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Introduction

• Web-servers are naturally concurrent:

– need to handle multiple connections

– and fairly, ideally

• CSP design:

– verifiable

– scalable

• Dynamic occam implementation:

– implementation correctness

– performance
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Design
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• New connections originate in the ‘acceptor’

• Requests read inside the ‘fe.farm’

• Responses generated in various places

• Connections finish in ‘be.proc’
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Front-End Farm
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• ‘fe.farm’ maintains a pool of processes

– workers send −1 when busy

– and +1 when idle

• Each ‘fe.process’ handles a single client:

– read the request

– forward connection (based on request)
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Page Caching
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• ‘cache.control’ handles management

• Requests are hashed and re-directed if a
‘cache.process’ exists for them

• Non-cached requests are passed to the
‘static.farm’

• ... that updates ‘cache.control’ after pages
have been retrieved
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Static Pages
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• As before, a pool of at least n free workers

is maintained

• The ‘get.page’ process copies file contents

to the client

– using the ‘sendfile’ system-call

– after sending the headers
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CGI Scripts
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• Follows the design of ‘static.farm’

• The ‘cgi.page’ process executes the spec-

ified script, sending output directly to the

client
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Back-end Processing
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• Primarily responsible for closing or recy-

cling client connections

• Also reports connection statistics to the

‘stats.keeper’ process
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The occam Gateway Interface
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• OGI modules are dynamically loaded

• Connections are serialised in ‘ogi.farm’

• OGIs may handle > 1 client simultaneously

– simple setup protocol required to do this
correctly
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OGIs

• OGIs can be one-shot or persistent

– removing the OS-process startup/shutdown

cost associated with CGI scripts

• Since an OGI may handle multiple clients,

interactions between clients:

– are simple to implement

– and are controllable

• Simple web-based ‘chat’ OGI, for example

• ... or something more complex
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The occam Adventure
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• Supports an IRC interface in addition to
the web-interface

– Creates a ‘bot’ that interacts with users

• Adding a traditional MUD ‘telnet’ interface
would be trivial :-)
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A New Adventure
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• Decentralised state, cleaner design

• Channel-ends move around the network
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Deficiencies

• Performance is limited

– not an ideal benchmark

– server was run with full debugging

• Bottleneck from blocking system-calls

– collect/dispatch time is significant

– frequent (Linux) rescheduling

• Each client request requires at least three

blocking calls for a request

– could do something more intelligent in

the front-end farm
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Improving Performance
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• Each ‘timed.buffer’ process holds a number
of connections

– inactive connections move left to right

– active connections stay put

• Reduces the number of blocking calls made

• ... or get a faster PC..! :-(
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On-going Research

• Although performance is currently limited

– design simplicity and correctness count

for a lot

– no buffer overflow potential, zero alias-

ing, zero race-hazard, ...

• Blocking syscalls are being ‘upgraded’

– including a new Linux device-driver to

significantly improve performance

– the ‘cspdriver’

• Raw-metal web-serving (with RMoX)
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Accessing the Server

http://wotug.kent.ac.uk/ocweb/

• Currently off-line while I move offices

• Should be back around the 20th Sept.

• Hope to have performance issues resolved

in a month or two.. :-)


