
Communicating Process Architectures 2001
Alan Chalmers, Majid Mirmehdi and Henk Muller (Eds.)
IOS Press, 2001

243

Mobile Data, Dynamic Allocation and Zero
Aliasing: an occam Experiment

F.R.M. Barnes and P.H. Welch
Computing Laboratory, University of Kent, Canterbury, KENT. CT2 7NF

{frmb2,phw}@ukc.ac.uk

Abstract. Traditional imperative languages (such as C) and modern object-oriented
languages are plagued by uncontrolled resource aliasing problems. Add in concur-
rency and the problems compound exponentially. Improperly synchronised access to
shared (i.e. aliased) resources leads to problems of race-hazard, deadlock, livelock and
starvation.

This paper describes the binding intooccam (a concurrent processing language
based on CSP) of a secure, dynamic and efficient way of sharing data between parallel
processes with minimal synchronisation overheads. The key new facilities provided
are: a movement semantics for assignment and communication, strict zero-aliasing,
apparently dynamic memory allocation and automatic zero-or-very-small-unit-time
garbage collection. The implementation of this mechanism is also presented, along
with some initial performance figures (e.g. 80ns for mobile communication on an 800
MHz Pentium 3).

With occam becoming available on a variety of microprocessors for GUI building,
internet services and small-memory-footprint embedded products, these capabilities
are timely. Lessons are drawn for concurrency back in OO languages - and especially
for the JCSP (CSP for Java) package library.

1 Introduction and Motivation

Classicaloccam[1] has acopysemantics – data is copied from the sender to the receiver at
the point of synchronisation. In contrast, communication in JCSP [2, 3, 4, 5, 6] goes with
the flow of Java and has areferencesemantics – only object references are sent. The same
channel synchronisationsemantics of CSP [7, 8, 9] applies to bothoccam and JCSP, but
the after-effects are different. Inoccam, the sender and receiver hold separatecopiesof
the communicated data – subsequent work by both processes on their respective data objects
causes no mutual interference. In JCSP, the sender and receiver hold separate, but identical,
referencesto the same object (which resides on theshared heapand hasn’t actually moved
anywhere) – this time, subsequent work by both on that object is a race hazardif either of
them updates any part of it.

In summary, theoccam communication is secure, but expensive if the data being sent is
large. The JCSP communication is cheap (unit time cost regardless of data size), but secure
only if the system designer stays on guard against the concurrent aliasing problem and doesn’t
make any mistakes.

For this research, rather than fight the culture of OO languages (where free-wheeling
duplication of object references is the norm), we found it worthwhile to turn again tooccam
(where aliasing is at all times controlled) and see what can be done to ease or eliminate the
copying costs of communication.

Between processes distributed over distinct memory spaces, copying the data will be
unavoidable. Between processes living within the same memory space, copying only the
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references is possible. The trick is to make both scenarios semantically compatible and the
latter one semantically safe. And, of course, to do this as simply as possible (but no simpler
– occam’s razor[10]).

This paper considerably expands on an earlier version [11] with details on mobile storage
management, dynamically sized mobiles, parameter passing, undefined usage checks and
performance.

2 Mobiles

For efficiency reasons, mobiles have been widely used in the pastas a design patternby
occam programmers – for example in packet routers and GUI services. Various security
checks have to be overridden in order to compile it (which means that it was not strictly
occam any more), but the performance gains have been felt sufficient to justify the risk.

Although not thought about in quite the same way, themobile design patternis wide-
spread in much OO programming for communicating information between different parts of
a system – often with objects repeatedly created, used only briefly and then dumped. For
applications that cannot tolerate the construction overheads, garbage collection and memory
fragmentation caused by this, explicit creation and management of reusable object pools is a
common solution.

Our proposal binds this design pattern into theoccam language, ensuring its correct and
efficient implementation without compromising security.

2.1 Mobile Semantics

Consider thecopyandmoveoperations provided by operating systems for managing files.
The former duplicates the file, placing it in a target directory under a (possibly) new name.
The latter just moves the file to the target directory, possibly renaming it. A key factor in the
semantics of themove[12] is that the original path/file name is no more.

Consider now the assignment statement. Its purpose is to change the state of its environ-
ment, which we can represent as a set of ordered pairs mapping variables (orl-values) into
data values (orr-values). In occam, because of its zero-tolerance of aliasing, assignment
semantics is what we expect:

(< x0, v0 >, < x1, v1 >, ...) "x0 := x1" (< x0, v1 >,< x1, v1 >, ...)

In all other languages with assignment, the situation is more complex – since the variable
‘x0’ may be aliased to other variables and the values associated with those aliases will also
have been changed tov1.

Consider next a mobile assignment statement. Its semantics is different in one crucial
place:

(< x0, v0 >, < x1, v1 >, ...) "x0 := x1" (< x0, v1 >,< x1,??>, ...)

The difference is that the value of the variable at the source of the assignment has become
undefined– its value hasmovedto the target.

The semantics for mobilecommunicationshave to follow naturally from the semantics
for mobileassignment. In occam, communication is just a distributed form of assignment –
a value is computed in the sender process and assigned to a variable in the receiver process
(after the two processes have synchronised). For example, if the above ‘x0’ and ‘x1’ variables
were of type ‘FOO’, then the above (copy) assignment has to be semantically equivalent to:
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CHAN OF FOO c:
PAR
c ! x1
c ? x0

That implies a key property of mobile communications –the value of the output variable
becomes undefined.

There is an argument as to whatundefinedshould mean. One possibility is to introduce
it as an extra value (perhaps with the name ‘NULL’) on the underlying type and allow pro-
grammers explicitly to test for it. Another is to leave the type alone and defineundefined
to meananyvalue of that type. This means that the state of a moved variable becomes the
same as that of a declared, but uninitialised, variable of the same type – formally⊥ in the
denotational semantics ofoccam [13, 14].

For semantic and pragmatic reasons, we have chosen the latter of these two possibili-
ties. The first leaves us open to ‘NULL-pointer errors’ at run-time and a somewhat artificial
decision to make as to whether to allow ‘NULL’ values to be assigned or communicated.
The second gives us a semantics for mobile assignment and communication that isstrictly
weakerthan that for copy assignment and communication – and we will take advantage of
this presently (see the start of section 3). It also allows the highly efficient management of
fixed-sizemobiles (sections 3 and 4). The downside is the need to guard against acciden-
tal use of undefined values (see section 7) – although we note that we have always had this
problem for uninitialised variables and (mostly) ignored it!

2.2 Mobile Syntax

We propose two new keywords for the language: a ‘MOBILE’ qualifier for data types and a
‘CLONE’ prefix operator.

The MOBILE qualifier doesn’t change the nature of the typesas types– for example,
MOBILE types are compatible with ordinary types in expressions and assignment. This is
important, since we may wish to constructPROCedures,FUNCTIONs and operators [15] that
will work when given variables of either type (see section 6).

However, it does impose themobile semanticson assignment and communication be-
tweenMOBILE variables. So, if we have the following declarations:

DATA TYPE FOO
MOBILE RECORD
... fields

:

FOO x0, x1:

then the assignment and communication code fragments in the last section have themobile,
and not the usualcopy, semantics.

TheMOBILE qualifier need not be burnt into the type declaration – it can be associated
just with particular variables. For example, the following is an alternative to the above:

DATA TYPE BAR
RECORD
... fields (same as FOO)

:

MOBILE BAR x0, x1:
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In some cases, we may actually want copy semantics for mobile variables. For this pur-
pose, a “CLONE” operator is provided. This generates a copy of a mobile on which we can
then perform the required operation. For example, in:

SEQ
x0 := CLONE x1
c ! CLONE x1

both operations leave the value ofx1 value unchanged (i.e. we are back to copy semantics).
Indeed, without the firstCLONE above, the last line would be unsafe (since the value ofx1

would be undefined) – see section 7.

2.3 Mixed Mobiles and non-Mobiles

At present, we allow mobiles to be assigned to non-mobiles of the same underlying type (and
vice-versa). The semantics reverts to copying. So,MOBILE BAR andBAR variables may be
inter-assigned – though not, of course,FOO andBAR variables (type equivalence is based on
namesnotstructure).

To be consistent, we also allow mobiles to be communicated down channels carrying the
underlying non-mobile type. The sent variables are copied and left unchanged.

However, we do not allow non-mobiles to be communicated across a channel carrying a
compatible mobile type. That would requireeither a run-time penalty at the receiving end
(which would have to detect whether the incoming data was mobile)or the creation of an
anonymous mobile (and a copy into it). Neither seems very attractive. The need for mixed
mobile assignment and communication is not apparent – so it may be neater just to ban it.

There is another form of mixing that is more useful and we do allow.occam PROTOCOLs
define message structures and there is no reason why they should not havemixedMOBILE and
non-MOBILE components. For example, if:

PROTOCOL MIXED IS FOO; BAR; FOO
CHAN OF MIXED mixed:
BAR y:

then:

mixed ! x0; y; x1

leavesx0 andx1 undefined – buty unchanged.
We had earlier toyed with the idea of having special symbols for mobile assignment (<-)

and output (<!). Then, the use between mobiles of ordinary symbols (:= and!) would mean
copy semantics and there would be no need for theCLONE operator. But that would remove
the above flexibility for mixed messages.

3 Implementation of Mobiles

As mentioned in section 2.1, implementing mobile operations by copying is a perfectly legal
mechanism. For efficiency, this is precisely howsmallmobiles (e.g.MOBILE REAL64s or any
data type less than or equal to around 8 bytes) are managed – the compiler simply ignores
theMOBILE qualifier on them. Copying is also used for communication of mobiles between
processes occupyingdifferentmemory spaces (virtual machines).

The interesting case is communication between processes in thesamememory space and,
of course, for mobile assignments.
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3.1 Mobiles in the Same Memory Space

Mobile data cannot live in the workspace of the process that uses them – that workspace
may be reused by another process running inSEQuence with it, or by other processes in any
encapsulatingALTernative or conditional (IF andCASE processes). They have to persist in
a heap-likespace that is globally available. Unlike conventional heaps, we enforcezero-
aliasing on its elements (the mobiles),zero-time constructioncosts (for most of them) and
zero-time garbage collectioncosts (again for most and unit-time, per-element-gathered, for
the rest).

The obvious scheme is used: mobile variables hold only pointers to their actual data.
Those pointers, of course, will not be apparent or accessible to the programmer. Mobile as-
signment and communication requires the copying of those pointers – not the data. However,
unlike OO languages, we are not going to allow this to set up any aliases.

The semantics chosen (section 2.1) avoids the concept ofNULL values – they are unnec-
essary, a source of run-time error and require checking at run-time (or suitable handling after
accessing data at an invalid address). Therefore, we ensure that mobile variables hold, at
all times,valid pointers– although the data pointed at might beundefined(the problems of
which are addressed in section 7).

Classicaloccam has constraints designed to meet security requirements for embedded
systems operating within finite – sometimes very small – memory. Such constraints are
highly relevant to modern applications. Forbidden are recursion, run-time computed parallel
(PAR) replication counts and run-time array sizes. Sticking to these constraints enables some
interesting optimisations, but going beyond them is not too horrible (section 5) – and it does
not prevent our optimised management offixed sizemobiles.

For example, the total number of all mobile variables (or mobile fields, if we allow nested
mobiles) that will become active in a system is discovered by the compiler – and this is not
prevented by separate compilation of components. Assume the size of all the types underly-
ing those mobiles is known. Then,the total size needed for the mobile heapcan be exactly
calculated. All space for mobile structures can be allocated and initialised before main sys-
tem startup (section 4) – hence, zero runtime construction costs.

An early plan was to maintain free-lists of mobile nodes – one for each underlying type
– within mobile space. When a mobile variable lost its data because itreceiveda new mo-
bile by assignment/communication or because it went out of scope, the lost data was added
to the relevant free-list. When it lost data because it was thesourceof a mobile assign-
ment/communication, it picked up someundefinedmaterial from the free-list. Both these
operations would be unit time.

However, a much simpler idea emerged. The free-lists are not needed. Instead, mo-
bile communication and assignment are implemented simply by swapping pointers between
source and target variables.

Formally, the model seen by the user remains that the direction of data movement in
assignment and communication is one-way, even though the implementation is two-way.
This is important to allow the normal copying implementations referred to earlier forsmall
mobiles and for communication across memory space boundaries.

If it turns out thatswappingmobile assignments and communications are a useful par-
adigm in their own right, we shall consider providing them as primitive operations. Their
implementations will be trivial (albeit with extra costs incurred for small mobiles and dis-
tributed communications).
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3.2 Mobile Assignment

We are modifying the KRoC[16, 17] compiler. This uses an extended transputerByteCode
(ETC) [18] as an intermediary, before generating native code. TheTransputer Virtual Ma-
chine(TVM) has a simple stack architecture. So, the assignment:

x := y -- for any MOBILE type

compiles to:

LD x -- load ‘x’
LD y -- load ‘y’
ST x -- store in ‘x’
ST y -- store in ‘y’

where what is actually being loaded and stored arepointersto the data. Simple and fast.

3.3 Mobile Communication

We could implement this using two channels and two communications – one in either direc-
tion. But that is expensive – two synchronisations instead of one. Instead, we have further
extended the intermediate (transputer)ByteCodewith two new instructions:

MIN -- mobile input
MOUT -- mobile output

These instructions take pointers to the mobile variables (in effect, a pointer to a pointer)
and swap them. Those arguments are pre-loaded on the TVM stack, along with the channel
address, in the usual way. Even though they both effect the same operation, ‘MOUT’ needs to
deal with the case that the inputting process is not committed (i.e. it isALTing). The same
algorithm used for the non-mobile channel output instruction (OUT) is safely reused.

3.4 Cloning

A CLONE operator on the RHS of anassignmentturns the mobile operation into acopy. A
CLONE operator on the RHS of anoutputintroduces an anonymousMOBILE – with very local
scope – into which the outputMOBILE is copied. This is followed bymobileoutput from the
anonymous variable.CLONE operators appearing anywhere else within anexpressionhave no
semantic effect (section 6) and are ignored by the compiler. The only other place where a
CLONE operator has impact is on an argument passed to a formalMOBILE reference parameter
of aPROC (also section 6).

4 Mobile Storage Allocation

Mobile data lives inmobilespace– along withshadowsof all mobile variables. This applies
to fixed sizemobiles only –dynamically sizedmobiles are discussed in section 5. Figure 1
shows an expanded declaration ofFOO from section 2.2, along with the layout ofshadow
variables and pointers inmobilespace.

The compiler generates a static mapping of all mobile variables and data on tomobile-
space. This is similar to how the (process)workspaceand (array and record)vectorspace
allocations are performed. For each declared (and anonymous) mobile variable, space is
reserved inmobilespacefor its initial mobile data, along with room for a pointer to that
data – that pointer is theshadowof the mobile variable. For each instance of aPROCedure,
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DATA TYPE FOO
  MOBILE RECORD
    [4]INT dest:
    MOBILE [32]BYTE payload:
:
FOO a, b:
SEQ
  ...

shadow (a)

shadow (b)

[4]INT

shadow(payload)

[32]BYTE

[4]INT

shadow(payload)

[32]BYTE

Figure 1: Example layout in mobile-space for “FOO a,b”

FUNCTION or operator requiringmobilespace, space is reserved in the caller’smobilespace
– as is the case forworkspaceandvectorspace. Themobilespacerequirements for aPROC,
FUNCTION or operator are recorded in the output of the compiler, alongside theworkspace
andvectorspaceusage.

In order for aPROCess (FUNCTION or user-defined operator) to find its mobiles, an extra
parameter is passed providing the address inmobilespacein which its mobile shadows live.
The start ofmobilespaceis passed as a hidden parameter to the top-level process. This is the
same mechanism already used to accessvectorspacestructures.

On initialisation, the KRoC run-time system allocates the whole ofmobilespace, ini-
tialises it to ‘MOSTNEG INT’, then passes it to the top-levelPROCess. In eachmobile-requiring
PROC, FUNCTION and operator generated, a special ‘.MOBILESPACEINIT’ ETC [18] instruc-
tion is generated, which encodes themobilespacemap for thatPROC/FUNCTION. This holds
the workspaceoffset of the hiddenmobilespaceparameter (MSP), the number of mobile
variables to initialise, then for each variable, the shadow-offset and the (initial) data-offset.

The translator turns this special ETC instruction into code to initialise that part ofmobile-
spacethe first time thatPROC, FUNCTION or operator instance is called. The initialisation
checks to see if the first word inmobilespaceis ‘MOSTNEG INT’, if it is, then the initialisation
of mobile shadow variables (i.e. pointing them at their initial data blocks) is performed.

When a mobile variable comes into scope (i.e. at the point of its declaration), the pointer
to its data is copied from itsshadowword (already set up inmobilespace) into the process
workspaceword allocated for it. The compiler can statically determine the offset of a par-
ticular shadow variable from the hiddenmobilespaceparameter passed to the process. For
the duration of the variable’s lifetime, only this pointer now in the workspace is used (to save
repeatedly loading frommobilespace).

When a mobile variable goes out of scope, the pointer it contains is copied back into its
shadow inmobilespace. This may well be a different pointer to the one originally loaded (if
the mobile variable has been assigned or communicated).

To keep the compiler generatedmobilespaceoffsets low, the allocation strategy ensures
that all shadow pointers for mobile variables in a particular process are allocated at the start
of the (mobilespace) block addressed by the hidden parameter – these are followed by the
actual data.Mobilespacefor sub-processes are allocated below this. Of course, as execution
and mobile operations proceed and mobile variables enter and leave scope, the mobile data
areasownedby shadow variables migrate all overmobilespace.
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4.1 Nested Mobiles

Nested mobile types (demonstrated by theFOO declaration in figure 1) present two problems.
Firstly, the data belonging to the mobile is no longer contiguous in memory (unlike the

case for ordinary data types and non-nested mobiles). This has implications for theCLONE

operator, which must now perform adeepcopy. It also complicates the case when a mobile is
output down a channel of its underlying (non-mobile) type. This has to be by a (contiguous
block) copy since the receiving variable may be non-mobile (and contiguous) – see sec-
tion 2.3. Space for aserialisedversion must have been allocated and serialisation performed.
At least this will be simpler than the equivalent operation for Java (because the zero-aliased
mobile structures can only betrees), but it is still not very pretty. This gives another reason
to disallow such operations.

The second problem is sub-mobiles within non-mobile types. Suppose theBAR data type
(section 2.2) is as described – i.e. it is anon-mobilethat contains the same fields asFOO
(which now includes amobilepayload – see figure 1). Non-mobile variables are normally
allocated inworkspaceor vectorspacebut, due to the recycling of these spaces by serial
processes, we would lose the mobile field pointers (e.g. forpayload). It would be possible
to use a mobile shadow variable for each mobile field in a non-mobile type, but this would
incur anO(n) time cost (wheren is the number of mobile fields) every time the variable
entered or left scope.

For this reason we constrain any type with mobile components to be a mobile itself,
and handle theO(n) initialisation cost once when the enclosing ‘PROC’ or ‘ FUNCTION’ is
entered for the first time. This could be handled (secretly) by the compiler, but we prefer the
programmer to tag explicitly such outer types as mobile – and generate a compiler error if
they are not.

Finally, we note that nested mobiles cause no problem for mobile assignment and mobile
communication within the same memory space. We still merely swap the top-level pointers
– the lower-level ones need no adjustment.

5 Dynamically Sized Mobiles

So far, the mobiles presented have had statically allocated memory. But they have many of
the characteristics ofheapallocated objects (e.g. system-wide visibility and fast distribution
via references) – except that construction never fails and is quick (just load the pointer from
the shadow variable), there are nonull states, nonull-pointer errors, no aliasing problems
and no garbage collection.

On systems with no memory constraints – such as those supported by virtual memory
– one other kind of mobile becomes possible: theruntime sizedarray. These are much
like other mobiles, except that they are allocated and freed dynamically, rather than kept
in mobilespace. Dynamic mobile array types omit the dimension in their declaration. For
example:

MOBILE []BYTE buffer:
INT n:
SEQ

in ? n
buffer := [n]BYTE
... process using buffer

In their undefinedstate, dynamic mobile array variables are implemented to refer to zero
sized arrays. Memory allocation is done with the use of a specialexpressionthat describes
the quantity (and type) of memory to allocate. When theoccam compiler cannot determine
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the size of an array at compile time (which isusuallythe case for dynamic mobiles) it inserts
run-time checksto ensure that any accesses on the array happens within its bounds.

Note that although space for the ‘buffer’ mobile is allocated by the above assignment,
its elements are stillundefined.

Unlike other mobile data-types, dynamic mobiles do not have a direct counterpart in the
non-mobile world – i.e., we reject declarations of the form ‘[]BYTE x’.

5.1 Implementing Dynamic Mobiles

As mentioned previously, dynamic mobiles do not occupymobilespace. Instead, two words
are allocated in the processworkspace. One for the pointer to the array, and one for the size
(in elements) of the array. When the dynamic mobile comes into scope, itssize-slotis set
to zero – the pointer is left untouched (and possibly invalid). This avoids the problem of
nullnesssince any use of an unallocated array will be caught by a run-time bounds check (or
by a compile-time check – section 7).

To avoid large overheads in memory allocation, we use a version of the Brinch-Hansen
algorithm for workspace allocation in parallel recursion [19], withhalf-power-of-2-size-
quantisationof its free-lists (Wood [20]). To implement this dynamic memory management,
two new ETC instructions were added, ‘MALLOC’ and ‘MRELEASE’. There are only two places
where dynamic memory allocation can occur – through the use of ‘[n]BYTE’, or through the
use of ‘CLONE’. In both of these cases, a new chunk of memory is pulled off the corresponding
free-list – the run-time system will allocate more heap memory if it finds the free-list empty.
In contrast, releasing memory to the free-lists can potentially happen in a number of places
– before allocation, input and assignment. The generated (ETC) code for a dynamic mobile
check-and-freesequence is:

-- check-and-free code for ‘var’

LD (var + 1) -- load array size
CJ :skip -- jump if zero, else
LD var -- load array pointer
MRELEASE -- free memory

:skip -- program continues

Unlike ordinary (non-dynamic) mobile assignment and communication in the same mem-
ory space (section 3.1) we do not employ the same pointer-swapping technique – mainly be-
cause the source and target arrays may not be the same size. Instead, we revert back to the
‘early plan’ described in section 3.1 (but with thehalf-power-of-2sized free-lists).

5.1.1 Dynamic Mobile Assignment

For assignments involving mixed dynamic mobiles and non-dynamic mobiles, the assignment
reverts to the defaultcopysemantics. This is a fairly special case, and only works when the
arrays are of equal size (the compiler will insert checks where necessary). For the other cases
(where the LHS is a dynamic mobile), the code generated depends on what the RHS is. A
dynamic mobile allocation of the form:

buffer := [n]BYTE

compiles to:
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... check-and-free code on ‘buffer’

LD n -- load new size
LD <typesize> -- load element size (constant)
PROD -- multiply to get number of bytes
MALLOC -- allocate memory
ST buffer -- store pointer
LD n -- load new size
ST (buffer + 1) -- store in size-slot

This is a fairly generic version – the actual code generated may be quite a bit more com-
plex, if ‘n’ is a FUNCTION call or aVALOF expression for example. The code generation for a
dynamic mobileCLONE is slightly more complicated than the allocation code, for example:

thing := CLONE buffer

where ‘thing’ is of the same (dynamic mobile) type as ‘buffer’ would compile to:

... check-and-free code on ‘buffer’

LD (buffer + 1) -- load size of buffer
LD <typesize> -- load element size (constant)
PROD -- multiply to get number of bytes
MALLOC -- allocate memory
ST thing -- store pointer
LD (buffer + 1) -- load size of buffer
ST (thing + 1) -- store in thing’s size-slot

LD buffer -- load source pointer
LD (buffer + 1) -- load size of buffer
LD <typesize> -- load element size (constant)
PROD -- multiply to get number of bytes
LD thing -- load dest pointer
REV -- re-order top two stack elements
MOVE -- copy data

The code-generation can get messy here since thevirtual transputer stackis only three
entries deep, hence the ‘REVerse’ instruction. The final special-case assignment is where one
dynamic mobile is assigned directly to another – this is simpler (in time complexity) than the
above two, for example:

thing := buffer

where ‘thing’ is of the same (dynamic mobile) type as ‘buffer’ would compile to:

... check-and-free code on ‘thing’

LD buffer -- load pointer
ST thing -- store pointer
LD (buffer + 1) -- load size
ST (thing + 1) -- store size

LDC 0 -- load constant 0
ST (buffer + 1) -- store in buffer’s size-slot

In all of these three cases, the compiler will attempt to avoid generating code where is
safely can. The initialcheck-and-freecan be avoided if we know that the array has a zero
size at that point in the program. Additionally, for dynamic mobileBYTE arrays, the ‘LD
<typesize>; PROD’ sequence can be omitted (‘<typesize>’ is 1). For sizes which are
powers of 2, a shift-left instruction can be generated.
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5.1.2 Dynamic Mobile Communication

Communication of dynamic mobiles is carried over channels of the dynamic mobile type.
For example, the channel declaration:

CHAN OF MOBILE []INT c:

would be able to carry ‘MOBILE []INT’ arrays. In addition to transferring the pointer between
the sender and receiver, the size of the array must also be communicated. Ordinary mobile
communication is handled by the ‘MIN’ and ‘MOUT’ instructions. We have added two more in
line with this to handle dynamic mobile communication: ‘MIN64’ and ‘MOUT64’. Unlike the
non-dynamic pair, these instructions implement a 64-bit one-way transfer.

Before a dynamic mobile input is generated (for the inputting process), acheck-and-free
sequence is inserted to ensure that any previously held memory is returned to its free-list.
Similarly, the size-slotin the outputting process is set to zero after the output. As with
assignment, we avoid generating thecheck-and-freesequence if it is safe.

6 Mobile Parameters

Parameter passing is justrenaming– at least, that is the formal position inoccam. It is
different to assignment and communication. So, there are nomobilesemantic implications
arising from this.

For instance, when we use mobiles within expressions (as function or user-defined op-
erator arguments), we do not lose them. Recall thatoccam functions and operators are
guaranteed free from side-effect – so there is no way they can communicate or assign from
any mobile arguments we supply.

Initially, we implemented ‘VAL MOBILE’ parameters, ensuring that the mobile variable is
only ever read from – this involves extra checking for ‘VAL MOBILE’s on the RHS of mobile
assignments and outputs. In doing this however, we lose the ability to exploit themobileness
of VAL MOBILE parameters, since any mobile assignment or communication of that parameter
mustuse theCLONE operator. There is, therefore, no semantic point in havingVAL MOBILE

parameters and we ban them. Of course, a mobile variable can be passed to aVAL parameter
of the underlyingnon-mobiletype (the ‘BAR’ type in section 2.2 for example).

DisallowingVAL MOBILE parameters also solves a problem ofFUNCTIONs that might take
mobiles as arguments and return them as results. That would introduce aliasing.

Referencemobile variables passed to aPROCess may, of course, bemovedby that process
(to another variable or down a channel). No problem. To ensure that any changed parameters
are correctly restored, the compiler generatescopy-in, copy-outtype code. For dynamic mo-
biles, this includescopy-in, copy-outon hidden array dimension(s). It would be additionally
beneficial to use thecopy-in, copy-outparameter passing mechanism for small sized (≤ 8
bytes –INT, REAL64, etc.) reference parameters, as this would avoid a lot of pointer derefer-
encing when using those parameters. Another option would be to shadow the parameter with
a suitably typed variable allocated in the processworkspaceand employ a similarcopy-in,
copy-outstrategy, but performed by the called process, rather than by the one invoking it.

Table 1 summarises the allowed formal and actual parameter-type combinations (where
there are no ‘VAL MOBILE THING’ formal parameters – see above).

In the cases where the actual parameter is a ‘MOBILE THING’ and the formal parameter
is not ‘MOBILE’, we do not need to worry about handling nested mobiles (i.e. insideTHING).
The policy of nested-mobile typing (section 4.1) means that ‘THING’ could not contain mobile
sub-fields.

Dynamic mobile actuals follow the same parameter passing conventions as given by ta-
ble 1.
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formal parameter
actual parameter THING VAL THING MOBILE THING

THING yes yes no
VAL THING no yes no
MOBILE THING yes yes yes

Table 1: Summary of formal vs. actual parameter combinations

7 Undefined Usage Checks

A variable whose current data value (r-value) is undefinedshould never be used in that state.
This is the initial state ofoccam variables – unless explicitly declared withINITIAL values
[21]. We now have mobile assignment and communication that set their source variables
back to thisundefinedstate.

Checking against the use of uninitialised variables has been an omission from previous
occam compilers. In the process of this research, we have added anundefinedusage-checker
to the (KRoC) occam compiler, that tracks the state of variables and channels through se-
quential code. Sequential channel usage checking is also included to catch code that would
always result in deadlock – for example:

CHAN OF INT c:
INT x:
SEQ
c ! 42 -- blocks here, waiting for
c ? x -- this input process

Essentially, at any point a variable is used, we determine it to be in one of three states:
defined, undefined, or unsure(which means itsdefinednessstate depends on run-time hap-
penings). For the most part, variables becomedefinedwhen they appear on the LHS of an
assignment, the RHS of an input, or as an actual parameter to a non-VAL formal.

For assignments, if any part of the RHS isundefinedor unsurethen the corresponding
variable on the LHS is set to a similar state (undefinednessin expressions overridesunsure-
ness). This extends toFUNCTIONs and operators on the RHS of assignments, whose results
are consideredundefinedor unsurebased on the state of the actual parameters.

After mobile assignment or communication mobile variables become undefined. The
compiler handles this correctly and will generate the appropriate warnings. For example,
code such as:

01 PROC foo (CHAN OF MOBILE INT out)
02 MOBILE INT x:
03 SEQ
04 x := 42
05 out ! x
06 out ! x
07 :
08
09 PROC bar (CHAN OF MOBILE INT out)
10 MOBILE INT y:
11 SEQ
12 y := 42
13 WHILE TRUE
14 out ! y
15 :

generates the following compiler warnings:
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Warning-oc-uc19.occ(6)- Variable ‘x’ is undefined here
Warning-oc-uc19.occ(14)- Variable ‘y’ might be undefined here

7.1 Implementing Undefined Usage Checks

Theundefinednesschecker is implemented as a separate stage in the compiler, which is per-
formed after the alias and parallel-usage checking. For each variable1 which comes into
scope, a new ‘udv t’ structure is created and added to a list which holds all the variables
currently in scope. The key fields of this structure are:

struct {
udv_t *next; // next in scope
char state[]; // state array
treenode *nameof; // pointer to symbol-table entry

} udv_t;

The state of the variable is recorded in the ‘state’ field, which is an array indicating the
variable’sdefinednessat different points in the program. This ‘state’ array is treated as a
stack, indexed by ‘udv vstacklevel’, and is used to evaluate the state of variables inside
nested code-blocks, such asIF guards, or the code within aWHILE loop.

Tracking the state of variables through branches of event guards and conditionals (ALTs,
IFs andCASEs) is done by examining each branch, and its effects on the current state of
variables at that time.ALTs require more careful handling thanIFs andCASEs due to the
possibility of declarations before the guard. For example, the code:

01 PROC dull (CHAN OF INT in, out)
02 ALT
03 INT x, y:
04 in ? x
05 out ! (x + y)
06 :

generates the appropriate warning:

Warning-oc-uc19a.occ(5)- Variable ‘y’ is undefined here

Figure 2 shows how theundefinednesschecking for anIF conditional is performed. Just
prior to theIF conditional, ‘n’ is defined and ‘u’ is undefined. As each guard is processed,
the stack-level is incremented and the state prior to theIF copied. The body of the guard is
then examined, leaving the resulting variable states at that stack-level. After theIF, a merge
is performed which examines the output state of each guard with the initial input state (before
theIF) and generates a resultant state. When the condition of theIF is found to be undefined,
there is some argument as to whether analysis should be performed on the guarded process.
The current situation is that this undefined analysis is performed for all code, regardless of
any undefined variable usage leading up to it.

Checking parallel processes is done in a similar manner, collecting output states for each
branch of thePAR, but the merge is different. Only one branch needs to change the state of
a variable, and that will be carried through to the output state of thePAR. Theparallel usage
checker ensures that adherence to the CREW (concurrent read, exclusive write) model [22]
is maintained.

ReplicatedSEQs andWHILE loops are handled by examining the loop body twice, along
with the condition for theWHILE loop. As before, the stack-level is incremented and the state

1The use of ‘variable’ extends tonames, which are not necessarily variables, in “VAL INT i IS (j \ n)”
for example.
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  IF

    v = 4
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      v := n
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Figure 2: Undefined checking on anIF conditional

copied before the loop body is examined. After each check of the body, the states are merged
back together. In this merge,unsurevariables before the loop remainunsure. Definedor
undefinedvariables change tounsureif their output state is different from the input state,
otherwise they remain the same. This can be relaxed slightly if we know in advance how
many iterations of the loop will be performed.

ReplicatedIFs,ALTs andPARs are handled slightly differently, since there is no looping
involved as such. For these, the replicated process is examined altering the current state
directly – no merging after the replicator is needed. We can guarantee that the body executes
exactly once for replicatedIFs andALTs, and possibly more times for a replicatedPAR.

Value parameters must not be passedundefinedor unsurevariables. Reference param-
eters can be, however, since the invoked process may use it for returning a result. The ex-
plicit RESULT qualifier ofoccam3[21] would raise quality here, as we could then enforce all
non-RESULT reference arguments to bedefined. Additionally, we could ensure thatRESULT
parameters inside aPROC were left in adefinedstate when thePROC returns to the caller.

A more difficult issue is tracking the state of individual fields in array variables. In prac-
tice we treat arrays as atomic to keep the implementation relatively simple, although there is
future scope for subscript analysis – the alias and usage checkers in the compiler go to great
lengths to check array subscripts and slices. Analysing fields in record variables is not too
difficult however – we just treat each<variable, field>-pair as an individual name.

For well-designed processes, these undefined usage checks will be straightforward. Com-
piler rejection (currently a warning) of the use of variables inundefinedor unsurestates –
as well as partiallydefinedarrays/records – will encourage better style. Warnings are not
generated immediately, but collected and sorted first. This is to avoid repeated warnings,
for example in “n := (v + (v * v))” where ‘v’ is undefined, and to force them out in
source-line order.
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7.2 Undefined checks on nestedPROCs

occam allowsPROCedures andFUNCTIONs to be declared wherever a normal declaration is
allowed. This is generally a useful thing, but presents extra difficulty to the undefinedness
checker. Take the following code for example:

01 PROC foo (CHAN OF MOBILE INT out, CHAN OF INT out.2)
02 MOBILE INT a:
03
04 PROC bar (VAL INT n, INT v)
05 SEQ
06 v := (n + a)
07 :
08
09 INT x:
10 SEQ
11 a := 42
12 bar (10, x)
13 out.2 ! x
14 out ! a
15 bar (10, x)
16 out.2 ! x
17 :

Here, the ‘bar’ procedure uses the ‘a’ variable, which is part of the ‘foo’ procedure.
Performing a simple undefinedness check on ‘bar’ would lead to warnings being generated
for ‘a’, since it will always be considered to beundefined– it has just been declared. For
this reason, nestedPROCs are checked at the point of instantiation, and the state of the actual
parameters followed through into the formal parameters. By checking nestedPROCs this way,
the undefinedness of ‘a’ will be reported correctly. After examining the body of a nested
PROC, the state of any non-VAL formals are copied back to the actuals. The compiler output
for the above code is:

Warning-oc-uc20.occ(15)- In call of ‘bar’:
Warning-oc-uc20.occ( 6)- Variable ‘a’ is undefined here
Warning-oc-uc20.occ(16)- Variable ‘x’ is undefined here

and no warnings are issued on lines 12 and 13 (where ‘a’ is defined).
For top-levelPROCs, we assume that any formal parameters are in thedefinedstate when

the PROC is called. However, within the same file, top-levelPROCs are examined at their
points of instantiation, as well as a normal “could be called from somewhere else” check.

7.3 Extra rules for mobile assignment and communication

The motivation, of course, for these undefined usage checks was the extra dangers introduced
by our choice of mobile semantics. Whereas previously, variables could change state only
once from initiallyundefinedto defined, mobile variables may switch between these states
any number of times.

However, this introduces no serious extra problems to the analysis described above. The
whole code is checked in any case. We just have to record a mobile variable becoming
undefinedfollowing its use on the RHS of a mobile assignment or output. This is trivial. No
other changes to the analysis are required.
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7.4 Note on the defined states of dynamic mobiles

Dynamic mobiles are treated slightly differently in theundefinednesschecker. Any dynamic
mobile array is consideredundefineduntil it is allocated through the use of an ‘[n]TYPE’
expression, or input from a (dynamic mobile) channel. For example, the following code
generates an undefined variable warning for ‘array’:

MOBILE []BYTE array:
SEQ

array := "hello world!*n"
...

because ‘array’ has had no space allocated yet.
However, we are thinking of allowing this assignment for the above example and other

array-literals (i.e. tables), interpreting in the obvious way:

MOBILE []BYTE array:
SEQ

VAL []BYTE tmp IS "hello world!*n":
SEQ
array := [SIZE tmp]BYTE
array := tmp
...

Indeed, we are thinking of extending this to cover the general case ofnon-mobile-to-
mobileassignment and communication. So, if ‘x’ is a MOBILE []THING and ‘y’ is a non-
mobile[n]THING (wheren is a known constant), then:

x := y

is compiled with:

SEQ
x := [SIZE y]THING -- dynamic mobile allocation
x := y -- copy assignment

8 Performance of Mobiles

Figure 3 shows the process networks of a producer-consumer and a ping-pong benchmark
program, the results of which are shown in figures 4 and 5 respectively.

Producer Consumer

Pong
(Id)

Ping
(Prefix)

Figure 3: Benchmark process networks for producer/consumer and ping-pong
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In the producer-consumer network, the producer repeatedly outputs a local variable,
which the consumer repeatedly inputs. In the ping-pong network, the ‘Prefix’ process out-
puts a variable then waits for input. The ‘Id’ process is simply a buffer which performs an
input then returns the variable to the ‘Prefix’ process. An array of varying size (1 to 128
bytes) is communicated over the channel connecting the two processes. Two sets of results
for copycommunication are given, one is for an ordinary compile, the other is wheninlin-
ing is enabled in the translator (tranx86 [23]). Inlining here expands ‘IN’ and ‘OUT’ kernel
calls for efficiency – as seen by the difference between the two curves. Inlining for mobile
inputs and outputs has not yet been implemented, but should reduce the overheads of mobile
communication by a similar amount.

For the producer-consumer network (figure 4) a local variable is communicated unini-
tialised (generating the appropriateundefinedwarnings – section 7), except in the dynamic
mobile case, where it is allocated in the producer before being output to the consumer. Be-
cause of this, the dynamic mobile consumer process must perform acheck-and-freeon the
target variable before the input. This accounts for the higher cost in communication for dy-
namic mobiles. However, as noted in section 5.1.1, we do save acheck-and-freesequence
before the allocation in the producer, since it is known that the array is always undefined at
this point (it has either just been declared or output).

The ping-pong network (figure 5) produces slightly larger overheads for mobile commu-
nication (104ns compared to 80ns), but much lower overheads for dynamic mobiles ( 99ns
compared to 230ns). The improvement in dynamic mobile performance is attributable to
the removal of repeated allocations andcheck-and-freesequences, made possible by the
undefined-variable checker (section 7). As can be seen in figure 5, dynamic mobiles ex-
perience slightly less overheads than static mobiles, showing the difference between a 32-bit
swap (static mobiles) and a 64-bit one-way copy (dynamic mobiles). The general differences
between the two graphs, where the producer-consumer network exhibits larger overheads for
data copy than the ping-pong network, are attributable to processor caching effects. The sig-
nificant improvement in theinlined copy is a feature of the inlining used, which reduces the
amount of executed code considerably.

As expected, mobile communication has a roughly constant cost, regardless of the data
size. The cost for allocating and freeing dynamic mobiles is slightly more variant, but mostly
constant. This verifies that our free-list implementation for dynamic mobiles has a roughly
constant overhead, regardless of the size of the data being allocated or freed. There is an
initial (but hidden) cost initially to allocate a block of memory from the system, since the
free-list will be empty when the first allocation happens.

Figures 4 and 5 show the times for the communication of data only – none of the processes
involved access any array elements.

9 An Example of Using Mobiles

In order to test the implementation of mobiles, a small graphics library and test application
has been written. The process network for the test program is shown in figure 6. The graphics
library, called ‘xraster’, implements the minimal functionality required to get a bitmap from
occam onto the user’s X desktop. For this we have used MIT-SHM (MIT Shared Memory
Extension) [24] – this provides amemory-to-memorycopy for an ‘XImage’ (one method X
uses to represent bitmaps inside client applications), as opposed to sending the bitmap data
across the X server connection. Of course, this only works when the client and the X server
are running on the same same (System V IPC supported) system.

The library defines a mobile type, ‘RASTER’, and aPROCess to do the hard-work, using
the declarations shown in figure 6.
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testprog

mandelbrot char.gen text.scroll.gen

XRasterdot.matrix dot.walk

SHM shared memory

X server

to the X server
control connection

DATA TYPE RASTER IS MOBILE [200][320][4]BYTE:
PROC XRaster (DISPLAY disp, VAL INT fps, CHAN OF RASTER in, out)

Figure 6: Process network for theMOBILEs test application

The ‘fps’ parameter to ‘XRaster’ specifies the speed (in frames-per-second) of the dis-
play. The connection to the X server is specified by the ‘disp’ parameter, which is obtained
from another call in this graphics library. Internally, ‘XRaster’ calls theselect() blocking
system call (through a suitable interface in the C world [25]) to wait for an event from the X
server or a timeout.

Initially, the ‘XRaster’ process outputs an undefinedRASTER before entering its process-
ing loop. When a timeout occurs, aRASTER is read from the ‘in’ channel and placed on the
screen. The oldRASTER is then sent down the ‘out’ channel. The various other processes
in the network simply read aRASTER from their input, add some graphics, then send it on.
The ‘mandelbrot’ process generates a real-time fractal zoom for a while, then continues
generating the same image – using aCLONE.

In our test application, ‘XRaster’ is set to go at 20 frames-per-second. This results in
a CPU load of around 1% (on an 800 MHz Pentium-III) after the mandelbrot zoom has
finished. Increasing the frame rate to 50 frames-per-second results in a CPU load of< 2%
after the zoom. Even at 200 frames-per-second, the CPU load is marginal, but the graphics
hardware is incapable of displaying every frame. When we built the test application with a
non-mobileRASTER, the CPU load was around 20% at 20 frames-per-second. Mobiles are a
clear winner for this and other similar applications.

10 Conclusions and Future Work

Mobile communicationmovesdata from the source process (which loses it) to the target.
If source and target live in thesamememory space, implementation is fast (just pointer
swapping), secure (no aliasing is introduced) and consistent with communication between
differentmemory spaces (ordinary copying). To nail the aliasing problem, the concept of
mobile assignment has to be introduced – with complementarymovementsemantics and fast
and secure implementation. The trick sought at the end of section 1 has been achieved.

Repeating this trick for existing OO languages (such as Java or C++) is not possible. We
can get most of the semantics and fast implementation, but we cannotautomaticallycontrol
the aliasing and make it secure. This is the position of JCSP, where we rely on the user
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knowing the rules.
OO language change has to happen – essential concepts are missing. One of these is to

separate, by good language engineering, thedifferentuses to which pointers are put. They
can still stay hidden (as in Java), but we must distinguish between their use forsharing
informationbetween different parts of the system (as in mobiles) and for buildinginteresting
information structures(such as doubly-linked lists). These ideas are discussed further in Tom
Locke’s paper to this conference [26].

The status of theoccam (KRoC) work is that non-nested fixed-sizedMOBILE types, vari-
ables, assignment, communication, parameter passing, extra usage checks, the storage alloca-
tion scheme (section 4) and the undefined usage checks (section 7) have been done. Dynamic
mobiles have also been implemented, using free-lists and the Brinch-Hansen dynamic allo-
cation scheme – section 5. Nested mobiles have not yet been fully implemented.

The KRoC compiler only recognises the extensions described in this experiment if a
special flag (‘-X5’) is used. These extensions will be available in the forthcoming KRoC 1.3
release. We invite people to try using theseMOBILEs and feed back their experiences to the
community.

There is no space left to describe further applications. Whenever we have the pattern of
accessing some data, processing it and passing it on, these ideas ofMOBILE data are relevant
– and that pattern is fairly prolific. Another example is theoccam based web server [25, 27],
where socket connections migrate from one end of the network to the other, having different
operations performed on them by each process. TheMOBILE qualifier was introduced on to
the relevant data type and our experimental compiler produces a still working system! We
haven’t yet measured them, but the overheadswill be lower.

We are also working on a full graphics/GUI library foroccam, where almost all the com-
municated packets can be declaredMOBILE and the load on the system significantly reduced.
Currently, we are secure – but we copy.

The mobile pattern is endemic throughout OO systems (unconsciously) and most indus-
trial scale applications ofoccam (sadly, from past years). But there is no automated secure
management of that pattern and we have to take great care - and very often fail. This paper
contributes to the automation of that care and a reduction in the cost of its execution.
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