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Abstract. This paper illustrates the work presented in ‘Part I’, giving additional ex-
amples of use of channel-types, extended rendezvous andFORKs that lean towards real
applications. Also presented are a number of other additions and extensions to theoc-
cam language that correct, tidy up or complete facilities that have long existed. These
include fixing thePRI ALT bug, allowing an unconditionalSKIP guard as the last in
aPRI ALT, replicatorSTEP sizes, run-time computedPAR replication counts,RESULT
parameters and abbreviations, nestedPROTOCOL definitions, inline array constructors
and parallel recursion. All are available in the latest release (1.3.3) of KRoC, freely
available (GPL/open source) from:www.cs.ukc.ac.uk/projects/ofa/kroc/ .

1 Introduction

The previous paper [1] presented a number of extensions to theoccam [2, 3] language within
the framework of KRoC/Linux [4]. This paper provides further examples for some of those
extensions, specifically mobile channel-types, the extended rendezvous and theFORK.

Section 2 gives an example of a farmer-worker-harvester farm, implemented usingFORK

to create worker processes as needed. Also presented is a more traditional use ofFORKs,
using explicitly (compiler#PRAGMA) SHARED variables.

The extended rendezvous can be used tointercepta channel, without affecting the end-
to-end synchronisation between the processes either side. When used with (mobile) channel-
types, the extended rendezvous can be used tore-wire the process network (e.g. to plug in
infrastructure fordistributedoccam channels – KRoC.net [5]) without affecting the syn-
chronisation between the affected processes. Section 4 gives an example of this, along with
a more complex example which uses the ‘FORK’ (dynamic parallel process creation) as well.

Section 5 gives details of a number of other additions to theoccam language, which
provide various new features and tidy up some old ones. These modifications have little
or no impact on the syntax of the language, being mostly changes to theoccam compiler
(occ21) and the supporting run-time kernel (a heavily modified version of CCSP [6]).

2 Dynamic Process Farms

One application ofFORK is for the dynamic creation and control of processfarms. Figure 1
shows the process network for a worker-farm, with apool.manager to control the number
of FORKed processes running.

The ‘farmer’ generates work packets (maybe by receiving them from an external source
– not shown) and distributes them to a pool of ‘worker’s. The system arranges for a minimum
(‘min.idle’) number of ‘worker’ processes to always be available for processing new jobs.
New ‘worker’s are started by the ‘pool.manager’ process, which maintains a count of the
number of idle processes,FORKing more at the start of the loop if needed (which will always
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Figure 1: AFORKed worker-farm process network

be the case the first time round, providing that ‘min.idle’ is greater than zero). In this code,
the number of worker processes will only ever increase (to suit demand).

The channel-type based code which implements these processes is as follows:

CHAN TYPE WORK.IN -- server view (farmer)
MOBILE RECORD

CHAN BOOL request?:
CHAN MOBILE []BYTE work.packet!:

:

CHAN TYPE WORK.OUT -- server view (harvester)
MOBILE RECORD

CHAN MOBILE []BYTE result?:
:

CHAN TYPE SIGNAL -- server view (pool.manager)
MOBILE RECORD

CHAN INT idle.count?: -- working (-1) or idle (+1)
:

PROC worker (SHARED WORK.IN! in, SHARED WORK.OUT! out, SHARED SIGNAL! signal)
WHILE TRUE

MOBILE []BYTE job:
SEQ

CLAIM in
SEQ

in[request] ! TRUE
in[work.packet] ? job

CLAIM signal
signal[idle.count] ! -1 -- tell manager we’re working

... do work on ‘job’ (will involve communicating results to ‘out’)
CLAIM signal
signal[idle.count] ! +1 -- tell manager we’re done

:

PROC harvester (WORK.OUT? from.workers)
WHILE TRUE

MOBILE []BYTE result:
SEQ

from.workers[result] ? result
... consume result

:
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PROC farmer (WORK.IN? to.workers)
WHILE TRUE

MOBILE []BYTE work:
SEQ

... manufacture work
BOOL any:
to.workers[request] ? any
to.workers[work.packet] ! work

:

PROC pool.manager (VAL INT min.idle, SHARED WORK.IN! work.to.workers,
SHARED WORK.OUT! work.from.workers)

SHARED SIGNAL! signal.cli:
SIGNAL? signal.svr:
SEQ

signal.cli, signal.svr := MOBILE SIGNAL

FORKING
INITIAL INT n.idle IS 0:
WHILE TRUE
SEQ

IF
n.idle < min.idle

SEQ
SEQ i = 0 FOR min.idle - n.idle

FORK worker (CLONE work.to.workers, CLONE work.from.workers,
CLONE signal.cli)

n.idle := min.idle
TRUE

SKIP

INT n:
SEQ

signal.svr[idle.count] ? n -- working (-1) or idle (+1)
n.idle := n.idle + n

:

The code which sets this network up is as follows:

VAL INT min.idle IS ...:
SHARED WORK.IN! i.cli:
WORK.IN? i.svr:
SHARED WORK.OUT! o.cli:
WORK.OUT? o.svr:

SEQ
i.cli, i.svr := MOBILE WORK.IN
o.cli, o.svr := MOBILE WORK.OUT

PAR
farmer (i.svr)
pool.manager (min.idle, i.cli, o.cli)
harvester (o.svr)

:

Adding functionality to shut-down worker processes and to limit the number idle to some
maximum is trivial and is left as an exercise for the reader.
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Note that theMOBILE BYTE[] arrays are communicated efficientlyby referenceand that
no aliasing dangers (e.g. throughparallel reference) are possible. Also, no memory leaks
occur as the space for such arrays is automatically recycled when the variables go out of
scope or are overwritten.

3 Data Sharing andFORKed Processes

With the introduction of dynamic process creation using theFORK, new opportunities for
shared datarace-hazardsarise. Currently these can be handled through the use of explicit
compiler directives to disable usage-checking (‘#PRAGMA SHARED’) and locks such as the
SEMAPHORE and CREW [7] user-defined types[8] that provide, respectively, exclusive and
CREW (concurrent read exclusive write) access to shared data. Data passed by reference
to FORKed processes must have parallel usage checking disabled, else that will be quite prop-
erly rejected. However, no checks are then made to ensure correct usage patterns patterns for
lock claimsandreleases– or even that the necessary locks are passed and used at all! We
are considering providing direct language support for parallel data sharing that will enforce
secure (and very low overhead) control [7].

Meanwhile, here is an example of data sharing acrossFORKed processes that has the
necessary security explicitly programmed:

#USE "course.lib"
#INCLUDE "crew.inc"

PROC worker (VAL INT id, []INT data, CREW data.crew, SHARED CHAN BYTE out!)
SEQ

CLAIM out
SEQ
out.string ("worker ", 0, out!)
out.int (id, 0, out!)
out.string (" starting*n", 0, out!)

WHILE TRUE
SEQ
claim.read.crew (data.crew)
... read from ‘data’
release.read.crew (data.crew)
... local processing
claim.write.crew (data.crew)
... write results back to ‘data’
release.write.crew (data.crew)

:

PROC example (CHAN BYTE kyb?, SHARED CHAN BYTE scr!, err!)
INT n:
[128]INT shared.data:
#PRAGMA SHARED shared.data
CREW data.crew:
#PRAGMA SHARED data.crew
SEQ

initialise.crew (data.crew)

CLAIM scr
ask.int ("how many ? ", n, 4, kyb?, scr!)

FORKING
SEQ i = 0 FOR n
FORK worker (i, data, data.crew, CLONE scr!)

:
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This simply asks the user for a count, then launches that many ‘worker’ processes. Each
process launched claims the shared output channel ‘out’ (to the screen), reports its existence
then goes into an infinite processing loop – having released the shared output channel (con-
trolled by theCLAIM). The first half of the loop claimsconcurrent readaccess to the data,
reads the needed data for processing (not shown), then releases the read lock. Local process-
ing on the data is then performed (not shown). The remainder of the loop claimsexclusive
write access to the data, writes any results (not shown), then releases the write lock.

The channel ‘out’ in the ‘worker’ process and the ‘scr’ and ‘err’ channels on the
‘example’ process are ananonymousform of a SHARED channel-type, explained fully in
section 5.9.

This example is such that theFORKING is not strictly required, since the following two
processes are equivalent (and this equivalence holds for any parameters that thePROC ‘P’
might take):

FORKING
SEQ i = 0 FOR n

FORK P (i)

PAR i = 0 FOR n
P (i)

where we make use of the n-replicatedPAR extension (section 5.4).

4 Extended Rendezvous and Channel-Types

Figure 2 shows a multiple client-server network that used a sharedany-to-anychannel to
enable a client and server to find each other. Here is example network code for this:

CHAN TYPE APP.LINK -- client/server channel-type
MOBILE RECORD

CHAN INT next.event?:
CHAN MOBILE []BYTE event.data!:

:

... client and server PROCs

SHARED CHAN APP.LINK? link: -- any-to-any mobile channel (section 5.9)
PAR

PAR i = 0 FOR num.clients
client (CLONE link!) -- start client with CLONE of the output-end

PAR i = 0 FOR num.servers
server (CLONE link?) -- start server with CLONE of the input-end

ServersClients

Figure 2: Multiple client-server network



358 F.R.M.Barnes and P.H.Welch / Prioritised Dynamic Communicating Processes – II

A client seeking a server makes a shared mobile channel-structure (APP.LINK) and out-
puts theserver-endof this (of type ‘APP.LINK?’) towards the set of servers hopefully waiting
on the shared channel:

PROC client (SHARED CHAN APP.LINK? out!)
WHILE TRUE

APP.LINK? l.svr: -- server-end
APP.LINK! l.cli: -- client-end
SEQ

l.cli, l.svr := MOBILE APP.LINK -- create one-to-one
-- mobile channel-structure

CLAIM out
out ! l.svr -- communicate server-end (and lose it)

... use ‘l.cli’ to communicate with a server
:

Here is an outline for one of the servers:

PROC server (SHARED CHAN APP.LINK? in?)
WHILE TRUE

APP.LINK? svr: -- server-end
SEQ

CLAIM in
in ? svr -- get server-end from a client

... use ‘svr’ to communicate with the client
:

Figure 3 shows the network after a client and server have communicated, now connected
(directly) by aprivateone-to-one channel-structure of typeAPP.LINK.

ServersClients

Figure 3: Multiple client-server network with a connected client and server

Using the extended rendezvous with channel-types opens up some interesting possibili-
ties. Figure 4 shows a multiple client-server network with a tap process. Clients and servers
still see shared channel-ends plugged into them, carrying the sameserver-end channel struc-
turesas before. This version of ‘tap’ is special in that it intercepts and keeps the channel-end
being passed, creates a new channel structure (of the appropriate type) and communicates
the newserverend to the original destination. This code usesany-to-oneandone-to-any
channels. Since the tap process in this example does not interfere with the synchronisation
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between the clients and servers, they (clients and servers) can only see the link as anany-to-
any channel – they cannot detect the tap! Note thatno changehas been made to the client
and server processes.

ServersClients

tap

Figure 4: Multiple client-server network with a ‘tap’ process

The ‘tap’ process here (using the ‘APP.LINK’ channel-type) is:

PROC tap.app.link (CHAN APP.LINK? in?, out!, SHARED LOG! to.log)
WHILE TRUE

APP.LINK? c.svr, l.svr:
APP.LINK! l.cli:
SEQ

l.cli, l.svr := MOBILE APP.LINK
in ?? c.svr

out ! l.svr
FORK link.tap (c.svr, l.cli, CLONE to.log)

:

The ‘tap.app.link’ processFORKs ‘link.tap’ each time a client communicates a server-
end to one of the servers. Note the use of the extended rendezvous to prevent the client
being aware that its output line is being tapped. Figure 5 shows the network after a client has
communicated with a server.

TheFORKed ‘link.tap’ process connects the two processes, and can be implemented so
that its presence is also undetectable to the client and server processes connected either side.
Figure 5 also shows a ‘logger’ process, to which theFORKed ‘link.tap’ processes report.
A simple form of the ‘link.tap’ process could be:

PROC link.tap (APP.LINK? from.cli, APP.LINK! to.svr, SHARED LOG! to.log)
PAR

WHILE TRUE
INT e:
from.cli[next.event] ?? e

to.svr[next.event] ! e
CLAIM to.log
... report event on ‘to.log’

WHILE TRUE
MOBILE []BYTE b:
to.svr[event.data] ?? b

from.cli[event.data] ! b
CLAIM to.log
... report event on ‘to.log’

:
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Figure 5: Multiple client-server network after forking a ‘link.tap’

PAR is used here to handle both channels in the chan-type independendly. This is also non-
terminating, which in a real-life situation is probably undesirable. For real-life protocols,
the point at which the client and server processes either side “let go” of the channels should
be deducible from the data communicated. Sometimes the usage pattern may be that the
channels only ever get used once, in which case the ‘WHILE TRUE’s can be reduced to ‘SEQ’.
ALTing implementations are also perfectly valid and probably desirable when we wish to
arrange termination by inspection of the data.

The ‘link.tap’ need not be so simple however. It might be the case that the clients and
servers reside on different machines, with functionally dummy ‘server’ and ‘client’ processes
at either end, incorporating the ‘tap’ and necessary network infrastructure. In this case,
communication of the channel-end would result in a network-aware process being created on
either side to handle communication. In order to create the remote network-handling channel
(and possibly the whole remote ‘server’ as well), some form of networking infrastructure
needs to be available. As long as the network-handling processes synchronise properly over
the network, the ‘client’ and ‘server’ at either side will see the link as synchronous and will
be unaware of the networking. Figure 6 shows what such a network might look like.

Since the extended rendezvous can be used to intercept channels, without requiring mod-
ifications in the (originally) connected processes, this provides a simple method for distribut-
ing existingoccam programs amongst nodes on a network. The only modifications required
would be in the code which sets up the process network, which could be reduced to just a sin-
gle ‘#USE’ compiler directive. TheUSEd code would implement the network-aware versions
of existing processes, descoping the original local versions. This works equally well for code
with and without channel-types.

Building the infrastructure to support such a distributed system is not the direct concern
of this work, which merely provides a new way of doing it – hopefully much simpler, more
secure and more efficient than was previously possible. Vella [9] provides a lot of insight
into building such systems. The work there was done on the Sparc version of KRoC, in
the assembler kernel. For the Linux/i386 version of KRoC, we can use theoccam socket
library [10] to implement the networking, as has been done by Goodacre [11] in a student
project and by Schweigler [5] in his M.Sc. thesis. A similar functionality also exists in
JCSP [12, 13, 14], which additionally allows the migration of processes.
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Figure 6: Remotely connected client-server network after communication and creation of link processes

5 Additional occam Extensions

This section describes a number of additional extensions tooccam, which tidy-up minor
deficiencies in the language as it stood and also adds to it (such as the aforementionedn-
replicatedPAR).

5.1 STEP in Replicators

One thing whichoccam has always lacked is a way of specifying astepsize in replicators.
Strictly speaking, it is not needed, since the same effect is easy to achieve with the appropriate
abbreviation. Syntactically, a simple “STEP exp” may be added to replicators – for example,
to sum the odd elements of anINT array:

INT odd.sum:
SEQ

odd.sum := 0
SEQ i = 1 FOR (SIZE array) / 2 STEP 2

odd.sum := odd.sum + array[i]

The equivalent code, without aSTEP in the replicator, would be:

INT odd.sum:
SEQ

odd.sum := 0
SEQ i = 1 FOR (SIZE array) / 2

VAL INT i IS (2 * i) - 1:
odd.sum := odd.sum + array[i]

In the same way as thestart and length expressions in a replicator, variables used in the
step expression arefixed– i.e. they may not be the target of assignment or communication
in the replicated process. The implementation of differentSTEP sizes is handled with two
new loop-end instructions. One of these is specific for a step-size of−1, the other handles
arbitrary step sizes.

STEP expressions may be used in all replicators:IF, ALT, SEQ andPAR.
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5.2 ModifiedALT Disabling Sequence

TheALT is implemented byenablinganddisablinginstructions for each type ofguard. When
theALT is entered, the guards are enabled one-by-one. After enabling, if none of the guards
are ready, theALTing process is descheduled – it will be rescheduled by a timeout (on a
timeout guard), or by an outputting process in the case of channel guards. Once rescheduled
(or if any ready guards were found during enabling), each guard is disabled. This is done
sequentially from the first guard to the last guard (same as the enabling sequence). For
each disabling guard, if the guard hasfired (become ready), a pointer to theguarded-process
is stored inside theALTer’s workspace, but only if no previous guards have become ready
(determined by checking the guarded-process pointer in theALTer).

The same scheme was used in the implementation of bothALTs andPRI ALTs, such that
there was no visible difference between them. They are semantically quite different however.

A new set of disabling instructions (table 1) have been added to the underlyingvirtual
transputer byte-code [15, 16], whichdo notcheck the existing state of the guarded-process
pointer. i.e. if the guard is ready, these new instructionsfire it regardless of any previously
fired guards. This causes the last ready guard examined to be selected, always. The modified
PRI ALT disabling sequence simply processes the guards in reverse order, such that the first
ready guard under thePRI ALT is selected, but without the cost of the standard disabling test.
This fixes an old bug in thePRI ALT, which allowed the possibility of the second of two
(identical) guards to be wrongly selected (if the guard became ready between disabling of the
first and second instances of it in thePRI ALT).

Mnemonic Parameters Description
NDISC process-addr, pre-cond, chan-addrdisable channel
NDISS process-addr, pre-cond disable skip guard
NDIST process-addr, pre-cond, timeout disable timeout guard

Table 1: NewALT disabling instructions

The modified implementation of the normalALT is similar to the existing one, except that
we use the new instructions. This means that in the implementation of the standardALT,
the last ready guard will be selected, rather than the first (as was the case previously). This
dramatically alters the behaviour betweenPRI ALT andALT at run-time, in the hope that it
will make program errors more obvious – i.e. those where the programmer should have used
PRI ALT, but instead used justALT.

The reverse disabling sequence forPRI ALT has only been made possible by theSTEP

extension for replicators, since previously there was no cheap way to run a replicatedALT

backwards – it would have involved a subtraction for each replication.

5.3 ModifiedSKIP in ALT Checking

A further modification toALTs has been implemented, which changes the waySKIP guards
are checked. Previously,SKIP guards have always required an explicit pre-condition, often
just set toTRUE. This restriction has been relaxed forSKIP guardswhich appear as the last
guard in aPRI ALT. Any other placement of theSKIP guard must still use the explicit pre-
condition.

When the pre-condition and guard are ‘TRUE & SKIP’ (or where the precondition evalu-
ates toTRUE in the compiler), checks are made to ensure that it isnot within a plainALT and
only used as the last guard within aPRI ALT. Any checks that fail generate a warning from
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the compiler, unless it is instrict mode, where it will generate an error instead. For example,
the following will generate a compiler warning (or error in strict mode):

ALT
c ? x

... do something
TRUE & SKIP

... do something else

But the obvious polling idiom:

PRI ALT
c ? x

... do something
SKIP

... do something else

is now accepted.

5.4 N-replicatedPARs

This extension to the compiler allows a replicatedPAR to have a non-constant replicator count.
In terms of the language, there is almost no change, except that now we allow non-constant
counts onPAR replicators. The drawback is that the compiler can no longer easily check the
parallel usage of variables and channels inside the replicated process. This is a result of the
way usage checking is performed – i.e. by brute force expansion of the replication (whose
count value must therefore be known statically). In contrast, Southampton’s Portableoccam
Compiler (SPOC) [17] uses an algebraic checker and thus does slightly better here (unless
there’s amodoperator involved).

Then-replicatedPAR is implemented using the Brinch-Hansen style memory pools [18].
The workspace and vectorspace for the processes are allocated from the free-lists and put
back once the process has finished. Unlike theFORK ([1]), memory is only returned to the
free lists after all the replicatedPAR processes have terminated. This is partly due to the
way in which replicatedPARs are handled inside the compiler. In theory, there should be no
problem in releasing resources early – processes just need toresign [7] from the (implicit)
PAR-barrier rather thansyncon it. We will be looking into this.

Mobilespace is handled slightly differently, since it may not be returned to the free-lists
after use – parts of it may have beenmovedelsewhere. UnlikeFORKed mobilespaces, which
sit on free-lists inside their respective enclosing mobilespaces, these mobilespaces are kept
inside a dynamic array, which is referenced by the encompassing mobilespace. The differ-
ence is largely due to performance considerations – it is cheaper to perform a read-only array
subscription than it is to pull a block off a free-list (which involves both a read and a write).
There is a cost associated with the handling of this array though, since it must be able to
extend dynamically – e.g., if the replicator is executed with successively increasing counts.

5.5 Recursion inoccam

Recursion inoccam has traditionally been prevented for two main reasons – one practical
and one specifically invented to frustrate it. Firstly, the previous lack of dynamic memory
would have imposed restrictions on the depth of recursion. Secondly, the scoping of names
in occam is such that they only become visible at the end of their declaration. ForPROCs,
this means its own name is not valid inside its own code.
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It is possible to fake recursion, often quite convincingly, by using the scoping of names to
an advantage [19]. In aPROC called ‘foo’, any previously definedPROCs also called ‘foo’ are
in scope and perfectly valid. However, this often breaks when thePROC involved is declared
at the outermost level – most UNIX linkers do not care much for multiply defined symbols.
Additionally, the depth of recursion is still restricted and there is not much scope for recovery
at thebottom-mostlevel – i.e. the first definedPROC of that name.

A version of recursion using a special locally definedPROC (with a very similar name)
has been implemented for the Sparc version of KRoC by Wood in [20]. The Linux version
of KRoC (i.e. the work presented here) supports recursion by a slightly different language
mechanism, but with virtually the same (Brinch Hansen [18]) implementation for workspace
and vectorspace.PROCs which wish to be recursive must indicate this in their name using the
‘REC’ or ‘ RECURSIVE’ keywords, for example:

RECURSIVE PROC thing (...)
... body of thing

:

This modifier simply brings the name ‘thing’ into scope early, thereby permitting its use
within the body of ‘thing’. Another example of parallel recursion is the ‘sieve’ process
from the parallel recursive version of the Sieve of Eratosthenes:

RECURSIVE PROC sieve (VAL INT count, CHAN INT in?, out!)
IF

count = 0
WHILE TRUE
INT tmp:
SEQ

in ? tmp
out ! tmp

TRUE
CHAN INT c:
INT n:
SEQ
in ? n
out ! n
PAR

filter (n, in?, c!)
sieve (count - 1, c?, out!)

:

The ‘count’ parameter is used to limit the recursion. In the test-harness for this, it is set to a
little under 4800 initially, enough to generate all the prime numbers less than 1 million.

The implementation for recursive workspace and vectorspace is handled using the stan-
dard free-lists, allocated dynamically on recursive instances. Mobilespace is implemented
using a form of nested free-list. In the above example, if ‘sieve’ required mobilespace
(which is not the case here) apointer-slotwould be allocated in its mobilespace for holding
the mobilespace of the recursive instance. This is initialised toMOSTNEGINT on PROC entry,
along with the mobiles already required, and allocated at the point of the recursive instance.

5.6 RESULT Parameters and Abbreviations

Result parameters were suggested by Barrett foroccam 3 [21]. These are reference pa-
rameters which explicitly return results, as opposed to standard reference parameters, whose
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input/output behaviour is unknown. Theundefined-usage checker[22] expects reference pa-
rameters to have defined arguments before the call and to leave defined data before returning.
RESULT parameters change the behaviour of the undefinedness checker, which only checks
for definednessat the point thePROC finishes, not when it is called. For example:

PROC sum.ints (CHAN INT in?, RESULT INT r)
SEQ

r := 0
... read integers and modify r

:

...

INT x:
SEQ

sum.ints (data.in?, x)
data.out ! x

Without theRESULT parameter, the undefined-usage checker will complain about ‘x’ not
being defined at the point of the call to ‘sum.ints’. (In actual fact, this will compile without
warning since the undefined-checker examines the body of ‘sum.ints’ and can see that ‘x’
is not read from before being written to. Separate compilation of aRESULT-less ‘sum.ints’
will generate this warning – or an error in strict mode).

Result abbreviations follow similar lines, i.e. only pragmatic changes in the compiler.
Result abbreviations are less common than their parameter counterparts, but are encountered
when aRESULT parameter is turned into an abbreviation in anINLINE PROC. Inlining the
above code for example gives:

...

INT x:
SEQ

--{{{ INLINE PROC
CHAN INT in? IS data.in?:
RESULT INT r IS x:
SEQ

r := 0
... read integers and modify r

--}}}

data.out ! x

Both RESULT parameters and abbreviations involve no significant changes in the compiler
code-generator and are handled in the same way as standard reference parameters and abbre-
viations – i.e. just dropping theRESULT keyword.

5.7 NestedPROTOCOL Definitions

One minor irritation of the existingoccam was the inability to use user-definedPROTOCOLs
as a component of anotherPROTOCOL. This is something we frequently wish to do, the alter-
native being to copy the relevant chunk ofPROTOCOL.
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An example of a nestedsequentialPROTOCOL is:

PROTOCOL PACKET IS INT; INT::[]BYTE: -- id; data

PROTOCOL LINE.DATA
CASE

packet; PACKET
timeout

:

Previously, this would not have been allowed by the compiler and we would have had to
expand the declaration ouselves to:

PROTOCOL LINE.DATA
CASE

packet; INT; INT::[]BYTE: -- id; data
timeout

:

Variant (CASE) protocol nesting is handled slightly differently. Using the above ‘LINE.DATA’
protocol for example:

PROTOCOL INTERNAL
CASE

error; INT -- internal error
FROM LINE.DATA -- include LINE.DATA cases

:

The use of the ‘FROM’ keyword is just to emphasize the point that we areliterally including
the casesfrom the ‘LINE.DATA’ protocol. There is no mysterious sub-typing or inheritance
here. Variant protocolinheritanceand usage have been investigated by Locke [23] and is
possible to implement, but has not been yet. The proposed mechanism would allow a ‘CHAN

OF LINE.DATA’ to be supplied as the argument to a ‘CHAN OF INTERNAL’ formal parameter.
This is not the case as things stand however – ‘INTERNAL’ and ‘LINE.DATA’ are unrelated
protocols.

When nesting variant protocols, the compiler checks that all the tags remain distinct, as
it does for a flat protocol definition. Any conflicts result in a standard compiler error being
produced.

5.8 Array Constructors

Array constructors add a simple new functionality tooccam. It is useful mainly because
the equivalent code looks somewhat peculiar. The syntax of array construction here is very
similar to the similar list construction operation commonly found infunctional languages
(Miranda [24] for example). Their principle use is to initialise the elements of an array, for
example:

[10]INT X:
SEQ
X := [i = 0 FOR SIZE X | (3 * i) - 1]:

... use ‘X’

The array constructor is an expression, so it must follow existing rules for such – i.e. no
side-effects. Although this example is trivial (we could have just used a simpleSEQ loop to
initialise the array), it may be used in communication, as a parameter, or even be subscripted
or sliced.
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The general form of the array constructor is as follows:

“[” name = start FOR count [ STEP stride ] “|” expression“]”

Only thecountis used for generating the resulting array. Thestart andstrideaffect only the
replicatornamevalue in theexpression. Thename, start, strideandcounttypes are allINTs.

Array constructors can be nested to createn-dimensional arrays. For example:

[100][100]REAL64 mesh:
SEQ

mesh := [i = 0 FOR SIZE mesh |
[j = 0 FOR SIZE mesh[i] |

(SIN ((REAL64 TRUNC i) / scale)) *
(COS ((REAL64 TRUNC j) / scale)) ]]

... use computed ‘mesh’

The array constructor is implemented by turning it (internally) into aVALOF process. These
are essentiallyin-line FUNCTIONs, but due to their very peculiar syntax are not used much.
The earlier example of a one-dimensional constructor assigned to ‘X’ is expanded by the
compiler into:

[10]INT X:
SEQ

X := ([10]INT temp:
VALOF

SEQ i = 0 FOR SIZE X
temp[i] := (3 * i) - 1

RESULT temp
)

... use ‘X’

The expansion of the ‘mesh’ expression is much more convoluted, as is the case generally
with inline VALOF processes. Array constructors provide this functionality, but in a nice,
simple and consistent way.

In the same way as standard arrays (and array returningFUNCTIONs/VALOFs), array con-
structors may be subscripted or used in a slice. The compiler will generatelazy evaluation
code to compute these where possible, including any necessary checks for array-bounds. For
example:

INT v, i:
SEQ

... compute ‘i’
v := [n = 10 FOR 50 STEP -1 | foo (n)][i]

simplifies to:

INT v, i:
SEQ

... compute ‘i’
SEQ

... check to ensure that ‘i’ is in the closed range [0-49]
v := foo (10 + (i*(-1)))

Additionally, if ‘foo’ is an INLINE FUNCTION, then the code will reduce to just its body
preceded by aVAL INT abbreviation for ‘(10 + (i*(-1)))’.
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5.9 Anonymous Channel-Types

Anonymous channel-types are a convenient way of creating a sharedany-to-anychannel.
Syntactically their declaration is like that of an ordinaryoccam channel, but with a ‘SHARED’
prefix. For example:

SHARED CHAN INT c:
P -- process in the scope of ‘c’

Internally, the compiler turns the declaration of ‘c’ into a channel-type definition (suitably
scoped), and a pair of channel-ends (along with suitable initialisation code) which will form
the real shared channel. The types and variables created internally by the compiler have
invalid occam names, which prevents the accidental de-scoping of a real variable by a com-
piler generated variable (which would be a serious error). The type and code generated for
the above declaration is:

CHAN TYPE $anon.INT -- compiler generated type
MOBILE RECORD

CHAN INT x?:
:

SHARED $anon.INT! c$cli -- shared client-end
SHARED $anon.INT? c$svr -- shared server-end
SEQ
c$cli, c$svr := MOBILE $anon.INT -- allocate and initialise channel
P

Within the body of process ‘P’, any occurrences of theSHARED channel ‘c’ will be replaced by
either: the ‘c$cli’ or ‘ c$svr’ end as appropriate; or the appropriate end with a subscription
to access the ‘real’ channel (field ‘x’ in theCHAN TYPE definition). This selection is controlled
by the usage of ‘c’, i.e. whether a ‘SHARED CHAN INT’ or a ‘CHAN INT’ is expected. In the
latter case, the shared channel must beCLAIMed before use.

When used inPROC parameters, anonymous channel-types undergo a similar transforma-
tion, but apart from any needed type declaration no extra code is generated – only the type
and name of the variable are changed. For example:

PROC foo (SHARED CHAN INT out!)
CLAIM out -- grab channel-end

SEQ i = 42 FOR 100 STEP -3 -- send 100 messages
out ! i -- (no competitor interleaving)

:

PROC bar (SHARED CHAN INT out!)
foo (out!)

:

is transformed into:

PROC foo (SHARED $anon.INT! out$cli) -- transformed PROC header
CLAIM out$cli -- transformed claim

SEQ i = 42 FOR 100 STEP -3
out$cli[x] ! i -- transformed communication

:

PROC bar (SHARED $anon.INT! out$cli) -- transformed PROC header
foo (out$cli) -- transformed PROC call

:
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Anonymous (shared) channel-types are still subject to the same parallel usage and aliasing
rules as named shared channels. Thus in order to effectively share between parallel processes,
CLONEs must be used.

6 Conclusions and Further Work

This paper has demonstrated the use of theFORK, mobile channel-structure and extended-
rendezvous additions tooccam and KRoC/Linux, as well as a number of extensions to the
existing syntax and semantics. The examples presented so far have been fairly simple, but
their scope is far reaching. A new version of theoccam web-server visible at [25] is already
using these extensions successfully. Other demonstrator applications are on the way.

It is hoped that users of KRoC/Linux andoccam will find these extensions useful and
report feedback to the community.
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