
Communicating Process Architectures – 2003
Jan F.Broenink       and Gerald H. Hilderink   (Eds.)
IOS Press, 2003

199

Flexible, Transparent and Dynamic
occam Networking With KR oC.net

Mario SCHWEIGLER
ms44@kent.ac.uk / research@informatico.de

Fred BARNES
frmb2@kent.ac.uk / fred@frmb.org

Peter WELCH
P.H.Welch@kent.ac.uk

Computing Laboratory, University of Kent
Canterbury, Kent, CT2 7NF, UK

Abstract. KRoC.net is an extension to KRoC supporting the distribution ofoccam
channels over networks, including the internet. Starting in 2001, the development of
KRoC.net has gone through a number of stages, each one making the system more
flexible, transparent and dynamic. It now enables theoccam programmer to set up
and close network channels dynamically. Configuration has been simplified. Alloc-
cam PROTOCOLs can now be sent over network channels, without need for conversion.
Many of the new dynamic features inoccam have been used to improve KRoC.net.
Many of the concepts in KRoC.net are similar to those in the JCSP Network Edition
(JCSP.net), KRoC.net’s counterpart in the JCSP world. This paper will give an over-
view over KRoC.net, its usage, its design and implementation, and its future. It will
also provide some benchmarks and discuss how the newoccam features are being
used in the latest KRoC.net version.

1 Introduction and Motivation

Originally, occam1 [1] was targeted at multi-processor (transputer) platforms for some spe-
cific embedded system application. That platform was finite and fixed atconfiguration time.
There have been projects to target multi-processor platforms other than transputers. An ex-
ample is Vella’s work on portingoccam to Networks of Workstations (NoWs) [2, 3] which
uses an interface to communicate to the network, calledocnet. This interface is a layer
between theoccam kernel and the operating system and the networking hardware. Like the
original networks of transputers, this system was static and the layout of the network had
to be configured in advance. Another example is MESH [4] which is completely hardware
dependent. MESH is a messaging and scheduling system that enables accessing network
hardware (e.g. ethernet cards) and provides user-level scheduling in Linux. The original ver-
sion of CCSP [5], on which the currentoccam kernel is based, could access the messaging
capabilities of MESH. But again, this was hardware dependent and static.

We want our new [6, 7, 8]occam also to target multi-processor platforms, but we want
to be abe to use it for an open-ended network of machines, connected by network channels,
whose size and topology are constructed dynamically atruntimeand may be changing. One
important aim is to enableoccam applications to use the infrastructure of the largest network

1occam is a trademark of ST Microelectronics.
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available — the internet. The internet plays an increasingly important role in today’s society,
and we wantoccam programs to be able to utilise this global network by simple and (in
terms of CSP) safe channel communication. This requires an approach that is completely
different to the transputer-style configuration and other static solutions.

This is where KRoC.net comes into play. KRoC.net is an extension to KRoC [9] which
provides a framework enabling theoccam programmer to set up channels between processes
that are running on different machines. KRoC.net has been improved significantly since its
first versions [10, 11]. In this process, many of the new features in KRoC were utilised, in
particular the new Generic Protocol Converters described in section 3.

KRoC.net has now become a very dynamic tool which enables the programmer to set
up network channels at runtime just when they are needed. The configuration of KRoC.net
has been simplified, and a new URL-based channel setup mechanism has been introduced,
allowing greater flexibility in the creation of network channels. KRoC.net’s network channels
have reached a high level of transparency now. They can now be plugged into any oldoccam
process without the need to change its code. Alloccam PROTOCOLs are now supported for
network channels, including components that areMOBILE [6].

KRoC.net is the KRoC/occam counterpart of theJCSP Network Edition(JCSP.net) [12,
13], the network extension of JCSP (CSP for Java) [14]. Many of the concepts in KRoC.net
and JCSP.net are similar. Development of JCSP.net has recently been taken over by Quick-
stone Technologies. Some of the general mechanisms in KRoC.net are similar to theVirtual
Channel Processor(VCP) of the T9000 transputer [15].

Sections 2 through 4 discuss the infrastructure and implementation of KRoC.net, along
with the new paradigm of network channel-types and the new Generic Protocol Converters.
Section 5 describes in detail how network channel-types are being set up by theoccam
programmer, and will give an outlook to future adaptions in theoccam language which will
make this setup process easier for the programmer. Section 6 describes the configuration of
KRoC.net. The performance of KRoC.net and some benchmarks are discussed in section 7.
Section 8 summarises the paper and gives some ideas about future work on the KRoC.net
project.

2 Network Channel-types

The original idea behind KRoC.net was to distribute normaloccam channels over networks,
i.e. implement their behaviour, so that from the point of view of the processes which are con-
nected by the channels, their behaviour would be identical, no matter whether the channels
were local or networked.

In classicaloccam, there was no such notion as a channel-end, the paradigm used was
always the whole channel. For a distributed system, however, it is natural for each particip-
ating processor to set up its end of a network channel separately — so we need this concept
of channel-ends. Another newly introduced dynamic feature ofoccam greatly extends and
empowers KRoC.net’s model of distributed communication. We refer tochannel-types[7, 8],
which are bundles of channels, dynamically created and mobile. These also have well-defined
ends, calledclient-endandserver-endfor convenience.

2.1 ‘Classical’ Local Channel-types

To remind people about how channel-types work, here is a short example. A channel-type
would be declared like this:
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CHAN TYPE THING
MOBILE RECORD

CHAN INT req?: -- request channel
CHAN MOBILE []BYTE reply!: -- reply channel

:

THING is a channel-type which contains two channels, onerequest channel and onereply
channel. The direction specifiers (‘?’ and ‘!’) are from the point of view of the server-end
of the channel-type, i.e. it would read fromreq and write toreply.

To create an instance of a channel-type, we have to declare two variables, one for the
server-end and one for the client-end, and allocate them as in pairs:

THING? thing.svr: -- declare server-end
THING! thing.cli: -- declare client-end
SEQ

thing.svr, thing.cli := MOBILE THING -- allocation
... use them

The server-end of a channel-type is marked by a ‘?’, the client-end by a ‘!’. To use the
channel-type, one would typically pass the ends of the channel-type to different processes
who would then communicate over the channels inside the channel-type:

PROC server(THING? thing.svr)
WHILE TRUE

INT size:
MOBILE []BYTE buffer:
SEQ

thing.svr[req] ? size -- get size
buffer := MOBILE [size]BYTE -- allocate buffer
... fill buffer with data
thing.svr[reply] ! buffer -- send buffer back

:

PROC client(THING! thing.cli)
WHILE TRUE

INT size:
MOBILE []BYTE buffer:
SEQ

... set size
thing.cli[req] ! size -- send size wanted
thing.cli[reply] ? buffer -- get buffer
... use buffer

:

THING? thing.svr:
THING! thing.cli:
SEQ

thing.svr, thing.cli := MOBILE THING
PAR

server(thing.svr) -- pass server-end to server
client(thing.cli) -- pass client-end to client

Alternatively, channel-type ends can be sent over channels:
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PROC generator(CHAN THING? svr.out!, CHAN THING! cli.out!)
THING? thing.svr:
THING! thing.cli:
SEQ

thing.svr, thing.cli := MOBILE THING
svr.out ! thing.svr -- send server-end
cli.out ! thing.cli -- send client-end

:

PROC server(CHAN THING? svr.in?)
THING? thing.svr:
SEQ

svr.in ? thing.svr -- get server-end
... use thing.svr

:

PROC client(CHAN THING! cli.in?)
THING! thing.cli:
SEQ

cli.in ? thing.cli -- get client-end
... use thing.cli

:

CHAN THING? svr.chan:
CHAN THING! cli.chan:
PAR

generator(svr.chan!, cli.chan!)
server(svr.chan?)
client(cli.chan?)

A general remark to the terms“client-end” and“server-end”: for channel-types, these are
just names in order to be able to distinguish between the two ends of the channel-type. They
may, of course, be used in a ‘genuine’ client/server relationship, but this is not a must.
Channel-types may well be used for peer-to-peer communication, in which case “client”
and “server” would not mean much more than, for instance, “left-hand side” and “right-hand
side”.

2.2 The New Paradigm of Network Channel-types

KRoC.net implements the behaviour of channel-types in a networking context. This means
that internally, KRoC.net only deals with network channel-types (NCTs) that contain network
channels. Using this construct, we are able to implement networked versions of both channel-
typesand classicaloccam channels (which are simply treated as channel-types containing
just one single channel). Theoccam programmer creates a client-end of a channel-type
on one machine, and a server-end of the same channel-type on another machine, and then
connects them with KRoC.net’s network infrastructure. For the application level processes
dealing with the client- and the server-ends of that NCT, their behaviours are the same as if is
was a local channel-type. For theoccam programmer, it is also possible to connect ordinary
occam channels via KRoC.net, but internally, KRoC.net treats those as NCTs containing
one single network channel. Details about how NCTs are set up are described in section 5.

JCSP.net’s channels are automaticallyany-to-one, which is actually a little odd and will
be tidied up in a future release. KRoC.net’s channels and channel-types have to be explicitly
declared to beSHARED at the writing- (or client-) ends if we want that property. As with
JCSP.net, KRoC net does not support networked sharing of the reading- (or server-) ends of
channels/channel-types — although we are working on it!
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The newoccam channel-types offer a more flexible way of setting up two-way com-
munication across a network than JCSP.net’s basic channels orConnection channels. This
becomes especially useful for those withSHARED client-ends. The networked “client” must
CLAIM its end before it can use it — just like its non-networked version. For the duration
of theCLAIM, other clients are locked out and a two-way conversation to the server can be
completed without interference.

Currently, both ends of networked channel-types must beCLAIMed — even if neither is
SHARED. This is for technical reasons associated with secure shut-down or movement. That
does not apply, of course, to the use of non-networked channel-type ends. This is one area of
non-transparency in KRoC.net that we are still considering how best to resolve. There is an
argument to enforceCLAIMing on these channel-types regardless of whether they areSHARED

(or networked), which would remove the anomaly. That argument concerns building in an
extra level of checked security to enforce correct patterns of use of the channel components
making up the type — but we leave that to a later paper.

3 Newoccam Features Used in KRoC.net

Our aim is to make network channelstransparent— i.e. make their behaviour indistinguish-
able from that of normal channels. Two important requirements have to be met in order
to achieve this aim: Firstly, network channels have to retain CSP channel semantics; and
secondly, they must be able to carry anyPROTOCOL — from plain data types to user-defined
variant protocols.

3.1 The Extended Rendezvous

The first requirement can be met by utilising the extended rendezvous [6], that enables chan-
nel synchronisation to be ‘extended’ across multiple communicating processes. It operates
in such a way that if a simple ‘tap’ process is inserted between two previously directly con-
nected processes, those two processes will be unable to identify its presence in the network
(or lack of). For example, anINT ‘tap’ process is simply:

PROC tap(CHAN INT in?, report!, out!)
WHILE TRUE

INT i:
in ?? i -- extended input

out ! i -- extended process
report ! i -- following process (assume always taken)

:

The extended process is executed whilst the outputting process (connected toin) remains
blocked. This can be any process — or processes — provided that they do not attempt
to communicate onin (which would immediately deadlock). The ‘following’ process is
optional. If present, it is executedafter the communication onin has completed (and the
outputting process resumed). This ‘following’ process is provided mainly for use inALTs
and variant (‘CASE’) inputs, where expressing the same behaviour without it can be tricky.

Note that neither of the processes connected toin? andout! need any modification. The
only changes are in the network setup code (the addition of an extra channel and thetap

process). Processes that extend communication, such astap, can be connected together in a
pipeline, extending the communication through multiple processes.

For KRoC.net, the extended rendezvous provides the mechanism that allows commu-
nication through multiple processes (the networking infrastructure), without affecting the
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end-to-end synchronisation of the two communicating processes. Between two remote pro-
cesses, each communication is extended whilst the networking infrastructure performs the
communication.

Specifically, the OCP (Output Control Process, see section 4) performs an extended input
from the local application (viaDECODE.CHANNEL, explained in the following section), com-
municating the data and waiting for the acknowledgement inside the extended process. The
acknowledgement will only be sent by the remote ICP (Input Control Process) when it has
communicated successfully with the application.

3.2 Generic Protocol Converters

The second requirement, that of being able to communicate any channelPROTOCOL, is
handled by Generic Protocol Converters (GPCs), two compiler built-inPROCs named
“DECODE.CHANNEL” and “ENCODE.CHANNEL”. Essentially, these provide a pair of processes
that extend communication, of anyPROTOCOL, between two processes either side, but use a
well-known protocol for the channel between themselves.

The PROTOCOL used for communication betweenDECODE.CHANNEL and
ENCODE.CHANNEL is a sequential protocol carrying twoINTs. This protocol must be
defined by the application. For example:

PROTOCOL LINK IS INT; INT:

The information carried by this protocol is pointer and size pairs. When the application
outputs into a channel connected toDECODE.CHANNEL, the extended-process within com-
municates the address and size (of the application data) to its output channel. The address
communicated is only valid during an extended process whose input acquired it, or where
extra synchronisations are put in place to prevent the communication completing.

The reverse of this operation is implemented byENCODE.CHANNEL. It receives twoINTs
on its input channel (using an extended input), which it then communicates to the process
connected on its output channel — using the same applicationPROTOCOL as was used for
DECODE.CHANNEL’s input channel. The two built-inPROCs do not have fixed parameter types
and are prototyped by the (illegal)occam:

PROC DECODE.CHANNEL(CHAN * in?, CHAN ** term?, CHAN *** out!)
PROC ENCODE.CHANNEL(CHAN *** in?, CHAN ** term?, CHAN * out!)

The PROTOCOL represented by*** is the link protocol — the earlier ‘LINK’ for example.
Theterm channels may be typed as eitherINT or BOOL and are used to shut-down the GPCs
(which otherwise run indefinitely). ThePROTOCOL represented by* is the application pro-
tocol. These twoPROCs do not check that* is the same on both sides. This is done by the
KRoC.net infrastructure which ensures that thePROTOCOL.HASH value on both sides is the
same. “PROTOCOL.HASH” is a simple compiler built-in that evaluates to a unique2 constant
for the given type, protocol or name (variables, abbreviations,PROCs andFUNCTIONs), that is
passed as a parameter.

2The hashing algorithm used forPROTOCOL.HASH generates sufficiently unique values, but there exists a
slim probability of the same value being generated for two completely different types/protocols.
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3.2.1 Pointer Handling

When the synchronisation is extended correctly,ENCODE.CHANNEL will receive and encode
a valid address. However, this is only true for same/shared memory systems. Within the
KRoC.net framework, whereDECODE.CHANNEL andENCODE.CHANNEL are expected to be on
physically different systems, the data output fromDECODE.CHANNEL must becopied.

Within a networked system, the data (address/size pair) received byENCODE.CHANNEL

will be for a local memory block — allocated by the networking infrastructure. Thus,
unless such data is actuallymoved into the application (by mobile communication),
ENCODE.CHANNEL must ensure that the memory block is freed after the communication.

The (dynamic) memory blocks consumed byENCODE.CHANNEL are expected to be dy-
namic MOBILE arrays (ofBYTEs). To convert between a dynamic mobile array and ad-
dress/size pairs, two additional compiler built-inPROCs are provided: “DETACH.DYNMOB”
and “ATTACH.DYNMOB”. These have the simplePROC signatures:

PROC DETACH.DYNMOB(MOBILE []BYTE var, RESULT INT addr, size)
PROC ATTACH.DYNMOB(INT addr, size, RESULT MOBILE []BYTE var)

ThesePROCs work in such a way that detaching a dynamic mobile leaves that mobileun-
defined, and attaching a dynamic mobile does the same for theINT variables. Furthermore,
ATTACH.DYNMOB sets the address (inaddr) to zero after attaching the mobile. These ensure
that a mobile variable cannot be accessed after it has been ‘detached’, and that any address
used to ‘attach’ a mobile is left undefined (and invalid).

Given the operation ofENCODE.CHANNEL, that either releases or moves the dynamic mo-
biles communicated into it, connectingDECODE.CHANNEL andENCODE.CHANNEL directly is
not possible. The address/size pair communicated byDECODE.CHANNEL is that of theoccam
data item being communicated, which is not necessarily a dynamic mobile array.

To network an encode/decode pair locally requires the use of an intermediary “link” pro-
cess. Such a process also serves as a good example of using the dynamic mobile attach/detach
operations:

PROC link(CHAN LINK in?, out!)
WHILE TRUE

INT addr, size:
in ?? addr; size -- extended input

MOBILE []BYTE tmp, new:
SEQ

ATTACH.DYNMOB(addr, size, tmp) -- access the data as a
-- dynamic mobile array

new := CLONE tmp -- copy into a new array
DETACH.DYNMOB(tmp, addr, size) -- detach false dynamic array
DETACH.DYNMOB(new, addr, size) -- detach new dynamic array
out ! addr; size -- communicate

:

When received byENCODE.CHANNEL, the dynamic mobile created by theCLONE here is either
freed, if the outputPROTOCOL is nota dynamic mobile, ormovedif it is.

3.2.2 Mobile Protocol Conversion

The handling of ordinary data types, such as those allocated in workspace or vectorspace,
is trivial — communication alwayscopies. Thus, whenENCODE.CHANNEL receives an ad-
dress/size pair (using an extended input), it simply engages in communication directly with
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those parameters (typically theOUT Transputer instruction). Once output, it frees the memory
block usingMRELEASE, returning it to the free-lists for re-use.

PROTOCOLs that are implemented by the compiler as a sequential series of communica-
tions remain in that way, with the exception of some counted-array protocols. This applies to
standard sequential protocol communication and variant (‘CASE’) communication. Counted-
array protocols whose ‘count’ type isnotINT64 are sent as a single communication — since
the size is included. The current implementation of the GPCs only supportsINT-sized counts,
so anyINT64 counted arrays must have their count sent separately (even there is no possibil-
ity of an application communicating more elements than can be held within anINT).

The implementation ofDECODE.CHANNEL andENCODE.CHANNEL is more complex for mo-
bile types and mobile communication, since the applicationmovesdata. There are three basic
forms of MOBILE types: static mobiles; dynamic mobile arrays; and mobile channel-types
(that are also dynamic). Mobile channel-types are not currently supported by the GPCs,
discussed in section 3.2.3.

Communication of static mobiles is done using pointer-swapping. When the application
outputs intoDECODE.CHANNEL, and synchronises with the extended input within, the address
is extracted leaving the original pointer intact. The implementation ofENCODE.CHANNEL uses
a ‘temporary’ static mobile, into which data is copied when the address and size are received.
This is then communicated with the application using the standard mobile output instruction
(MOUT).

Dynamic mobile arrays are treated slightly differently. The communication of a dynamic
mobile array (using eitherMOUT64 orMOUTN) is performed as a single operation — the moving
of dimension counts and a pointer. After a process has outputted a dynamic mobile array, the
local dimension count is set to zero (such that any attempts to access it after the output result
in range-check errors).

The implementation ofDECODE.CHANNEL for dynamic mobile arrays outputs either one
or two address/size pairs. If there is any more than one unknown dimension, the dimen-
sion counts are output first (organised sequentially in the originating process’s workspace),
followed by the data, both as an address/size pair. For dynamic mobiles with only one di-
mension (which will be the majority in most cases), only the address/size pair for the data is
sent. The single dimension count can be calculated from the size of the communicated data.

Dynamic mobile handling forENCODE.CHANNEL is particularly simple — if there is more
than one unknown dimension, the first address/size pair received is a dynamic mobile that
holds the dimension counts for the target mobile.ENCODE.CHANNEL uses a local (dynamic
mobile) temporary into which these dimensions are copied, before freeing the communicated
memory block. For mobiles withonly one unknown dimension, the temporary is still used,
but has its count field initialised from the size of the communicated data.

The next input performed byENCODE.CHANNEL is the address/size of the data for the
dynamic mobile, that is itself a dynamic mobile. If dimension counts have already been set,
the communicated address is simply placed in the temporary mobile’s pointer slot and the size
checked against the expected size (calculated by multiplying the dimension counts with the
base-type size). If the dimension counts are unset, the address is copied into the temporary
mobile’s pointer slot (as before), and the dimension count is calculated by dividing the size
of the data by the base-type size.

This temporary is then communicated into the application, with the pointer specifically
not returned to the free-lists.

3.2.3 Limitations

Mobile channel-type protocol conversion is not currently supported, but support for this is
planned for the future (see section 8). Semantically, communication of channel-type ends
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is thestretchingof those channel-types over the network. However, some non-trivial logic
is required inside the KRoC.net infrastructure to support this. Many of these issues have
already been investigated and implemented by Muller and May for the Icarus language [16].
Our approach will follow a similar path.

Support for the proposed mobile process types [17] will likely be similar in nature —
requiring interaction with the KRoC.net infrastructure in order to set up links for any con-
tained mobile channel-type ends, and to ensure that the receiving node has the code for these
processes.

4 Basic Infrastructure

We want to be able to design a system in the same way regardless of the physical distribution
of its processes and channels. The underlying model — channels and channel-types — ought
to be the same both locally and networked. Figure 1 shows four processes running on the
same machine3. Processes A and B are connected by a channel (with A having the channel’s
writing-end and B having the reading-end). Processes C and D are connected by a channel-
type (with C having the client-end and D having the server-end of the channel-type). Figure 2
shows the same system ofoccam processes running on two different machines. The channel
between A and B would now be a network channel, and the channel-type between C and D
would now be an NCT containing network channels.

Machine 1

A B

C D! ?THING

Figure 1: Local Channels and Channel-types

From the point of view of the user level processes (A, B, C and D), there is no semantical
difference in the behaviour of the overall system between the two figures. Internally, how-
ever, in Figure 2, the user level processes on both machines are running in parallel with an
instance of theKRoC.net manager, a process provided by the KRoC.net framework. The
network channel and the NCT depicted in figure 2 are provided by the KRoC.net manager
and multiplexed over a network link between the two machines.

The KRoC.net manager has two main tasks: setting up network channels and NCTs, and
(once that is done) administrating them and managing the communication over them. The
setup process is described in detail in section 5.

3In this paper, we define ‘machine’ as anoccam program (i.e. the whole OS level process), that might run
an instance of the KRoC.net manager described in this section. I.e. it is possible to run twooccam programs
on the same physical computer and to connect them with KRoC.net’s infrastructure. These programs would be
referred to as separate machines.
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Machine 2Machine 1

A B

C D! ?THING

Figure 2: Network Channels and Network Channel-types

4.1 Communication Over Network Channels

As for the communication over a network channel, it makes no difference whether this net-
work channel is a stand-alone one (cf. the one between processes A and B in Figure 2)4 or
inside an NCT (cf. the three network channels inside the NCT between processes C and D in
Figure 2).

Figure 3 shows the data flow of the network channel between processes A and B in detail5.
DECODE.CHANNEL andENCODE.CHANNEL are the Generic Protocol Converters described in
section 3. Apart from their main purpose — giving us transparency by enabling theoccam
programmer to set up network channels of any givenPROTOCOL — the second purpose of the
GPCs is to prevent us from unnecessary copying.

Every time process A sends something toDECODE.CHANNEL, DECODE.CHANNEL outputs
the address/size pair of the data item it just received. The KRoC.net manager will then
deal with the address and the size only, without copying any data around. This reduces
overheads especially for larger data items. The?? implies thatDECODE.CHANNEL uses the
extended rendezvous (see section 3). This means that process A will be blocked not only
until DECODE.CHANNEL has read the data item from it, but untilDECODE.CHANNEL explicitly
releases it.

The KRoC.net manager maintains a network link between itself and any other machine
to which a network channel has been established. All network communication between the
two machines is multiplexed over this link, which saves network resources. Communication
over a network link is handled by a pair of Tx/Rx processes on both of the machines that
are connected by that link. The Tx process transmits network packets over the link, the Rx
process receives network packets from the link.

Every writing-end of a network channel handled by the KRoC.net manager has a unique
Output Control Number (OCN), every reading-end has a unique Input Control Number
(ICN). These two numbers unambiguously identify each network channel.

Each writing-end of a network channel is handled by an Output Control Process (OCP).
The OCP reads the address/size pair fromDECODE.CHANNEL, also using the extended ren-
dezvous. Each OCP knows over which link its network channel is multiplexed, and it also
knows the ICN of the reading-end on the remote machine. The OCP sends the address/size

4which KRoC.net internally treats as an NCT containing a single network channel
5Channels used for setting up and administrating network channels have been omitted in order to simplify

the figure.
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Machine 1

A

kroc.net.mgr

DECODE.CHANNEL

??

Tx??

Machine 2

B

kroc.net.mgr

ENCODE.CHANNEL

Rx

??

D
a

taA
c

k

Rx

Tx

OCP

ICP

Figure 3: Network Channel Communication

pair, together with the destination ICN, to responsible Tx process. The Tx process then sends
the destination ICN and the size as well as the data packet over the network link, where it is
received by the responsible Rx process.

Every reading-end of a network channel is handled by an Input Control Process (ICP).
When the Rx process receives a data packet, it stores it in a dynamic mobile byte array,
detaches it (see section 3) and sends the address/size pair of it to the ICP. The ICP contains
a buffer where the address/size pair is stored until it is requested (i.e. until the reading-end
of the network channel decides to read). The buffer is necessary in order to prevent the Rx
process from blocking, because the Rx process receives the data forall network channels that
are multiplexed over this link.

The ICP sends the address/size pair toENCODE.CHANNEL, which will take it using the
extended rendezvous.ENCODE.CHANNEL will encode the address and the size into the appro-
priate data item and release the ICP as soon as process B has read the data item.

The ICP then sends an acknowledgement, containing the OCN of the writing-end, to
the Tx process, who sends it out to the network. The remote Rx process receives it and
passes it on to the OCP. As soon as the OCP has received the acknowledgement, it releases
DECODE.CHANNEL who on his part releases process A.

This proceeding preserves the channel synchronisation semantics of CSP [18]. For pro-
cess A, the whole communication procedure is an atomic action. It simply sends something
to a channel, and as soon as it is released from this communication, it knows for sure that
process B has received this ‘something’.
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4.2 Handling Network Channels-types

Setting up an NCT means to set up its ends and to connect them. Specifically, ‘connecting
them’ means to make the location of the server-end known to the client-end. The setup
procedure is described in detail in section 5. Once the two ends are connected, they can
be administrated. As mentioned in section 2.2, the administration of an NCT end and the
communication over the network channels inside the NCT are two disjoint states, i.e. only
one of them can happen at any one time. Administrating an NCT end may involve a number
of operations, including claiming/releasing it, shutting it down, and (in future versions of
KRoC.net) moving it.

4.2.1 The Need For a Clear Protocol

As mentioned before, claiming/releasing ismandatoryfor both ends of an NCT, no matter
whether the end is shared or not. Claiming/releasing switches between administration and
communication state. Claiming a server-end means telling the KRoC.net manager that the
server-end is ready to accept the claim from a client-end. Claiming a client-end means that
the client-end is making a claim request to the server-end and waits until the server-end
accepts this request. Thus, although the semantical meaning of a claim — ‘grabbing’ the
channel-ends inside a channel-type for (exclusive) communication — is the same for both
claiming the end of an NCT andCLAIMing the end of a local channel-type, both the reason
for the claim and what happens practically are very different.

A local CLAIM is necessary forSHARED channel-type ends. The claim accesses a sema-
phore attached to the channel-type end. This is no problem, as everything is located in the
same shared memory. In the networking context, there is no ‘central’ resource like a sema-
phore, therefore a claim requires a decentralised agreement of both ends. Shared client-ends
of an NCT would be located on different machines, thus they have to contact the server-end
directly if they want to communicate. This means that the server-end needs to be aware of
the fact that a remote client is trying to make a claim. To be so, it must be able to distinguish
cleanly between when it is communicating with a client, and when it is waiting for another
client to make a claim.

Without this clean distinction, there is the danger of serious race hazards that cannot
happen with local channel-types. Consider the following example: The server-end is trying to
send something to a shared client-end, but the client-end has already been released. Locally,
this would not be a problem. The server-end would simply be blocked until another process
claims the client-end and receives the data sent by the server-end. For NCTs, this is not
possible. A typical raze hazard situation could arise: The server-end could send the data to
the old client-end, whose ICP eventually tries to output it to the application. The application
would not take it, but instead tell the KRoC.net manager to release the claim. Once we are at
this stage, we are bound to have a deadlock. As there are no output guards inoccam, there
would be no way to stop the ICP from trying to output to the application.

In a decentralised system such as KRoC.net, an unambiguous communication protocol
is therefore vital. This is the reason for the clear distinction between communication and
administration. Both sides, the ‘server-end side’ and the ‘client-end side’, have to conform
to an agreed pattern of communication between themselves. Claim and release become syn-
chronisation points between the ends of an NCT. Both sides have to claim their NCT end,
communicate according to their agreed protocol, and release it afterwards. Failure to do so
will result in problems such as deadlock. This is, however, acceptable, as for purely local
occam programs, similarly misprogrammed communication will result in deadlock, too.

The occam programmer, therefore, must be relied upon to ensure correct patterns of
communication — both on local and on networked systems. [19] proposes ways tomake
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processes conformant, i.e. to define the usage of the channels inside a channel-type. The com-
munication pattern of the channel-type would have to be defined by the programmer/designer
and would be enforced by the compiler. This is not yet implemented, however, and it is an
issue not directly related to KRoC.net, as it would apply to channel-types in general, i.e. both
local and networked.

Currently, NCT server-ends cannot be shared, and client-ends are implicitly shared, as
currently it makes no difference for the implementation of KRoC.net whether there is one or
more client-end connected to the server-end — they have to make a claim before communic-
ation anyway.6

An NCT server-end may still beSHARED locally, of course. Also client-ends of NCTs
may beSHARED locally. In fact, it is strongly encouragednot to have more than one NCT
client-end on the same machine connected to the same server-end, but to use the same NCT
client-end and share it locally. In order to avoid confusion, a good design rule is to declare
each client-end that is supposed to be network-sharedalwayslocally SHARED as well.7

4.2.2 Administrating Ends of Network Channel-types

Figure 4 shows the data flow involved in claiming the client-end of the NCT between pro-
cesses C and D of Figure 2 in detail. We assume that the server-end has just been claimed,
i.e. the application connected to the server-end has just told the KRoC.net manager that it is
ready for communication.

Every client-end of an NCT is handled by a Client Control Process (CCP), every server-
end of an NCT is handled by a Server Control Process (SCP). These are connected to the
application by a channel-type calledNET.NCT.MGR. NET.NCT.MGR contains arequest and a
reply channel. In order to claim an NCT end, the application sends a claim request down
thereq channel, and waits for a reply.

If a client is claimed, the CCP sends the claim request to the remote SCP. This is done
via Tx and Rx, in the same way as the OCP/ICP handle the communication: server-ends and
client-end are identified by a unique Server/Client Control Number (SCN/CCN) which is sent
along with each communication over Tx/Rx in order to identify the destination SCP/CCP.

When the SCP receives the claim, it informs all the OCPs/ICPs belonging to the network
channels in the NCT about it and tells them over which link the remote client-end can be
accessed, as well as the respective remote ICNs/OCNs. Then it sends an acknowledgement
back to the remote CCP, who on his part will inform its own OCPs/ICPs about the new
connection.

If a claim arrives while the server-end is already engaged in a communication with an-
other client, the claim request is put into a queue where it waits until the server is released
from this communication. Then the server takes the next claim from the queue and proceeds
as described above.

5 Setting up Network Channel-types

The goal of KRoC.net istransparency(i.e. application level processes to be blind as to
whether their external channels are networked or local) andsimple/flexible/dynamicsetup.
Transparency is nearly achieved and will eventually be 100 per cent. It is also flexible and

6Later, when KRoC.net will be further integrated into theoccam language (see section 5), wewill distin-
guish between shared and non-shared ends of NCTs! This is required especially for the differing behaviour of
shared/non-shared ends when they are moved.

7Later, when the setup of NCTs will be further integrated intooccam, the code generated by the compiler
will automatically enforce this rule.
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Figure 4: Claiming a Client-end

dynamic. But our current setup procedures are tedious, although straightforward. Future
language enhancement will provide direct support for networked channel declaration that
will make setup simple (and ensure that it is done correctly).

This section describes the current, rather tortuous butcurrently still necessary, setup
mechanisms. The example used is for a networked channel-type — theTHING defined in
Section 2.1.

5.1 The KRoC.net Manager Process

The KRoC.net manager process8 has the following header:

PROC kroc.net.manager.tcp(NET.MGR? net.mgr.svr)

NET.MGR is a channel-type containing two channels, areqest and areply channel. These are
used to set up NCTs. Anoccam program using KRoC.net would typically create an instance
of NET.MGR with aSHARED client-end and a non-shared server-end. The server-end would be
passed to the KRoC.net manager, the client-end would be passed to the processes running in

8In this section, we refer to the KRoC.net manager for TCP networks.
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parallel with the KRoC.net manager who want to set up NCTs with KRoC.net. Here is the
start of the code for setting up theserver-endof a networked channel-type (THING):

NET.MGR? net.mgr.svr: -- used to communicate
SHARED NET.MGR! net.mgr.cli: -- with the kroc.net.mgr
THING? thing.svr: -- application level channel-type
THING! thing.cli: -- (currently needed) supporting infrastructure
SEQ

net.mgr.svr, net.mgr.cli := MOBILE NET.MGR
thing.svr, thing.cli := MOBILE THING
PAR

kroc.net.mgr.tcp(net.mgr.svr)
SEQ

... use net.mgr.cli

The thing.svr end will be plugged into the application level server process. The com-
ponent channel-ends ofthing.cli will be plugged into respectiveDECODE.CHANNEL or
ENCODE.CHANNEL processes, whose other ends are connected to KRoC.net infrastructure
channels manufacturedon-the-flyby the KRoC.net manager and supplied to us in the fol-
lowing conversation.

5.2 Communications to the KRoC.net Manager

Setting up an NCT means to set up either the client-end or the server-end of it, and to connect
them to the remote server-end/client-end via KRoC.net. This is done by sending a request to
the KRoC.net manager:

net.mgr.cli[req] ! setup.server.end; ANY2ONE; <url>; <prot-hash>; <end-types>

Note: if we were setting up theclient-endof an NCT, the tag in the above communication
would be “setup.client.end” rather than “setup.server.end”.

ANY2ONE tells the KRoC.net manager that the client-end is shared and the server-end is
not. Currently, this is a dummy tag, but in later versions it will have to match for both ends
of the NCT, and it will influence the behaviour when a (shared/non-shared) end is set up or
moved.

<prot-hash> is thePROTOCOL.HASH value (see section 3.2) of the channel-type we want
to connect (i.e.THING in our case). Both the server- and the client-end have to pass the
PROTOCOL.HASH value to the KRoC.net manager who can then ensure that matching channel-
types are connected.

<end-types> is a counted array protocol over which the application tells the KRoC.net
manager about the end-types (i.e. reading- or writing-end) of the channels in the channel-
type. Again, they have to match. (For instance if we have a reading-end/writing-end/reading-
end sequence in the server-end, the client-end must have a writing-end/reading-end/writing-
end sequence.) These values are necessary for the KRoC.net manager to know whether to
use OCPs or ICPs.

<url> is a string (a dynamic mobile byte array) that tells the KRoC.net manager about the
location of the server-end of the NCT. We created a new URL-based mechanism for setting
up NCTs. For this, we have defined a new URL called “nct:”. The general definition of an
nct: URL is as follows9:

9<...> are variable names,[...] means optional,| is a choice,(...) is for grouping, everything else is
literal. Spaces are not allowed (as usual for URLs).
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nct: ( <server-name> [ @ ( cns: <cns-name> |
cns. <net-type> : <location> ) ] |

( <server-name> | $ <scn> )
@direct [ . <net.type> : <location> ]

)

<server-name> is a name given to the server-end. This can be any string which does not
contain “@” or “ $”. It could be a simple name like “fred”, but also a structured name like
“my-application/fred” or so. This is basically up to the programmer.

5.3 The Channel Name Server

The second part of the URL communicated to the KRoC.net manager says where to register
(or look up) the<server-name>. The default place for this would be the Channel Name
Server (CNS). This is a central server where server-ends can be registered and where client-
ends can ask for the location of a server-end according to its name. The CNS can hold a huge
number of names, even of completely different distributed applications at the same time. In
the latter case, structured names would therefore be sensible.

If the “@” suffix of the URL is omitted, the default CNS will be used to register and ask
about the server-end. The location of the default CNS is stored in a special configuration
file, described in section 6. Alternatively, the application might want to use a different CNS
whose location is stored in another configuration file (cf. section 6). To do so, it would use

@cns:<cns-name>

whereby<cns-name> is the name of a non-default CNS. The third way of using a CNS is
connecting directly to it using

@cns.<net-type>:<location>

<net-type> is the type of the network; it must be the same as the network type of the
KRoC.net manager.<location> is the location of the CNS specific to the network type. For
TCP networks, it would be “<ip>:<port>”. <ip> would be the IP address or the host name
(preferably including the domain) of the CNS,<port> would be the port number. A valid
URL would be for instance:

nct:fred@cns.tcp:gaia.kent.ac.uk:4400

The port can be omitted, in which case the default CNS port of 4400 will be used.
If the requested name cannot be found in the CNS, it will return an error. We will soon add

the possibility to specify a certain number of retries or a timeout before an error is returned.
Alternatively to using a CNS, an application may also connect a NCT directly. The

server-end would be registered using

@direct

after the name. The client-end would then ask about the server-end directly at the remote
machine, using

@direct.<net-type>:<location>

The variables mean the same as above for connecting directly to a CNS. If the network type
is TCP, and the port is omitted, a default of 4500 will be assumed.
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5.4 Replies Back From the KRoC.net Manager

When an NCT end is set up, the KRoC.net manager will establish a CCP/SCP, along with
the OCPs and ICPs for all the network channels inside the NCT. If anything goes wrong, the
KRoC.net manager returns an error, otherwise it returns the client-end of anNET.NCT.MGR

channel-type (cf. Figure 4). The server-end of this channel-type is held by the CCP/SCP
handling the client-end/the server-end of the NCT just created. As mentioned in section 4.2.2,
NET.NCT.MGR is used to administrate the NCT end.

The first thing the CCP/SCP returns overNET.NCT.MGR’s reply channel are client-ends
of channel-types of typeNET.OUT or NET.IN for each of the network channels inside the new
NCT. The server-ends of theseNET.OUT/NET.IN channel-types are held by the OCPs/ICPs
handling the ends of the network channels in the NCT. Theoccam programmer would then
plug each of theNET.OUT/NET.IN client-ends into aDECODE.CHANNEL or ENCODE.CHANNEL
process, on whose other end the appropriate channels to the application process would be
plugged in. BothNET.OUT andNET.IN contain two channels, one for the address/size pair,
and one termination channel for the GPC.

5.5 Unregistered (Anonymous) NCTs

Another way of setting up an NCT is to do so anonymously. For this, there is a special
request:

net.mgr.cli[req] ! setup.server.end.anon; ONE2ONE; <prot-hash>; <end-types>

Unlike the previously mentioned requests, this one does not contain a URL. The server-end
is created anonymously, and upon request, it would return an ‘anonymous URL’ which a
client-end could then use to connect to. An anonymous URL has the form

nct:$<scn>@direct.<net-type>:<location>

where<scn> would be the SCN of the server-end. The@direct<...> suffix is the same as
mentioned above.

This returned string contains all the KRoC.net information normally held in the CNS and
supplied to processes requestingclient-end connections to this NCT. The server process,
having not registered itsserver-end anywhere, may now pass that anonymous URL along
existing channels (e.g. to a new client with whom it has established a connection over a
published NCT). The receiver may use this string to set up its privateclient-end, without
going via the CNS.

Note: There is no “setup.client.end.anon” tag for the request to the KRoC.net man-
ager, as it is obvious from the URL that we want to set up the client-end anonymously.
Instead, the normalsetup.client.end tag is used. The KRoC.net manager will construct
the necessary KRoC.net infrastructure to set up that client-end — just as though it was ob-
tained normally from the CNS. In this way, a client may use a CNS-published NCT only to
establish a private connection to a server, who would thenFORK off a special server process
to deal with that client. Otherwise, a server can deal with only one client at a time over its
published channel bundle — and we may want to deal with millions concurrently!

In a later version of KRoC.net, anonymous NCTs will be blended into the existingoc-
cam semantics for moving ends of channel-types. Instead of declaring an anonymous NCT
server-end and passing its URL to the client side who then connects to it anonymously, the
programmer would simply allocate an instance of a channel-type in the normal way (i.e. both
ends of it) and send one end over a network channel to another machine. This is the same
mechanism as it works for local channel-types already. With this new level of transparency,
anonymous NCTs will no longer be necessary.
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5.6 Modular Design of the KRoC.net Manager

Currently, the only network type supported is TCP (i.e. the network links are TCP/IP socket
connections). KRoC.net, however, is easily extensible because of the modular design of the
KRoC.net manager. Figure 5 shows the component processes of the TCP KRoC.net manager.
For each NCT end that the KRoC.net manager handles, there is a SCP/CCP, along with the
OCPs/ICPs for the network channel-ends inside that NCT end.
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Figure 5: Components of the KRoC.net Manager

The back-end, which deals with the network communication, is inside the link manager,
which forms a part of the KRoC.net manager. For each network link, the link manager
contains a Link Control Process (LCP), each of which is identified by a unique Link Control
Number (LCN). Figure 5 shows the link manager for TCP networks. Each LCP contains a
pair of Tx/Rx processes. Additionally, the link manager contains a Cx and an Ax process,
dealing with connecting to remote sockets and accepting incoming socket connections.

The TCP version of the link manager uses Barnes’occam Socket Library [20] which en-
ables TCP socket communication under Linux/x86. The Socket Library uses the mechanism
to make blocking system calls without blocking theoccam kernel, described in [21].

In order to create a KRoC.net manager for a network of a type other than TCP, we would
only have to replace the link manager with one for the new network type. Every other code
could remain unchanged.

Inside the KRoC.net manager, the LCPs, OCPs/ICPs and SCPs/CCPs are accessed via
their respective Control Numbers. For each of them, there is a channel-type calledTO.LCP,
TO.OCP, etc., each of which contains just onereq channel. The server-end (holding the
reading-end ofreq) is held by the respective Control Process, the client-end is inside an
array at the index that corresponds with the respective Control Number. In this way, all
Control Processes can be accessed by their Control Number.

The arrays are managed by special array manager processes who keep a free-list of the
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empty elements. When an array is full, its size will be doubled. For this, each array is
protected by a CREW lock [22]. Accessing the array to communicate over one of theTO.xCPs
requires setting a read lock on the respective array. When the array is doubled, the responsible
array manager will set a write lock, create the new array and copy all elements of the old one
into it.

The KRoC.net manager is completely modular in its design, i.e. processes are only
FORKed off when they are needed. This applies to the LCPs as well as to the ‘front-end’
Control Processes. Processes that are not needed anymore are terminated. The procedure
follows the ‘poisoning’ approach described in [23].

When the application makes a request to shut down an NCT end, the SCP/CCP sends
a shut-down signal to the OCPs/ICPs it has created. These on their part will terminate the
GPCs. The link manager keeps a count about the number of NCTs multiplexed over each link.
If this number reaches 0, the LCP will be sent a shut-down signal and take care of closing
the link and shutting down the Tx/Rx processes. When the KRoC.net manager gets the final
shut-down request, it passes it on to all its component processes. Only when everything
has cleanly terminated, it will shut-down itself. The basic rule is graceful termination from
‘inside out’.

5.7 Proposals for the Further Integration of KRoC.net Intooccam

The setup process described in sections 5.1 through 5.5 is relatively easy to understand, but
involves quite a number of steps. Although the communication over network channels is
nearly transparent now, the setup process is not yet. In order to change this, we will extend
the KRoC compiler to hide this setup and administration code behind an extended language
syntax for declaring networked channels and channel-types. For this, we have proposed some
ideas. These are not ‘fixed’ yet, however, and subject to discussion.

The idea of forcing aCLAIM for all use of channel-types would enable removal of the
explicit network claims that an application process currently has to add to code using channel-
types. A run-time test would also need to be generated for theseCLAIMs to determine whether
the associated channel-type was networked or local. The extra test would only cost a few
nanoseconds and be insignificant even forCLAIMs on local channel-types.

For setting up an NCT end, there may be a new keyword called “NET”. Contrary to normal
channel-type ends, NCT ends would not be allocated in pairs (as the other end will be on
another machine!). Here is an example that declares and dynamically constructs the server-
end of anany-to-oneNCT:

THING? net.thing.svr:
INT result:
...
SEQ

net.thing.svr, result := MOBILE NET ANY2ONE TCP THING? "nct:fred"

Here is an example for setting up one of many possible networked client-ends for the same
NCT.

SHARED THING! net.thing.cli:
INT result, timeout:
...
SEQ

timeout := 5 * seconds
net.thing.cli, result := MOBILE NET ANY2ONE TCP THING! "nct:fred" timeout
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TCP is the network type. This is needed to ensure that the right KRoC.net manager will
be used."nct:fred" would be the URL, andresult would either be an OK or an error
message.timeout specifies how long (or possibly how often) to retry if the required name
is not stored in the CNS yet.

This is all that will be needed. All necessaryDECODE.CHANNELs/ENCODE.CHANNELs will
be created automatically and wired up correctly. All the user needs to do is plug the con-
structed network channel-type end into the relevant server or client process (after, of course,
checking theresult).

When aCLAIM is made on an NCT end, KRoC would generate the necessary code to
make a network claim with the KRoC.net manager, and also to make a network release when
theCLAIM has been finished. Apart from that, if the NCT end is shared, theCLAIM triggers
the usual action (i.e. setting the semaphore etc.).

Simpleone-to-onenetwork channel-ends could be declared like this:

INT result:
NET ONE2ONE TCP CHAN INT c? "nct:sue" result:

on one machine, and on the other:

INT result:
NET ONE2ONE TCP CHAN INT c! "nct:sue" result timeout:

KRoC would then create the necessary code as ifc? andc! were the ends of an NCT
containing a single network channel-end (the server-end containing the reading-end, and the
client-end containing the writing-end). As this channel would not be shared, KRoC could
do the network claim for both ends immediately after declaration, and the release before the
occam program terminates or as soon asc is getting out of scope.

A simple network channel with aSHARED writing-end would be declared:

INT result:
SHARED NET ANY2ONE TCP CHAN INT c! "nct:sue" result timeout:

on one machine, and its reading-end on the other:

INT result:
NET ANY2ONE TCP CHAN INT c? "nct:sue" result:

6 Configuration

The only settings which need to be configured are the location (i.e. IP address and port num-
ber in the TCP/IP world) of both the own machine10 (remember that ‘machine’ refers to an
occam program running an instance of the KRoC.net manager) and the CNS. In previous
versions, this information was compiled directly into theoccam programs. This was OK for
experimental use but rather inflexible for real life applications, therefore we have simplified
KRoC.net’s configuration and made it more flexible.

The locations of the CNS and the own machine are kept in special configuration files.
KRoC.net is looking for these files in the program directory and in the user’s home directory
(in this order).

10The location of the own machine is used as a unique identifier for it within the KRoC.net system. This is
the location that gets registered with the CNS when the machine registers an NCT server-end.
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The ‘own’ file should be called “.kroc.net”. Its content should be:

[<network-type>]
<location-info>

For TCP, this would be:

[tcp]
ip=<ip>
port=<port>

with <ip> being the IP address and<port> being the port number. If the port number is
omitted, a default of 4500 will be assumed. If the IP address is missing, the standard outgoing
IP address will be used.

The CNS uses a similar file, called “.self.cns”. In this file, however, only the port
number is needed, as the CNS does not use its IP address as part of an identifier. If the file is
missing, the default CNS port of 4400 will be used.

Finally, an application using KRoC.net needs a file called “.cns”, where the location
of the default CNS is stored. Here, we can use the IP address or the host name (preferably
including the domain) of the CNS as a value for<ip>. The port can be omitted, in which
case the default port number would be 4400.

Information about a CNS other than the default CNS can be stored in a file
called “.cns.<cns-name>”, where <cns-name> is the name of the CNS used in the
“@cns:<cns-name>” part of thenct: URL.

7 Performance of KRoC.net

We have run a number of benchmarks to measure the performance of KRoC.net. The bench-
marking system consists of a sender on one machine and a receiver on another machine.
The sender resides ongaia, a 1GHz Pentium III PC. The receiver is oncatch22, a 2.4GHz
Pentium 4 PC. Both PCs are connected to a local 100MBit/s ethernet.

7.1 Bandwidth Measurement

For measuring the bandwidth, the sender sends a sequence of equal-sized packets to the
receiver over a network channel provided by KRoC.net. This is repeated for different packet
sizes between 1 Byte and 64 KBytes (doubling the size each time).

Figure 6 shows the bandwidth (in Bytes/s) for the different packet sizes. For comparison,
we have also included the results for sending the packets over raw sockets (without acknow-
ledgement), as well as for sending them over raw sockets where the receiver acknowledges
each packet.

Especially the comparison between the ‘KRoC.net’ and the ‘Sockets with ack’ results
shows the small overhead of the KRoC.net framework. With 1 Byte sized packets, the band-
width for KRoC.net is about half the bandwidth for ‘Sockets with ack’. This is due to the
fact that in the ‘Sockets with ack’ version, the receiver knows which packet size to expect,
which is not the case for KRoC.net. Therefore, KRoC.net always needs to send the size first,
and then the data11. With increasing packet sizes, the impact of the second communication
diminishes, however.

11We are currently experimenting with aWRITEV implementation that sends size and data at once; this is not
implemented yet, however.
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Figure 6: Bandwidth Benchmarks

It is also, perhaps, a little unfair for the ‘Sockets with ack’ version to know about packet
sizes — for flexibility, the sizes would also need to be transmitted. Tests with a modified
version of ‘Sockets with ack’ that also sends the size have produced practically the same
results as KRoC.net, which shows the low overheads of KRoC.net.

We have also measured the overheads introduced by KRoC.net with a modified version
of the benchmark program. Imagine Machine 1 of Figure 3, but instead of starting network
communication when receiving data from the OCP, the Tx process sends the header of the
network message over an ordinaryoccam channel to the Rx process. When the Rx process
receives the header, it treats it like an acknowledgement from the network, i.e. it sends an
acknowledgement to the OCP, who then releases the extended rendezvous as usual.

Ongaia, the ping-pong time for sending a 1 Byte packet (i.e. the time between the sender
sends it and receives the acknowledgement) is 1.9µs on the sending machine. This is com-
pletely negligible, as the error range for the benchmarks is about 10% (i.e. about 20µs for
1 Byte sized packets). Tests with the Distributedoccam Protocol (DoP) [11], a predecessor
of KRoC.net from 2001, have shown no measurable difference in the benchmark figures.

All this shows the big impact of socket communication, which involves making blocking
system calls to the operating system and heavyweight OS-level IPC. At some point, the func-
tionality of KRoC.net will be introduced into RMoX [24], the Raw Metaloccam operating
system. This will give us a much better performance, as all the socket communication could
then be performed from withinoccam, i.e. without involving heavyweight OS-level context
switches.

7.2 Load Measurement

Another benchmark is measuring the load of KRoC.net against otheroccam processes run-
ning in parallel with it. The setup of this benchmark is based on a similar one in [25]. It is
shown in Figure 7.

The benchmark is a modification of the previous one. Oncatch22, the receiver is running
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gaia

sender receiver sample succ

catch22

Figure 7: Load Measurement Setup

in parallel with two other processes, calledsample andsucc. These two processes are run-
ning at the lowest (KRoC occam) process priority [7]. They are always active and running
indefinitely — but only, of course, when neither thereceiver nor any KRoC.net infrastruc-
ture processes are active.sample is passing a number tosucc which succ increases and
sends back. The receiver can interruptsample at any time, whereuponsample will return
the current count.

The receiver measures the increase of the count against the time passed. First it does so
before it starts to receive, normalising this value to 100% background processing capability.
Then it measures and compares this value against the ones for the different packet sizes. The
result is shown in Figure 8.
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Figure 8: Load Benchmarks

This shows that KRoC.net has a relatively low impact on processes running in the back-
ground. It is even slightly better than its predecessor DoP, which is most likely due to the
dynamic setup of the network infrastructure — processes are only are started when they are
needed — as well as the fact that there is no copying of data involved in the communication
process, as KRoC.net only deals with address/size pairs.

8 Conclusions and Future Work

This paper has presented the basic ideas behind the KRoC.net project, its infrastructure, usage
and configuration. KRoC.net is now a dynamic tool that enables theoccam programmer to
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set up network channels and NCTs easily and safely. Newoccam features in KRoC have
been utilised to reach a high level of transparency in the use of KRoC.net. These will be
extended to achieve total transparency and a much simpler and automated dynamic setup.

Error handling at the moment only concerns the setup procedure, but not the actual com-
munication. We will add appropriate error messages for the case that something with the
communication goes wrong.

We will examine ways to reduce network latency for certain types of communication.
This can be achieved by reducing the number of acknowledgement packets sent over the
network. There are three concrete approaches for this. Firstly, we will introduce buffered
channels, which only require an acknowledgement after the buffer on the receiving side is
full. Secondly, we will introduce ping/pong style NCTs (similar to the ‘Connections’ in
JCSP.net). These will follow a strict ‘request/reply’ scheme, whereby each data packet also
acts as an implicit acknowledgement for the previous one.

Additionally, we will improve the network latency forPROTOCOLs that involve more than
one communication (e.g. sequential protocols or multi-dimensional dynamic mobile arrays).
For this, we will introduce a third field in the link protocol of the GPCs that tells the KRoC.net
infrastructure whether subsequent communications are yet to come for thisPROTOCOL. Net-
work acknowledgements would only be sent after the last communication of eachPROTOCOL.

Another field that our research will look into, is to find ways of sharing server-ends of
NCTs, and to implement the possibility to move ends of NCTs around networks, just as ends
of local channel-types can be moved around on a local machine.
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