

Fred BARNES and Peter WELCH
Computing Laboratory, University of Kent, Canterbury, KENT. CT2 7NF

{frmb2,phw}@ukc.ac.uk

Abstract. This paper reports continuing research on language design, compilation
and kernel support for highly dynamic concurrent reactive systems. The work extends
the occam multiprocessing language, which is both sufficiently small to allow for
easy experimentation and sufficiently powerful to yield results that aredirectly appli-
cable to a wide range of industrial and commercial practice. Classicaloccam was
designed for embedded systems and enforced a number of constraints – such as stat-
ically pre-determined memory allocation and concurrency limits – that were relevant
to that generation of application and hardware technology. Most of these constraints
have been removed in this work and a number of new facilities introduced (chan-
nel structures, mobile channels, channel ends, dynamic process creation, extended
rendezvous and process priorities) that significantly broadenoccam’s field of appli-
cation and raise the level of concurrent system design directly supported. Four prin-
ciples were set for modifications/enhancements of the language. They must be useful
and easy to use. They must be semantically sound and policed (ideally, at compile-
time) to prevent mis-use. They must have very lightweight and fast implementation.
Finally, they must be aligned with the concurrency model of the original core lan-
guage, must not damage its security and must not add (significantly) to the ultra-low
overheads. These principles have all been observed. All these enhancements are avail-
able in the latest release (1.3.3) of KRoC, freely available (GPL/open source) from:
www.cs.ukc.ac.uk/projects/ofa/kroc/ .

1 Preamble

This paper is the first of two describing the various dynamic and priority enhancements to
occam. This paper concentrates on the extensions themselves, whilst the second paper [1]
gives examples of how they are used. Also included in the second paper is a quick overview
of other (less significant) additions and extensions to the language and compiler.

2 Introduction and Motivation

This paper describes five extensions to theoccam 1/CSP [2, 3, 4, 5] programming language:
process priority, mobile channel-types, channel direction specifiers, dynamic process creation
and an extended rendezvous. The dynamic memory mechanisms also allow the introduction
of recursiveprocesses and run-time sizedPAR process replication. The latter require no
significant language change and are described in [1] – along with the tidying-up of a number
of additional items from the originaloccam language.

Theoccam [4] programming language, based on the CSP [2, 3] process algebra, encour-
ages programmers to build applications as layered networks of active/reactive components

1Trademark of ST Microelectronics

322 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

(processes), synchronising and communicating through channels.occam channels are point-
to-point, synchronised, unbuffered communication links. Figure 1 shows an example com-
ponent, arunning-sum integrator, implemented as a simple network of three sub-processes,
‘plus’, ‘ delta’ and ‘prefix(0)’. The external interface is provided through two channels
‘in’ and ‘out’.

plus delta

prefix(0)

in
out

integrate

Figure 1:occam integrate process network

The traditional method of constructingoccam programs follows this simple design, i.e.
process orientated. Process orientated in this context is the construction of programs as net-
works of independent active processes, that communicate and/or synchronise using the prim-
itives available. In the KRoC [6] implementation ofoccam, these synchronisation primitives
are primarily channel communications and implicit barriers (onPAR constructs), plus addi-
tional non-compiler based synchronisations (semaphores, barriers, buckets and resources), as
described in [7].

While these capabilities are sufficient for the design and implementation of manyoccam
programs, certain types of application remain hard – most notably applications where dy-
namic allocation is desirable. Plainoccam also lacks any concept of a pointer-type, which
has memory and run-time implications for communication, where data must be copied2. The
introduction ofmobiledata-types tooccam [8, 9], that provide safe non-aliasingmovement
semantics implemented using pointer manipulation, as well as the ability to create run-time
sized mobile arrays, helps significantly.

Dynamically reconfiguring a process network is stillhardhowever. A (statically) limited
form of dynamic process creation has always been available, in terms of choices andPAR. So,
the ‘integrate’ process shown in figure 1 may possibly replace its ‘plus’, ‘ prefix’ and
‘delta’ network with something else. Such decisions remain internal to ‘integrate’ and
are not the concern of anything connected to the ‘in’ or ‘ out’ channels.

Channel-types (first proposed for the un-implementedoccam 3 [10] language) provide a
method of grouping together a number of related channels within a single type – for example,
channels which define a client/server interaction. Our channel-types extend this idea – how-
ever, channel-type variables reference only one of theirendsand thoseendsare mobile. To
distinguish between the two different ends, achannel direction specifier(‘?’ or ‘ !’) is added
to the type when declaring the channel-end. These channel-ends are similar in idea to Icarus’
ports[11, 12], except that we allow an arbitrary number of channels within a single type. The
channel-types added tooccam are treated as first-class citizens in the type system (like any

2It is possible to avoid copying on communication (and assignment) by transparently providing managed
copy-on-write semantics, along with some form of reference-counted garbage collection. This has not been
examined in detail yet however.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 323

mobile variable), allowing channel-ends of that type to be declared and subsequently com-
municated to other processes. Assignment and parameter-passing are handled in a similar
(mobile) way. Channel-ends (either side) may also beSHARED (anotheroccam 3 idea) by
many processes, with security enforced by the language design.

Section 4 describes the syntax, semantics and implementation of channel-types inoccam,
within the framework of KRoC/Linux [13].

Simple channel communication inoccam is described in CSP by participation in an event
(the channel). The outputting process readies the data then synchronises on the channel.
The inputting process synchronises on the channel then uses the data. The point at which
both processes synchronise is viewed as an instantaneous action where the data (or rights to
the data) are copied. After the data has been transferred, both the inputting and outputting
processes resume execution.

Sometimes it is desirable to have the inputting process perform some action on the re-
ceived data, before the outputting process resumes execution. Currently, the only way to do
this is to alter the inputting and outputting processes so that they perform an additional syn-
chronisation at the required point. However, doing this is intrusive to the outputting process
(which doesn’t need to know such details about the inputting process), and there is every
possibility of a small misplacement of the second synchronisation on either side causing
deadlock.

Theextended rendezvousoffers a nice solution to this problem, since it requires no adjust-
ment of any outputting process and provides a safe (compiler-checked) syntax and semantics
for the inputting process. Section 5 describes this in detail.

Standardoccam only allows the creation of new processes inside aPAR construct, which
forces them to synchronise at the end of thePAR on a barrier. This also applies to the
replicatedPAR, whose replicator count must be a compiler-known constant expression. The
follow-on paper [1] describes an extension for handling run-time-count replicatedPARs, a
description of which can also be found in [14]. This greatly enhances the expressiveness of a
replicatedPAR, but also makes it more difficult for the compiler to perform static checks on
parallel usage within the replicated process.

We introduce a new mechanism for process creation, theFORK, which dynamically creates
a PROC instance and runs it parallel to the invoking process. Locally,FORK behaves asSkip
(a do-nothing process), with some minor exceptions. Termination of aFORKed process is
controlled by aFORKING block outside anyFORKs. When theFORKING finishes, it waits for
any unfinishedFORKed processes. AFORKed process may finish early however, allowing
dynamically allocated resources to be re-used immediately.

Section 6 describes the syntax, semantics and implementation of theFORK. A typical
application forFORKs is in internet servers, where it is highly desirable to be able to spawn
a new process for handling an incoming connection. An experimental version of theoccam
web-server [15] is under construction, usingFORKs and channel-types.

With the introduction of dynamic channels and process-creation, the use of priority be-
comes much more prevalent. For example, we might want theoccam web-server to give
priority to connections from academic institutions before connections from elsewhere. This
could easily be done by having the connection-handling processes dynamically change their
own priority when handing a (locally) new connection. This version of priority has been
added into the language through the use of compiler built-ins (plus significant changes in the
run-time system). This form of priority was first investigated in [16]. Section 7 describes our
implementation of priority.

324 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

3 Channel Direction Specifiers

As mentioned previously, channel direction specifiers are used in the declaration of channel-
type variables to distinguish theclient (’!’) or server(‘?’) nature of that endpoint. Another
use of these specifiers is on regular channel parameters, to indicate the direction of data-
flow. Channel direction specifiers used in this way were first discussed in [17]. Normally,
occam channel parameters, as they appear inPROC headers, don’t specify the direction of
the channel, even though only one end-point of that channel is really there. The compiler
performs extensive checks to ‘work out’ the usage of channels, needed so that it can check any
parallel misuse of a particular channel. From the compiler point-of-view, direction specifiers
don’t actually add anything useful. Their use is intended for the user and to improve the
clarity of occam programs. For example, thePROC header for ‘integrate’ in figure 1
would read (assuming integer input and output):

PROC integrate (CHAN INT in, out)

From the programmer’s point-of-view, there is probably enough information here to readily
use the component – the channels are obviously named. However for less obvious named
parameters (e.g. ‘data’ and ‘count’), it is not apparent which way data is communicated.
To avoid such ambiguities in reality, parameters are often renamed such that their direction
is incorporated, (as we have already done for the ‘integrate’ process). However this does
not prevent someone accidently mis-naming a parameter.

Channel direction specifiers add to the ‘type’ of the channel, not to its name, and the
compiler can check this against how the parameter is actually used, both inside ‘integrate’
and in any external instances of ‘integrate’. The direction is specified by placing the input
(‘?’) or output (‘!’) operator against the name. The modified ‘integrate’ PROC header
would read:

PROC integrate (CHAN INT in?, out!)

From this modified specification of the process, it is immediately obvious in which direction
the ‘in’ and ‘out’ channels are used, even in the case of a less obvious parameter naming
scheme. Additionally, channel direction specifiers bring thePROC header closer to the di-
agram which represents it (figure 1), which is good from a software engineering point of
view.

Channel direction specifiers are also used when referring to channel variables in param-
eters (and abbreviations). This adds a wealth of information to the implementation of a
process. For example, the original ‘integrate’ implementation may have been:

PROC integrate (CHAN INT in, out)
CHAN INT a, b, c:
PAR

plus (in, c, a)
delta (a, out, b)
prefix (0, b, c)

:

Although parameters are sensibly named, channel variables are often not – related to the fact
that a channel declaration declares two conceptualends, but both with the same name. If
asked to draw a picture of the above network, one would need to look at thePROC headers for
the ‘plus’, ‘ prefix’ and ‘delta’ processes.

As mentioned previously, channel parameters and abbreviations can only ever refer to
one particular end. Channel direction specifiers put this channel usage information into the
program, bringing the code closer to the design.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 325

The above code fragment, with channel direction specifiers, would read:

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR

plus (in?, c?, a!)
delta (a?, out!, b!)
prefix (0, b?, c!)

:

Figure 1 could now be drawn directly from this above code – no reference to the definition of
the sub-components need be made. If there were a mismatch, the above would not compile.

Channel direction specifiers are designed to help the programmer. The current implemen-
tation performs additional checking where channel direction specifiers are present, ensuring
that everything is consistent. Their usage is entirely optional, but can be enforced by running
the compiler instrict mode, which requires that channel direction specifiers are present wher-
ever possible. There is one other gain with channel direction specifiers, which is their use in
externally definedPROCs (used to interface external code, e.g. C, withoccam [18]). Passing
channels outside theoccam world is dangerous at best, but at least with channel direction
specifiers we can make sure that the right ends are used.

3.1 Direction Specifying Channel Arrays

Specifying the channel direction in a channel-array parameter is no problem, for example:

PROC merge ([]CHAN BYTE in?, out!)

All elements of a channel array must be used in the same direction.
However, specifying the direction of array subscriptions and slices presents a small syntax

issue, of whether the direction should be specified with:

SEQ
out.string ("hello ", 0, out[0]!)
multi.out.string ("world!*n", 0, [out FROM 1 FOR 2]!)

or with:

SEQ
out.string ("hello ", 0, out![0])
multi.out.string ("world!*n", 0, [out! FROM 1 FOR 2])

We have chosen a mixed implementation, which we believe to be the most obvious. Channel
array subscriptions use the former syntax, slices use the latter syntax. Although the latter
syntax of “out![0]” would be more consistent with subscriptions, it does look a little pe-
culiar (more like an output than an array subscription!). In addition, it turns out that parsing
subscriptions in an “out![0]” form is particularly tricky, as the compiler will try and parse
it as an output. It is possible to change the parser to cope with this, but requires moving some
of the checks (including a syntax check) into the type-checker once the type of ‘out’ has
been determined. This may not be entirely desirable.

It has been pointed out that using the syntax of “out[0]!” for channel-array subscriptions
suggests we are referring to the output-end of the channel ‘out[0]’ as opposed to index 0
of the output-only channel array ‘out!’. This is not the case however – the latter meaning
applies. In fact, the former meaning has no syntax in the language. Once declared, any
subsequent use of a channel must refer to a single-end only. Previously this has always been
implicit and something deduced by the compiler. This limitation goes both ways, as such an
array of channel-ends is exclusively always input or output, mixtures are not allowed.

326 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

Abbreviations follow the style of parameters (they are semantically the same thing), for
example:

[4]CHAN INT chans:
SEQ

[]CHAN INT if.chans? IS [chans? FROM 1 FOR 3]:
CHAN INT ix.chan? IS chans[0]?:
PAR

...

4 Mobile Channel-Types

Here is an example of achannel-structure:

CHAN TYPE BUF.MGR
MOBILE RECORD

CHAN INT req?: -- carries integers (size of requested buffer)
CHAN MOBILE []BYTE buf!: -- carries dynamically sized arrays
CHAN MOBILE []BYTE ret?: -- carries dynamically sized arrays

:

This declares amobilechannel-type called ‘BUF.MGR’. Being a channel-type, the fields inside
theRECORD structure are only permitted to be channels (or arrays of channels).Data fields
are not allowed.

‘BUF.MGR’ contains three channels. ‘req’ is used by aclient to request a buffer of some
size, which is acquired from the ‘buf’ channel. Once the client is done with the buffer, it
sends it back to theserverusing the ‘ret’ channel. The channel direction specifiers specify
server-relative directions. The server side can only use ‘req’ and ‘ret’ for input and ‘buf’
for output. In contrast, the client side can only use ‘req’ and ‘ret’ for output and ‘buf’ for
input. This behaviour is enforced by the compiler, as is the placement of direction specifiers
on the fields within the channel-structure.

We use the words ‘client’ and ‘server’ here to mean a particularendof the channel-type.
Whether the application chooses to use them as such is entirely up to the application. We
would prefer, however, that they were used according to a well-understood usage pattern,
such as client-server, IO-SEQ or IO-PAR [19].

4.1 Variables and Allocation

Channel-type variables come in two forms – aserver-endand aclient-end. For example:

BUF.MGR? buf.svr: -- server-end variable
BUF.MGR! buf.cli: -- client-end variable

A direction specifier is used on thetype to indicate either a server (‘buf.svr’) or a client
variable (‘buf.cli’). Once declared, they areundefineduntil either allocated or used as a
target of assignment or input – remember that these aremobilevariables and have the same
underlying semantics as the mobiledata-typesdescribed in [9]. They are allocated in pairs at
run-time:

buf.cli, buf.svr := MOBILE BUF.MGR

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 327

This operation dynamically allocates the channel-structure record and assigns it to both target
variables. Their usage in assignment and communication is strictly controlled by the rules
for ordinaryMOBILE variables – i.e. a movement semantics. Special care needs to be taken
when handing the freeing of these dynamic mobiles – this is discussed in section 4.4. The
compiler is not fussy about the order in which the client and server variables appear on the
left-hand side, but does check to ensure that one is a client and the other is a server. This
allocation syntax is similar to general dynamic mobile allocation [9], except that in this case
there is no array dimension to be specified.

The variables ‘buf.svr’ and ‘buf.cli’ can be used in two ways. Either as themselves
in communication, assignment, parameter passing and abbreviations; or in a subscripted ex-
pression to access individual channel fields. The two are mutually exclusive. Firstly because
any attempt at a combination would fail in alias analysis and secondly because we do not
allow recursive channel types (e.g. ‘BUF.MGR’ having a ‘CHAN OF BUF.MGR!’ field).

4.2 Using Channel-Types

For the most part, channel-type variables can be treated like ordinary mobile variables.
Once allocated, this means that moving one of the channel-type ends around the network
stretchesthe channels within it. The behaviour is conceptually like the similar mechanism in
Icarus [11, 20], but our implementation differs significantly.

Figure 2 shows a simpleoccam program which allocates a mobile channel-type, then
communicates its ends to other processes, which use the channels contained within those
ends to communicate directly with each other. It uses the sameBUF.MGR type described at
the start of section 4. AllPROC parameters and channels passed to them have been augmented
with channel-direction specifiers.

Figure 3 shows the state of things after the ‘generator’ process has allocated the chan-
nels, but before it has communicated them. The ‘generator’ process then moves the server-
end to the ‘server.process’ process. This has the effect of pulling the channels ‘over’ the
network, as shown in figure 4. The client-end is then moved to the ‘client.process’ pro-
cess and the ‘generator’ process terminates. The two processes (‘server.process’ and
‘client.process’) then proceed to communicate over the channels connecting them. This
final network configuration is shown in figure 5.

This example is not particularly exciting, but demonstrates how channel-types can be
used. The main point about this is that we don’t necessarily need to know where the remote
end of a channel-type is. Indeed, one of the general points ofoccam/CSP is that we should
not needto know where channels are connected, only what protocols and usage patterns they
have3.

4.3 Shared Channel-Types

The channel-types presented so far provide a general mechanism for moving channels around
networks, neatly grouped according to function. A common thing we tend to do with chan-
nels is to share them. Sharing of channels (and any other variable, parameter or abbreviation)
is currently performed using a compiler directive to turn off usage checking and aSEMAPHORE

(user-defined) [22] type to provide mutual exclusion. We would clearly wish to avoid this ap-
proach, since it removes any opportunity for the compiler to check affected code for aliasing
and parallel usage.

3However, we note that there are dangers in allowing network topologies to be set up dynamically [21] –
particularly in regards to deadlock/livelock analysis.

328 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

PROC server.process (CHAN BUF.MGR? in?)
BUF.MGR? sv:
SEQ

in ? sv -- get server-end channels

INT s:
MOBILE []BYTE b:
SEQ

sv[req] ? s -- get size
b := MOBILE [s]BYTE -- allocate buffer
sv[buf] ! b -- send buffer to client
sv[ret] ? b -- take buffer back

:

PROC client.process (CHAN BUF.MGR! in?)
BUF.MGR! cv:
SEQ

in ? cv -- get client-end channels

MOBILE []BYTE b:
SEQ

cv[req] ! 1518 -- send desired buffer size
cv[buf] ? b -- get buffer
... use ‘b’
cv[ret] ! b -- send buffer back

:

PROC generator (CHAN BUF.MGR? s.out!, CHAN BUF.MGR! c.out!)
BUF.MGR? buf.svr:
BUF.MGR! buf.cli:
SEQ

buf.cli, buf.svr := MOBILE BUF.MGR -- create channels

s.out ! buf.svr -- send server channels
c.out ! buf.cli -- send client channels

:

CHAN BUF.MGR? svr.chan:
CHAN BUF.MGR! cli.chan:
PAR

generator (svr.chan!, cli.chan!)
server.process (svr.chan?)
client.process (cli.chan?)

Figure 2: Simple mobile channel-type demonstration program

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 329

buf.cli

buf
req

ret

buf.svr

buf
ret

req

buf
ret

req

sv

buf
req

ret

cv

generator

server.process client.process

Figure 3: Process states after channel allocation

buf.cli

buf
req

ret

buf.svr

buf
ret

req

buf
ret

req

sv

buf
req

ret

cv

generator

server.process client.process

Figure 4: Process states after moving the server-end

buf.cli

buf
req

ret

buf.svr

buf
ret

req

buf
ret

req

sv

buf
req

ret

cv

generator

server.process client.process

Figure 5: Final process states after moving the client-end

330 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

We solve this problem (for channel-types at least), by allowing the declaration ofSHARED

channel-type variables (of a channel-structure) and subsequently enforcing their safe use.
Either the client or server ends may be shared, or both, providing the full set ofone-to-one,
any-to-one, one-to-anyandany-to-anychannel arrangements (similar to those in JCSP [23]).
For example, anany-to-onechannel-type pair can be created with:

SHARED BUF.MGR! s.cli:
BUF.MGR? u.svr:
SEQ

s.cli, u.svr := MOBILE BUF.MGR

The ‘SHARED’ attribute changes the nature of the type, such that it is only compatible with
othersharedchannel-types of the sameCHAN TYPE andendianism. This prevents the acci-
dental mix-up of shared and non-shared channel-types, which would be disastrous.

Before the channels inside asharedchannel-structure may be used, the whole channel-
structure (or rather the relevant channel-typeendof it), must beCLAIMed. This follows a style
similar to that presented inoccam3 [10], although what we areCLAIMing is a little different.
For example, a new ‘client.process’ which operates on client-shared channel-types might
look like:

PROC client.process.2 (SHARED BUF.MGR! cv)
MOBILE []BYTE b:

CLAIM cv -- claim it
SEQ

cv[req] ! 1518 -- send desired buffer size
cv[buf] ? b -- get buffer
... use ‘b’
cv[ret] ! b -- send buffer back

:

Whilst this process is in the body of theCLAIM, other clients are blocked from using the
channel-structure (‘cv’). The same applies to sharedserver-endstoo.

The usage rules forCLAIM differ slightly depending on whether theCLAIMed channel-
structure is aserveror client end. Once it has claimed the client end of a channel-type,
a process may only communicate on the channels withina CLAIMed structure and must not
CLAIM anything else. Assignment, function-calls and timeouts are still permitted, as arePROC

calls (on the condition that any channels used are part of theCLAIMed structure).
The rules for the serverCLAIM are slightly different. Once a processCLAIMs a server-

shared end it must not make any nestedCLAIMs on other (shared) server ends. It may however
CLAIM client-shared ends and act as a client to other servers. Usage of other channels within
the body of a serverCLAIM is unrestricted. The issue of cyclic deadlock exists here, when a
loop of client-server relationships form, but this can be avoided by careful design [19].

In the case of long-running transactions, anany-to-anychannel becomes less useful,
since both the client and server must remain in theCLAIM for the duration of the transac-
tion, preventing other clients and servers interacting. However, what we can do is create
anotherany-to-anychannel-type, which only communicates theone-to-onechan-types for
each client/server pair to use privately. For example:

CHAN TYPE C.BUF.MGR
MOBILE RECORD

CHAN BUF.MGR? svr?:
:

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 331

This allows anany-to-anychannel carryingBUF.MGR?s to be created. When a client process
wishes to engage in a transaction with a server process, it can dynamically create theBUF.MGR

channels, communicate the server-end and use the client-end locally. The ‘client.process’
process in this case could be written as:

PROC client.process.3 (SHARED C.BUF.MGR! c.cv)
BUF.MGR! cv:
BUF.MGR? sv:
SEQ

cv, sv := MOBILE BUF.MGR -- allocate channels

CLAIM c.cv -- claim connection to (any) server
c.cv[svr] ! sv -- send it the server end

MOBILE []BYTE b:
SEQ

cv[req] ! 1518 -- send desired buffer size
cv[buf] ? b -- get buffer
... use ‘b’
cv[ret] ! b -- send buffer back

:

This also removes the need for explicitly sharedBUF.MGR’s, since a new set of channels is
created for each transaction. Of course, the clients and servers are free to re-use existing
channels as they see fit. Conceptually this is like adding “another level” of channels to the
network, which can be moved around by means of channel communication on the level below.

To create an alias of a (shared) channel-end, the mobile ‘CLONE’ operator is used. This
may seem counter-intuitive, sinceCLONE is used on mobile data types to create an actual
copy. There is no sense in making a copy of a channel-type though – it doesn’t contain any
data to copy. Because of this, we recycle theCLONE operator to create aliases for shared
channel-types. The use ofCLONE is still restricted in the same way it is for mobile data-types,
with the exception that we allow its use in parameters and abbreviations.

The corresponding (possibly shared) server process for ‘client.process.3’ simply in-
puts the server-end manufactured in the client then uses that for communication:

PROC server.process.3 (SHARED C.BUF.MGR? c.sv)
BUF.MGR? sv:
SEQ

CLAIM c.sv -- claim connection from (any) client
c.sv[svr] ? sv -- input server end

MOBILE []BYTE b:
INT s:
SEQ

sv[req] ? s -- input size
b := MOBILE [s]BYTE -- allocate buffer
sv[buf] ! b -- send to client
sv[ret] ? b -- take back when client done

:

332 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

The network connecting these together looks like:

SHARED C.BUF.MGR! cli.c:
SHARED C.BUF.MGR? svr.c:
SEQ

cli.c, svr.c := MOBILE C.BUF.MGR -- allocate channel

PAR i = 0 FOR 4 -- 4 clients and 4 servers
PAR

client.process.3 (CLONE cli.c)
server.process.3 (CLONE svr.c)

This example creates a network in which four client processes and four server processes are
plugged into a shared channel-structure (of type ‘C.BUF.MGR’). When the client wishes to
interact withany server, it simply allocates the (unshared) ‘BUF.MGR’ channel required for
communication and communicates the server end through the shared ‘C.BUF.MGR’ channel-
type.

4.4 Memory Management

Mobile channel-types are implemented using pointers, in a similar way to mobile data-types.
To control the aliasing and freeing of allocated memory, a reference-count [24, 25] based
solution is used. Channel-type variables are pointers in the process workspace, initialised to
null. The special allocation operation, “cv, sv := MOBILE BUF.MGR”, allocates and ini-
tialises a block of memory, storing the resulting pointer in both these variables. Figure 6
shows the layout of theBUF.MGR block after it has been allocated in anany-to-oneconfigu-
ration (shared clients).

sv

cv

workspace

S.count

S.Fptr

S.Bptr

C.Bptr

C.Fptr

C.count

ref−count

ret

buf

req

channel words

server−shared
semaphore

client−shared
semaphore

block
allocated

Figure 6: Layout of theBUF.MGR channel-type with a shared-client and non-shared server.

Immediately after allocation, ‘ref-count’ is set to 2 (the two local references) and the client
semaphore is initialised. If the channel-type is server-shared the server semaphore would
be initialised here too. ‘ref-count’ is incremented each time one of the pointer variables is
CLONEed and decremented when the variables leaves scope, or when it is used as a target of
assignment or input. When the reference-count reaches zero the memory is freed.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 333

Memory is allocated and freed using the existing Brinch-Hansen style allocator [26, 27],
grouped by half-powers of 2. This is accessed using the existing ‘MALLOC’ and ‘MRELEASE’
instructions [9].

The cost of communication on one of these channels is only slightly more than the cost
of a regular communication. The extra cost is incurred in loading the channel pointer, which
will usually just involve adding a constant offset to the loaded pointer.

4.5 Non-Dynamic Non-Mobile Channel-Types

In the less dynamic environment, such as an embedded system, real dynamic memory may
not be available. Having the benefits of channel-types is still desirable though. There are
two solutions to this. The first is to restrict the size of the dynamic memory pool, making
the ‘MALLOC’ instruction a possible descheduling point (although this is currently unimple-
mented). The second is to make the type non-mobile which causes it to exist in the local
workspace of a process. The second option is examined here.

Making the channel-type non-mobile means that we can no longermoveit around. Which
rules out communication and assignment. Because of this, a single name can refer unambigu-
ously to both ends of the channel. The type and variable declarations are:

CHAN TYPE FOO
RECORD
CHAN INT req?:
CHAN BYTE resp!:

:

FOO c:

Because no direction is specified on the type of ‘c’, it must be added whenever ‘c’ is sub-
sequently referred to (just as for normal channels). Channel-type parameters still carry the
direction in the type since they can only ever refer to one end. For example:

PROC foo.svr (FOO? link)
INT x:
SEQ
link[req] ? x
...
out.string (.., 0, link[resp]!)

:

...

FOO c:
PAR

foo.svr (c?)
...

When using a channel field directly for communication, no direction specifier is needed since
the channel-direction is specified in the channel-structure (plus it doesn’t fit into the language
syntax for communication). The direction should still be specified when the channel is used
as a parameter, however, as shown in the example above.

334 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

5 The Extended Rendezvous

The extended rendezvous is a mechanism for allowing the inputting process of a communica-
tion to execute a process with the communicated data, whilst the outputting process remains
suspended. A newextended-inputprocess implements this. It is syntactically similar to an
ordinary input, but with ‘??’ instead of ‘?’. However, it is followed by a compulsory indented
process (theextended-rendezvous), which is executed whilst the outputting process remains
blocked.

One application of this is that it allows us totapa channel in a way that does not affect the
synchronisation between the processes either side. This is useful when we wish to ‘inspect’
the data flowing round a process network – channels connecting existing processes can be
‘tapped’ without changing the semantics of that process network. (Assuming of course that
the processes monitoring thetappedoutput channels guarantee always to take it). Figure 7
shows how we might inspect communication happening on the ‘squares’ process pipeline
of [28].

numbers integrate pairs

tapped data

out

squares

Figure 7: Tapped ‘squares’ process pipeline

Here is the code for the ‘tap’ process, assumingINT data-flow:

PROC tap (CHAN INT in?, out!, tap!)
WHILE TRUE

INT x:
SEQ

in ?? x
out ! x

tap ! x
:

5.1 Semantics

The semantics of the extended rendezvous are quite simple. Consider the following input and
output processes running in parallel:

c ! 42 c ?? b
... extended rendezvous (no c?)

This has the same semantics as the following pair of processes:

SEQ
c ! 42
c.ack ? any

SEQ
c ? b
... extended rendezvous (no c?)
c.ack ! TRUE

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 335

where ‘c.ack’ is an extraCHAN BOOL on which the processes synchronise. The implementa-
tion is quite different, but the semantics remain as presented here.

5.2 ALTs andCASE Inputs

An extended rendezvous may be used as a guard in anALT:

ALT
c ?? x
... extended rendezvous (no c?)
... guarded process (optional)

d ? y
... guarded process

In the above, if the first guard is chosen, the outputting process is rescheduled after the
extended rendezvous. The guarded process (at the same level of indentation as the extended
rendezvous process) is then executed. Often, there is nothing left to do after the rendezvous
process. Instead of writingSKIP, the guarded process mayin this casebe omitted.

A similar construction is needed when using variant (CASE) protocols:

PROTOCOL CONTROL
CASE
data; INT
stop

:

...

in ?? CASE
INT x:
data; x
... extended rendezvous (no in?)
... case process (optional)

stop
... extended rendezvous (no in?)
... case process (optional)

In both tag cases, the second indented process is executed after the outputting process has
resumed. This second process is always optional and if not present is assumed to beSkip.

5.3 Usage Restrictions

There is only one usage restriction on extended-input: the channel undergoing the extended
input may not be used in theextended-process. Any attempt to use the channel involved
would immediately deadlock, since the process on the other end of the channel is suspended.
This restriction is enforced by the compiler.

5.4 Implementation

The implementation of the extended rendezvous has required a number of additionalpseudo-
Transputer instructions, which are handled through appropriate entry-points in the run-time
kernel. Table 1 gives a brief list of the instructions added. However, no change is required in
the outputting process (needed for separate compilation) and there iszeroimpact on the cost
of ordinary (non-extended) communication.

336 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

To make the implementation easy, we arrange for the extended input (‘XIN’) to always
arrive second at the channel. This could be done by setting up a one-branchedALT construct.
We shortcut this with a new special instruction (‘XABLE’).

Mnemonic Parameters Description
XABLE chan-addr enable
XIN count, chan-addr, dest-addr input
XMIN chan-addr, dest-addr mobile input
XMIN64 chan-addr, dest-addr dynamic mobile input
XMINN count, chan-addr, dest-addr multi-dim dynamic mobile input
XEND chan-addr finish (resumes outputting process)

Table 1: Additional instructions to implement the extended rendezvous

For example, here is a simple extended rendezvous:

in ?? v
P ()

This generates the following sequence of instructions:

LD in -- load channel address
XABLE -- extended enable

LD ADDRESSOF v -- load destination address
LD in -- load channel address
LD count -- load (byte) count
XIN -- extended input

CALL P -- do P process

LD in -- load channel address
XEND -- resume outputting process

The actual code generated is likely to differ, depending on the nature of the ‘in’ and ‘v’. The
only descheduling instruction is ‘XABLE’. This waitsfor the outputting process to arrive at the
communication, or returns immediately if the outputting process is already in the channel.
XABLE pretends to be anALTing process when waiting, which causes an outputting process
to reschedule theALTer, rather than communicate (if it arrives second).

The ‘XIN’ instruction simply copies the data from the outputting process, or in the case
of ‘XMIN’ movesthe data from the outputting process. With the data in hand,P is run before
calling ‘XEND’ which reschedules the blocked outputting process and clears the channel.

When it occurs in anALT, the ‘XABLE’ call can be omitted – the outputting processmust
be in the channel word if the guard fired.ALTing will still incur the cost of the relevant
‘ENBC’‘and DISC’ handling, but this can be optionally inlined to minimize overheads.

Sequential and tagged protocols require slightly different code-generations, since we only
really need to perform the extended input once (protocols are implemented as sequential com-
munication). For sequential protocols, only the last input generates the extended sequence,
preceding inputs are handled as per usual. For example, the sequential protocol and extended
input:

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 337

PROTOCOL SEQP IS INT; MOBILE []BYTE:

...

INT x:
MOBILE []BYTE b:
in ?? x; b

P (..)

generates code equivalent to (the illegal):

INT x:
MOBILE []BYTE b:
SEQ

in ? x
in ?? b

P (..)

Case inputs follow a similar implementation, except for cases where the protocol contains
a data-less tag. For these, the first input generated is also extended, since it may be the
last input, but we won’t know until the tag has been inspected (which arrives on the first
communication). For example, the tagged (variant) protocol and extended input:

PROTOCOL VAR.PROTO
CASE

empty
buffer; MOBILE []BYTE

:

...

in ?? CASE
empty

P.empty (..) -- extended rendezvous (no in?)
Q.empty (..) -- case process (optional)

MOBILE []BYTE b:
buffer; b

P.buffer (..) -- extended rendezvous (no in?)
Q.buffer (..) -- case process (optional)

generates code equivalent to (the illegal):

BYTE $tag: -- compiler generated name
in ?? $tag

CASE $tag
empty

SEQ
P.empty (..) -- extended rendezvous
... do XEND -- reschedule outputting process
Q.empty (..) -- case process (optional)

buffer
MOBILE []BYTE b:
SEQ
... do XEND -- reschedule outputting process
in ?? b

P.buffer (..) -- extended rendezvous
Q.buffer (..) -- case process (optional)

338 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

Since ‘XEND’ is called additionally within each tag, it is not generated for the tag input itself.
This has the hidden advantage that if a process outputs a data-less tag which the inputter
doesn’t handle, the outputting process will be left blocked in the channel (trying to commu-
nicate the tag, from its point of view). The inputting process will generate a run-time error
andStop. Traditionally, the outputting process would be rescheduled and continue executing,
assuming the inputter had successfully participated in the communication – which is untrue if
the tag was unhandled. Normally, this is not a problem since the run-time error generated by
the inputting process causes the program to abort. However, the OS-grade run-time loaded
processes [29] do allow anoccam process to generate a run-time error andStopwithout
shutting down the whole system, in which case this problem becomes much more relevant.

An experimental compiler option is available which causes tagged-protocol inputs to al-
ways perform an extended input on the tag value, if that protocol containsdata-lesstags
which the inputting process does not handle. Instop error-mode(not handled properly yet),
where processes justStoprather than abort with run-time errors, this corrects a long-standing
(although minor) delinquency of theoccam language.

6 Dynamic Process Creation (theFORK)

The FORK is a way of launching a dynamic process which runs parallel to the dispatching
process. The early ideas aboutFORK were to allow an arbitrary process to be spawned (that
process being indented under theFORK). This was causing too many headaches in the im-
plementation however, so a more restricted approach has been taken for now: the parallel
creation of aPROC instance. This provides a nice way of giving the launched process an ini-
tial state – its parameters. The more generalFORK would need to provide a way of handling
scoping and parallel usage for free variables in theFORKed process. Controlling this through
the parameters of aPROC is much simpler.

The lifetime of aFORKedPROC and its dispatching process are controlled through a special
FORKING process constructor. This acts as a barrier which ensures anyFORKed processes are
complete before leaving theFORKING block. For example, here is part of much simplified
code from adynamicversion of theoccam web-server [15]:

PROC fe.proc (VAL INT n, D.CONN conn, SHARED C.CONN! to.sw)
...

:

PROC fe.farm (CHAN D.CONN in?, SHARED C.CONN! to.sw)
D.CONN local:
FORKING

INITIAL INT c IS 0:
WHILE TRUE

SEQ
in ? local
FORK fe.proc (c, local, CLONE to.sw)
c := c + 1

:

The ‘fe.farm’ process sits in a loop acceptingD.CONN’s (connection in the web-server) from
its ‘in’ channel. For eachD.CONN received, an instance of ‘fe.process’ is created. These
processes are actually pooled for recycling – see [1] for details on this.

The need for the ‘FORKING’ block may not seem immediately obvious, here less so than
in other cases, but the implementation requires it (section 6.2). A more obvious case is where
we share data withFORKed processes using the “#PRAGMA SHARED name” compiler directive
(to turn off usage and alias checking). In these cases, we must guarentee (completely) that
shared variables remain in scope for the whole lifetime of anyFORKed process.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 339

6.1 Semantics ofFORK Parameters

Unlike non-FORKedPROCs, whose parameters follow arenamingsemantics, the parameters
in a FORKed PROC have to follow achannel communicationsemantics. This has different
semantic effects to an ordinaryPROC call. We allow only the following types of parameters:

• VAL data-types: these arecopied into the FORKed process, regardless of size. This
differs from traditionalVAL parameter passing, which will abbreviate (rename) items
larger than 4 bytes (1 word).

• MOBILE data-types andMOBILE channel-type-ends: these aremovedinto theFORKed
process – i.e. theFORKING process loses them. If theFORKING process does not want
to lose them, it must pass aCLONEd argument4.

• Reference parameters: which have been explicitlyshared(with a compiler#PRAGMA)
and which are declaredoutsidetheFORKING block. This ensures that they remain in
scope for the lifetime of aFORKedPROC. Variables declararedwithin theFORKING block
may not be passed by reference.

The copying ofVAL data-types isrequired, as we wish to allow the code on the left (below):

FORKING
INT x:
SEQ

x := 42
FORK P (x) -- VAL param
x := x + 1
Q (x)

INT x:
SEQ

x := 42
PAR

P (x) -- VAL param
SEQ

x := x + 1
Q (x)

The left code (above) is not equivalent to the right code (which is, of course, illegal since
‘x’ is both read and assigned in parallel). TheFORKING block given above (left) is in fact
equivalent to the following processes:

CHAN INT c:
PAR

INT x:
SEQ

x := 42
c ! x
x := x + 1
Q (x)

INT x:
SEQ

c ? x
P (x)

Semantically, there is no difference between parameter passingVALs by communication (as
we have done here), and parameter passing usingINITIAL formals.INITIAL formal param-
eters [10, 30] should be used, but these are not currently supported by the compiler.

4For channel-types, only explicitlySHARED ends may beCLONEd

340 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

Some more interestingFORKs (i.e. with a loop), can also be expressed in our extended
occam. For example, the following two (columns of) processes are equivalent:

FORKING
WHILE TRUE

SEQ
P ()
FORK foo (42, 99)
Q ()

RECURSIVE PROC dispatch (CHAN BOOL c?)
SEQ

BOOL any:
c ? any
PAR

foo (42, 99)
dispatch (c?)

:

CHAN BOOL c:
PAR

dispatch (c?)

WHILE TRUE
SEQ

P ()
c ! TRUE
Q ()

6.2 Implementation

The implementation of theFORK is reasonably simple and is done in such a way that all the
memory handling is done in unit-cost time. In practice, it is fairly similar to the method used
to implement self-recursion in KRoC/Linux (a description of which can be found in [1]).
The FORKING construct introduces a special declaration, ‘$fork.barrier’, of the wholly
internal type ‘BARRIER’ [7]. Since only one process will ever actually synchronise on this
barrier, handling for multiple synchronisers can be skipped, simplifying the implementation
somewhat. TheBARRIER gets placed in the process’s workspace, along with other local
variables. Figure 8 shows the layout of the barrier in memory. The ‘Fptr’ field is used to hold
theFORKING process when it finished (assuming there are stillFORKed processes active). The
‘count’ field indicates how many processes are enrolled on the barrier.

count

Fptr

$fork.barrier

Figure 8: Layout of theFORKING barrier in workspace

When theFORKING block starts, the barrier is initialised such thatFptr is null andcount
is 0 (no enrolled processes). In the ETC [31] output of the compiler, this is just:

NULL
ST $fork.barrier + 1
LDC 0
ST $fork.barrier + 0

Each time aFORK happens, the memory required for the new process is allocated from the
free-lists. This is for bothworkspaceand vectorspace. The space allocated for the new

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 341

workspace is the process’s workspace requirements, plus any space required for copies of
VAL reference parameters, plus a small bit for housekeeping. If the process requiresmobile-
space[8, 9] then, although we can allocate it from the free-lists, freeing it is not allowed. This
is because pointers into its mobilespace may have migrated into the mobilespace of other pro-
cesses, and in turn we will aquire pointers into other mobilespaces. An implementation of
“mobilespace fixup” is possible, such that it copies data around to regain all its references,
but this would involve run-time overheads – we would need to track mobilespace creation,
have a mechanism for locating theshadow-slotof a given mobile and have a mechanism for
waiting for processes to free any in-use bits of our mobilespace.

Instead of just not freeing mobilespace, we free it to a private free-list which is allocated
in the mobilespace of theFORKING process. Figure 9 shows this arrangement, after the ‘data’
variable has been brought into scope, but before ‘thing’ has been forked off. The ‘data’
pointer may not necessarily be pointing at the mobilespace indicated, since it will move each
time ‘thing’ is forked (it is passed as a parameter); it may make its way back at a later stage
however.

mobile−
free

for thing
space

link

mobile−
free

for thing
space

link ...

 ...

MOBILE [4]INT data:

FORKING

 WHILE TRUE

 SEQ

 FORK thing (data)

SH(data)

FL(thing)

data

(mint)

Figure 9: Layout of free mobilespace forFORKed ‘thing’

At the point where theFORK occurs in figure 9, there are two free blocks of mobilespace
available. If the “FL(thing)” pointer ismint (most negative integer) then a new block is allo-
cated from the system. The word below the allocated block is usually used by the system in
order to free the block to the right free-list. Since this memory is not going back to the regular
free-lists, it is recycled to contain a ‘link’ field which links the free blocks together. Addi-
tionally, when the (dynamic) mobilespace is in use, this link field points at the ‘FL(thing)’
slot, so that we can free the memory when done. This is not entirely dissimilar to the method
used to implement mobilespace for recursive processes.

Once the new workspace has been allocated, a link to theBARRIER is stored and the
parameters are loaded in as appropiate (which will include vectorspace and mobilespace if
needed). The new process is enrolled on the barrier, which is a simple increment ofcount,
and then added to the run-queue for scheduling. As noted in the previous section, some
parameters require special treatment, such as copyingVAL parameters or incrementing the
reference-count for aSHARED channel-type variable. All this is done when the parameters are
loaded into the target workspace.

342 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

Once theFORK finishes, the first job is toresign from the barrier, which might need to
reschedule the blockedFORKING process if it finished first. The code generated for doing this
is:

-- decrement count field
LD $fork.barrier + 0 -- load count
ADC -1 -- minus 1
ST $fork.barrier + 0 -- store count

-- any waiting process ?
LD $fork.barrier + 1 -- load pointer
NULL -- load null
DIFF -- subtract
CJ :L1 -- jump if 0

-- yes, count 0 ?
LD $fork.barrier + 0 -- load count
CJ :L0 -- jump if 0
J :L1 -- jump

:L0
-- yes, reschedule it
LD $fork.barrier + 1 -- load pointer
NULL -- (load null)
ST $fork.barrier + 1 -- (clear pointer)
RUNP -- run process

:L1

After this, any memory used by the finishingFORKed process is returned to the appropiate
free-list. Although the ‘$fork.barrier’ really lives in the workspace of theFORKING pro-
cess, we saved a link to it while setting up for theFORK. Usually, a process terminates itself by
calling ‘STOPP’ (simple) or ‘ENDP’ (used withPARs). As it turns out, these are not much use
if we wish the process to free its own workspace before terminating. Trying to ‘MRELEASE’
after the ‘STOPP’ is a no-op and ‘MRELEASE’ before ‘STOPP’ would result in a block of free
memory being used (albeit briefly). Neither of these is really an option so another instruc-
tion has been added – ‘MRELEASEP’. This takes an ‘adjustment’ argument which is added to
‘Wptr’ (the workspace pointer) before freeing. Unlike ‘STOPP’, this instruction does not need
to save the return-address since it will never be run again.

When theFORKING block finishes, it attempts to synchronise on the barrier. If it seescount
as 0, it simple does nothing and continues with whatever follows theFORKING. Otherwise it
suspends itself in theFptr space:

LD $fork.barrier + 0 -- load count
CJ :L2 -- jump if 0
LDLP 0 -- load Wptr
ST $fork.barrier + 1 -- store pointer
STOPP -- deschedule

:L2

7 Process Priority

A major requirement of real-time control applications is a set of cyclic processes – one for
eachcontrol-law– managed so that each process completes each cycle within a fixed time.
The rate at which each process cycles will be constant, but will generally be different for
different processes.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 343

Transputer hardware [32, 33] supported two levels of priority, low and high, with fast pre-
emptive scheduling. The original KRoC [6] only supported a single level of priority, quietly
implementing ‘PRI PAR’ as just ‘PAR’. This is not sufficient to manage securely more than
one such ‘control-law’ peroccam program – even at very low processor loadings. Efficient
classical solutions (e.g.rate-monotonicor deadlinescheduling [34]) require multiple and
time-varying priorities. KRoC now provides 32 levels of priority.

There are ways of providing priority scheduling without having it as part of the run-time
system however, as has been done in [35] and [36]. For KRoC/Linux however, we are at the
mercy of the underlying operating-system and the way in which it performs priority schedul-
ing between OS processes. There are ways of forcingrun-to-completionbehaviour for OS
processes (fifo-scheduling), but at the expense of other OS processes (including interrupt han-
dlers) and the requirement forsuperuserprivileges. We are investigatingRaw Metaloccam
operating environments (RMOX) in whichoccam systems run without any OS support and
overheads, and for which all scheduling is under the total control of the KRoC kernel (with
minor modifications for this environemnt).

Standard CSP [3] does not include a treatment of process priority, and omitsPRI ALT,
which has existed inoccam for years. Even the denotational semantics foroccam [37, 38]
expressly omit any treatment of priority.CSPP [39, 40, 41, 42] addresses this deficiency by
providing a well-defined semantics forPRI PAR andoccam priority issues in general.

7.1 The Language Binding

Rather than implement priority in terms ofPRI PAR, we have gone for a more general – but
lower level – approach. The current implementation supports 32 distinct levels of priority, 0
being the highest and 31 being the lowest. The number of priority levels is limited in order
to be efficient in the implementation, but is theoretically extensible. To inspect or change its
own priority, a process may use the following compiler built-ins:

INT FUNCTION GETPRI ()
PROC SETPRI (VAL INT p)
PROC INCPRI ()
PROC DECPRI ()

The use of ‘SETPRI’/‘ INCPRI’/‘ DECPRI’ within a FUNCTION body is not allowed – to pre-
vent non-determinism in the resulting priority when evaluating expressions. ‘GETPRI’ is
wholly non-side-effecting, so can be used safely in expressions. The run-time implementa-
tion quietly ignores out-of-range values, mapping them to the lowest and highest priorities as
appropiate. ‘INCPRI’ is really a shorthand way of writing:

SETPRI (GETPRI() - 1)

and similarly for ‘DECPRI’, which is:

SETPRI (GETPRI() + 1)

A process may change its priority arbitrarily – it cannot change the priority of any other
process. Changing from a low to a high priority (decreasing priority level ‘p’) will generally
always succeed immediately, although there is a possibility of descheduling (discussed in
section 7.2). A change from a high to a low priority (increasing priority level ‘p’) will result
in a reschedule if another process is waiting at the target priority level or higher.

344 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

7.2 The Implementation

The implementation of process priority has attemped to be as non-intrusive as possible, in
order to minimize any loss of program performance. The basic ideas follow those proposed
by Ploeg et. al. [16].

A significant modification is the introduction of aprocess priority slotin the process
workspace. This has been inserted between the ‘Link’ and ‘Pointer’ fields, as shown in
figure 10. The “below workspace” slots are only used when a process is blocked – i.e. not on
any run-queue.

Time

TLink

Pointer

Priority

Link

IPtr

Temp

variables
2

0

1

−1

−2

−3

−4

−6

−5

additional workspace required for IO

Local

Parameters

"above workspace"

workspace required by all processes

Wptr

"below workspace"

additional workspace required for timers

Figure 10: New process workspace layout

The run-time kernel (a heavily modified CCSP [43]) maintains 32 seperate run-queues,
one for each priority level. Priority is managed through the use of two kernel variables,
PPriority andPState. PPriority holds the priority level for any running process and is what
occam processes retrieve when they call ‘GETPRI()’. PStateis a bit-field indicating at which
priority levels processes exist. This can be scanned in a single-cycle instruction (on i386
architectures at least) to determine the highest priority of any runnable process. A similar
approach is used to handle priority in MESH [44, 45].

At run-time, an additional synchronisation flag [6] is used to indicate the presence of
a higher-priority process. Once this flag is set, the scheduler will deschedule the current
process and reschedule at the first opportinity. This flag is needed because there are certain
cases where a process becomes runnable at a higher priority, but where the current process
cannot be immediately descheduled.

Generally speaking, a process can only be added to the run-queue through the use of the
‘STARTP’ and ‘RUNP’ instructions. ‘STARTP’ is used to create a new process, which is added to
the run-queue for scheduling. The newly created process inherits the current priority, so goes
on the current run-queue. As such, the ‘STARTP’ instruction can still be in-lined [46] with
very little extra cost for priority. ‘RUNP’ is slightly trickier, since the process being resumed
has its own priority stored in its ‘Priority’ workspace slot. This is examined and either placed
on the appropiate run-queue, or scheduled immediately, storing the current process on its
run-queue. The rescheding of processes following communication is also done this way (it is
effectivly aRUNP of the process which arrived at the channel first).

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 345

A process of a higher priority may also become runnable due to an external signal or the
completion of a blocking system-call [47]. For blocking system-calls, this means reducing
theO(1) collection operation into an orderO(n) operation, wheren is the number of com-
pleted system-calls. This is because we must examine each completed system-call in order
to place it on the right run-queue, or to schedule it immediately (because it was of a higher
priority than any other runnable processes). Typically,n is 1 or 2, so the loss associated with
handling priority is pretty small.

Once an event occurs such that a higher priority process becomes runnable, we need to
ensure that it will be rescheduled. Many times, this is not a problem since the scheduler will
be entered immediately (by the process causing that event) and the appropiate priority-related
actions taken. However, when the event is caused by some external action (e.g. a hardware
interrupt or timeout), there can be a problem. For example:

PAR
--{{{ high priority process
SEQ

SETPRI (0)
... block waiting for an external event

--}}}
--{{{ low priority process
SEQ

SETPRI (1)
WHILE TRUE

... pure background computation
--}}}

Here the high-priority process will be scheduled first and immediately blocks waiting for
some external event. The scheduler then schedules the low-priority process, based on the
absence of anything else runnable. This goes into an infinite background computation loop.
When the event occurs, the relevant scheduler synchronisation flag will be set, however the
scheduler is never entered again to be able to notice this and resume the blocked process. Not
very desirable.

The solution to this was constructed by adding a compile-time option to make any gen-
eratedbackward jumpsrescheduling points. This conforms to the transputer implementation
[33], which specifies the jump (‘J’) instruction to be a potential descheduling point. The
KRoC option (‘-P’) is passed to the translator (tranx86 [46]), which inserts the relevant
code to reschedule if needed. A series of inline checks is generated at such points, which
check the scheduler sync flags and timer-queue for activity.

Channel cost Process startup/
Translator (INT communication) shutdown cost

‘tranpc’ (old KRoC) 233 196

‘tranx86’ 112 52
‘tranx86’ (inlining) 52 28
‘tranx86’ (priority) 120 108

‘tranx86’ (pri + inline) 77 79
‘tranx86’ (pri + ‘ -P’) 119 116

‘tranx86’ (pri + inline + ‘-P’) 75 67

Table 2: Results for the ‘commstime’ benchmark on an 800 MHz Pentium-3.Values are in nano-seconds.

346 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

Table 2 shows results for the ‘commstime’ benchmark program [6], which measures the
cost of communication and process creation/shutdown. The process network forcommstime

is shown in figure 11. These times were measured on a moderately idle 800 MHz P3. The
difference in loop times forCHAN INT communication, with and without priority, is not sig-
nificant (8 ns), but the process startup/shutdown time doubles (to 108 ns). Enablinginlining
reduces the process startup/shutdown time to 79 ns – an increase of 51 ns. Turning on the
‘-P’ (reschedule on jump) option with inlining actually has a slight positive impact, attributed
to cache noise on the benchmark.

Overall though, these overheads remain at the order of 100 nano-seconds (or 100 cycles),
even though the kernel is now supporting 32 levels of priority.

prefix(0)

succ

delta
consume

Figure 11: Process network for the ‘commstime’ benchmark program.

7.3 Benchmarking Priority Handling

Figure 12 shows the process network and code for a simple priority benchmark program.
The benchmark is comprised of three processes, two interleaving producers and a consumer.
The consumer is run at the lowest priority level (31) while the consumers alternate between
priority levels 1 through 4. The arrangement of priority and communication in this program
forces the scheduling to happen in a deterministic way, althoughin generalone cannot use
priority to guarantee determinism.

SETPRI (1)

c!

SETPRI (3)

c!

SEQ

SEQ

SETPRI (2)

d!

SETPRI (4)

d!

SEQ

c?

d?

c?

d?

C

B

A

d

c

Figure 12: Priority benchmark process network and loop body code.

Both theA andB processes sit in loops changing priority and communicating with theC

process. At the point where the loops start,A andB are blocked in channels ‘c’ and ‘d’ at pri-
orities 1 and 2 respectively. ProcessC at priority level 31 is the only runnable process, which
starts by commnicating on ‘c’, thereby waking upA, which gets rescheduled immediately
because it is of a higher priority.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 347

31:c?

31:d?

31:d?

4:d!

1

1

3:c!

31:c?

31:c?

31:d?

31:d?

3

0:setpri(1)

1:c!

3:c!

31:c?

0

0

0

1

1

2

2

3

3

4:d!3

4:setpri(2)

2:d!2

3:setpri(1)

1:c!2

0:setpri(2)

2:d!0

0:setpri(31)

2:setpri(4)

1:setpri(3)

1:setpri(3)

2:setpri(4)

3:[term]

4:[term] 31:[term]

loop
timed

A B C

runnable
process

blocked
process

Figure 13: Execution trace for priority benchmark program.

Figure 13 shows the execution trace of the benchmark, indicating the timed (and looping)
section. The priority overheads are calculated by subtracting the time required for a priority-
free version of the loops from the prioritised version. There are a total of 8 context switches
here, four for rescheduling when a process blocks in a channel (A andB processes), and four
for rescheduling a higher-priority process with which processC communicates. There are
also other overheads associated with changing priority, since the current run-queue must be
saved and a new one loaded. The non-prioritised version of the loops use an average of 8
context switches, the exact number depends on the scheduling order of processes. It is also
sensitive to the policy of rescheduling blocked processes – i.e. whether we continue running,
it continues running, or neither continue running.

The priority overhead for this benchmark loop is 752ns, measured on an 800 MHz Pen-
tium 3. Interestingly, with the ‘-p’ flag (check sync flags and timer on backward jumps),
the overhead is reduced to 728ns, again attributed to cache effects. Overall, the run-queue is
changed 12 times in the prioritised version, giving an average overhead of 63ns for a priority-
level change (around 50 machine cycles).

348 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

8 Conclusions and Future Work

At the time of writing, the extensions presented here are almost ready for release. There are
one or two things which are currently unhandled by the compiler, but these will be finished
off in version 1.3.3 of KRoC/Linux. A new experimentaloccam web-server (which uses
FORKs and channel-types) is currently running live at [15] and successfully serving pages.

It is also hoped that improvement in the translator’s handling of priority will yield better
benchmark times for ‘commstime’ (Table 2). This is especially true for inlining, where the
presence of priority often causes non-inline translations for some instructions.

It has been pointed out that allowing run-time failures (with OS-grade loadableoccam
processes [29]) presents the possibility of dynamic memory being “lost” (inside the termi-
nated process or processes). Although it is not currently implemented, it is possible to recover
the memory. The solution is also required for correct loading/saving of these loadableoc-
cam processes, although the current (somewhat naı̈ve) implementation of this works. The
required addition is in theory quite simple – generate in-line tables of workspace offsets for
channels and dynamic-pointers. This will allow the run-time system to free dynamic memory
used by anevictedprocess. It is hoped to implement this in the near future, since without it
saving and restoring loadable processes has the potential to go wrong.

Another aspect of dynamicoccam not covered here is the issue ofmobile processes(or
agents). These are processes which contain a seperate state in addition to their local work-
space and vectorspace, and which can be communicated around a process network carrying
that state with them. Such capabilities already exist for JCSP [48, 49]. Foroccam, there is
still a slight issue with appropiate syntax for this, since the persistent-state and initialisation
code need to be seperated from thePROC contents slightly. However, the initialisation code
shouldnot be in the scope of thePROC parameters, since they are supplied each time the
mobile process is run.

Finally, as mentioned at the start of section 7, we are investigatingRaw Metaloccam
operating environments (RMOX) in whichoccam systems run without any OS support and
overheads, and for which all scheduling is under the total control of the KRoC kernel. We
are using the Flux OSKit [50] to provide the boot mechanism and access to a flat (physical)
memory space, beyond that very little else of the OSKit is used. This work is being done in
collaboration with Brian Vinter from the University of Southern Denmark.

9 Acknowledgements

The authors would like to thank EPSRC for funding this work (in the form of a research
studentship), and the anonymous reviewers who provided useful and detailed feedback on an
earlier revision of this work. Also many thanks to the people who have been patient with
the various new features of KRoC/Linux, submitting valuable bug reports and providing
useful thoughts, in particular: David Wood, Adrian Lawrence, Hiroshi Nakahara and Mario
Schweigler.

References

[1] F.R.M. Barnes and P.H. Welch. Prioritised Dynamic Communicating Processes: Part II. In James Pascoe,
Peter Welch, Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002,
WoTUG-25, Concurrent Systems Engineering, pages 363–380, IOS Press, Amsterdam, The Netherlands,
September 2002.

[2] C.A.R. Hoare. Communicating Sequential Processes.Communications of the ACM, 21(8):666–677,
August 1978.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 349

[3] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985. ISBN: 0-13-153271-5.

[4] Inmos Limited. occam 2.1 Reference Manual. Technical report, Inmos Limited, May 1995. Available at:
http://wotug.ukc.ac.uk/parallel/occam/documentation/.

[5] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1997. ISBN: 0-13-674409-5.

[6] P.H. Welch and D.C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems Engineering,
pages 143–166. World occam and Transputer User Group, IOS Press, Netherlands, March 1996. ISBN:
90-5199-261-0.

[7] Peter H. Welch and David C. Wood. Higher Levels of Process Synchronisation. In A. Bakkers, editor,
Parallel Programming and Java, Proceedings of WoTUG 20, volume 50 ofConcurrent Systems Engineer-
ing, pages 104–129, Amsterdam, The Netherlands, April 1997. World occam and Transputer User Group
(WoTUG), IOS Press. ISBN: 90-5199-336-6.

[8] F.R.M. Barnes and P.H. Welch. Mobile Data Types for Communicating Processes. InProceedings of
the 2001 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2001), volume 1, pages 20–26. CSREA press, June 2001. ISBN: 1-892512-66-1.

[9] F.R.M. Barnes and P.H. Welch. Mobile Data, Dynamic Allocation and Zero Aliasing: anoccam Exper-
iment. In Majid Mirmehdi Alan Chalmers and Henk Muller, editors,Communicating Process Architec-
tures 2001, volume 59 ofConcurrent Systems Engineering, pages 243–264, Amsterdam, The Netherlands,
September 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[10] Geoff Barrett. occam 3 Reference Manual. Technical report, Inmos Limited, March 1992. Available at:
http://wotug.ukc.ac.uk/parallel/occam/documentation/.

[11] Henk L. Muller and David May. A simple protocol to communicate channels over channels. InEURO-
PAR ’98 Parallel Processing, LNCS 1470, pages 591–600, Southampton, UK, September 1998. Springer
Verlag.

[12] David May and Henk Muller. Copying, Moving and Borrowing semantics. In Majid Mirmehdi
Alan Chalmers and Henk Muller, editors,Communicating Process Architectures 2001, volume 59 of
Concurrent Systems Engineering, pages 15–26, Amsterdam, The Netherlands, September 2001. WoTUG,
IOS Press. ISBN: 1-58603-202-X.

[13] F.R.M.Barnes P.H.Welch, J.Moores and D.C.Wood. The KRoC Home Page, 2000. Available at:
http://www.cs.ukc.ac.uk/projects/ofa/kroc/.

[14] F.R.M. Barnes. Various extensions to theoccam compiler, 2001. Available at:
http://www.cs.ukc.ac.uk/projects/ofa/kroc/occ21-extensions.html.

[15] F.R.M. Barnes. Theoccam Web-Server Home Page, 2000. Available at:
http://wotug.ukc.ac.uk/ocweb/.

[16] E. Ploeg, J. P. E. Sunter, A. W. P. Bakkers, and H. W. Roebbers. Dedicated multi-priority scheduling. In
Roger Miles and Alan Chalmers, editors,Proceedings of WoTUG-17: Progress in Transputer and Occam
Research, volume 38 ofTransputer and Occam Engineering, pages 18–31. IOS Press, The Netherlands,
April 1994. ISBN: 90-5199-163-0.

[17] P.H. Welch. Five Essays on Occam.Occam User Group Newsletter, 2, January 1985. Also Internal
Report, Training Department, GEC Avionics Ltd., Airport Works, Rochester, KENT ME2 1XX.

[18] David C. Wood. KRoC – Calling C Functions fromoccam. Technical report, Computing Laboratory,
University of Kent at Canterbury, August 1998.

[19] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-Level Paradigms for Deadlock-Free High-
Performance Systems. In R. Grebe, J. Hektor, S.C. Hilton, M.R. Jane, and P.H. Welch, editors,Transputer
Applications and Systems ’93, Proceedings of the 1993 World Transputer Congress, volume 2, pages
981–1004, Aachen, Germany, September 1993. IOS Press, Netherlands. ISBN 90-5199-140-1.

350 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I

[20] David May and Henk L. Muller. Using Channels for Multimedia Communication. Technical report,
University of Bristol, Department of Computer Science, February 1998.

[21] T.S. Locke. Towards a Viable Alternative to OO – extending theoccam/CSP programming model. In
Majid Mirmehdi Alan Chalmers and Henk Muller, editors,Communicating Process Architectures 2001,
volume 59 ofConcurrent Systems Engineering, pages 329–349, Amsterdam, The Netherlands, September
2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[22] D.C.Wood and J.Moores. User-Defined Data Types and Operators inoccam. In B.M.Cook, editor,
Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Systems
Engineering Series, pages 121–146. WoTUG, IOS Press, the Netherlands, April 1999. ISBN: 90-5199-
480-X.

[23] P.H.Welch. Process Oriented Design for Java – Concurrency for All. InPDPTA 2000, volume 1, pages
51–57. CSREA Press, June 2000. ISBN: 1-892512-52-1.

[24] G.E. Collins. A method for overlapping and erasure of lists.Communications of the ACM, 3(12):655–657,
1960.

[25] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for Automatic Dynamic Memory Man-
agement. Wiley, New York, 1996, reprint 1997.

[26] Per Brinch Hansen. Efficient Parallel Recursion.ACM SIGPLAN Notices, 30(12):9–16, December
1995. Reprinted in:The Origin of Concurrent Programming, edited by Per Brinch Hansen, pp. 525-534,
Springer, ISBN 0-387-95401-5. 2002.

[27] Per Brinch Hansen. Efficient Parallel Recursion. In Per Brinch Hansen, editor,The Search for Simplicity:
Essays in Parallel Programming, pages 509–518. IEEE Computer Society, Los Alamitos, California,
1996. chapter 25.

[28] P.H. Welch. An occam Approach to Transputer Engineering. InProceedings of the 3rd. Conference on
Hypercube Concurrent Computers and Applications, Pasadena, California, USA, January 1988. ACM,
ACM Conference Proceedings.

[29] F.R.M. Barnes. Dynamicoccam Processes, 2000. Fringe-session presentation at CPA-2000, available at:
http://frmb.home.cern.ch/frmb/pubs/dynoccam-slides.ps.

[30] James Moores.The Design and Implementation of occam/CSP Support for a Range of Languages and
Platforms. PhD thesis, The University of Kent at Canterbury, Canterbury, Kent. CT2 7NF, December
2000.

[31] M.D.Poole. Extended Transputer Code - a Target-Independent Representation of Parallel Programs.
In P.H.Welch and A.W.P.Bakkers, editors,Architectures, Languages and Patterns for Parallel and Dis-
tributed Applications, Proceedings of WoTUG 21, volume 52 ofConcurrent Systems Engineering, pages
187–198, Amsterdam, The Netherlands, April 1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

[32] P.W. Thompson M.D. May and P.H. Welch.Networks, Routers and Transputers, volume 32 ofTransputer
andoccam Engineering Series. IOS Press, 1993.

[33] Inmos Limited.The T9000 Transputer Instruction Set Manual. SGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[34] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-Time Environ-
ment.Journal of the ACM, 20(1):46–61, January 1973.

[35] J.P.E. Sunter, K.C.J. Wijbrans, and A.W.P. Bakkers. Cooperative Priority Scheduling in Occam. In H.S.M.
Zedan, editor,Proceedings of the 13th occam User Group Technical Meeting: Real-Time Systems with
Transputers, Transputer and Occam Engineering, pages 175–185. IOS Press, The Netherlands, September
1990. ISBN: 90-5199-041-3.

[36] P.H. Welch. Multi-Priority Scheduling for Transputer-Based Real-Time Control. In H.S.M. Zedan, editor,
Proceedings of the 13th occam User Group Technical Meeting: Real-Time Systems with Transputers,
Transputer and Occam Engineering, pages 198–214. IOS Press, The Netherlands, September 1990. ISBN:
90-5199-041-3.

F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – I 351

[37] A.W. Roscoe M.H. Goldsmith and B.G.O. Scott. Denotational Semantics foroccam2, Part 1. InTrans-
puter Communications, volume 1 (2), pages 65–91. Wiley and Sons Ltd., UK, November 1993.

[38] A.W. Roscoe M.H. Goldsmith and B.G.O. Scott. Denotational Semantics foroccam2, Part 2. InTrans-
puter Communications, volume 2 (1), pages 25–67. Wiley and Sons Ltd., UK, March 1994.

[39] A.E.Lawrence. Extending CSP. In P.H.Welch and A.W.P.Bakkers, editors,Architectures, Languages and
Patterns for Parallel and Distributed Applications, Proceedings of WoTUG 21, volume 52 ofConcurrent
Systems Engineering, pages 111–131, Amsterdam, The Netherlands, April 1998. WoTUG, IOS Press.
ISBN: 90-5199-391-9.

[40] A.E. Lawrence. Successes and Failures: Extending CSP. In Majid Mirmehdi Alan Chalmers and Henk
Muller, editors,Communicating Process Architectures 2001, volume 59 ofConcurrent Systems Engineer-
ing, pages 49–66, Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN: 1-58603-
202-X.

[41] A.E. Lawrence. CSPP and Event Priority. In Majid Mirmehdi Alan Chalmers and Henk Muller, editors,
Communicating Process Architectures 2001, volume 59 ofConcurrent Systems Engineering, pages 67–92,
Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[42] Adrian Lawrence. Acceptances, Behaviours and Infinite Activity in CSPP. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002, WoTUG-25,
Concurrent Systems Engineering, pages 17–38, IOS Press, Amsterdam, The Netherlands, September
2002.

[43] J.Moores. CCSP – a Portable CSP-based Run-time System Supporting C andoccam. In B.M.Cook, edi-
tor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Systems
Engineering series, pages 147–168, Amsterdam, the Netherlands, April 1999. WoTUG, IOS Press. ISBN:
90-5199-480-X.

[44] R.W. Dobinson M. Boosten and P.D.V. van der Stok. Fine-Grain Parallel Processing on Commodity
Platforms. InWoTUG 22, volume 57 ofConcurrent Systems Engineering, pages 263–276. IOS Press, the
Netherlands, April 1999. ISBN: 90-5199-480-X.

[45] R.W. Dobinson M. Boosten and P.D.V. van der Stok. MESH: MEssaging and ScHeduling for Fine-Grain
Parallel Processing on Commodity Platforms. InProceedings of the 1999 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA’1999). CSREA press, June
1999. ISBN: 1-892512-15-7.

[46] F.R.M. Barnes.tranx86 – an Optimising ETC to IA32 Translator. In Majid Mirmehdi Alan Chalmers
and Henk Muller, editors,Communicating Process Architectures 2001, volume 59 ofConcurrent Systems
Engineering, pages 265–282, Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN:
1-58603-202-X.

[47] F.R.M. Barnes. Blocking System Calls in KRoC/Linux. In P.H.Welch and A.W.P.Bakkers, editors,Com-
municating Process Architectures, volume 58 ofConcurrent Systems Engineering, pages 155–178, Ams-
terdam, the Netherlands, September 2000. WoTUG, IOS Press. ISBN: 1-58603-077-9.

[48] P.H.Welch, J.R.Aldous, and J.Foster. CSP networking for java (JCSP.net). In P.M.A.Sloot, C.J.K.Tan,
J.J.Dongarra, and A.G.Hoekstra, editors,Computational Science - ICCS 2002, volume 2330 ofLecture
Notes in Computer Science, pages 695–708. Springer-Verlag, April 2002. ISBN: 3-540-43593-X.

[49] P.H. Welch and B. Vinter. Cluster Computing and JCSP Networking. In James Pascoe, Peter Welch,
Roger Loader, and Vaidy Sunderam, editors,Communicating Process Architectures 2002, WoTUG-25,
Concurrent Systems Engineering, pages 213–232, IOS Press, Amsterdam, The Netherlands, September
2002.

[50] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. The flux OSKit: A
substrate for kernel and language research. InSymposium on Operating Systems Principles, pages 38–51,
1997. Software available from:http://www.cs.utah.edu/flux/oskit/.

352

