
occwserv – The occam Web-Server 1/18

occwserv: An occam
Web-Server

(version 2)

Fred Barnes (frmb2@ukc.ac.uk)

Computing Laboratory, University of Kent,

Canterbury, Kent. CT2 7NF

occwserv – The occam Web-Server 2/18

Contents

• Introduction

• Design:

– front-end farm

– page caching and static files

– CGI scripts

– back-end processing

• OGI modules:

– the occam adventure

• Performance

• Conclusions

occwserv – The occam Web-Server 3/18

Introduction

• Web-servers are naturally concurrent:

– need to handle multiple connections

– and fairly, ideally

• CSP design:

– verifiable

– scalable

• Dynamic occam implementation:

– implementation correctness

– performance

occwserv – The occam Web-Server 4/18

Design

cache.hash

acceptor

fe.farm

be.proc

ogi.farm

cgi.farm

static.farm

and processes
cache.control

close

read
TCP

TCP

accept
TCP

write
TCP

write

write
TCP

write
TCP

TCP

• New connections originate in the ‘acceptor’

• Requests read inside the ‘fe.farm’

• Responses generated in various places

• Connections finish in ‘be.proc’

occwserv – The occam Web-Server 5/18

Front-End Farm

to cache

to cgi’s

to ogi’s

fe.farm

fe.process fe.process

acceptor

from

be.proc
to

TCP
read

• ‘fe.farm’ maintains a pool of processes

– workers send −1 when busy

– and +1 when idle

• Each ‘fe.process’ handles a single client:

– read the request

– forward connection (based on request)

occwserv – The occam Web-Server 6/18

Page Caching

cache.control

cache.process cache.process

cache.hash

be.proc
to

fe.farm

from

static.farm
to

static.farm

data from

write
TCP

• ‘cache.control’ handles management

• Requests are hashed and re-directed if a
‘cache.process’ exists for them

• Non-cached requests are passed to the
‘static.farm’

• ... that updates ‘cache.control’ after pages
have been retrieved

occwserv – The occam Web-Server 7/18

Static Pages

static.farm
from

acceptor

write
TCP get.page get.page

to
be.proc

cache
to

• As before, a pool of at least n free workers

is maintained

• The ‘get.page’ process copies file contents

to the client

– using the ‘sendfile’ system-call

– after sending the headers

occwserv – The occam Web-Server 8/18

CGI Scripts

from

acceptor

to
be.proc

cgi.farm

cgi.page cgi.page

conn. to

cache

TCP
read/write

• Follows the design of ‘static.farm’

• The ‘cgi.page’ process executes the spec-

ified script, sending output directly to the

client

occwserv – The occam Web-Server 9/18

Back-end Processing

be.proc
to

fe.farm

TCP
close

stats.keeper stats.process

cache.control
to/from

cache.hash
from

• Primarily responsible for closing or recy-

cling client connections

• Also reports connection statistics to the

‘stats.keeper’ process

occwserv – The occam Web-Server 10/18

The occam Gateway Interface

to
be.proc

ogi.farm

ogimain

ogi.handler ogi.handler

loaded process
dynamically

cache

to

from

fe.farm

TCP
read/write

• OGI modules are dynamically loaded

• Connections are serialised in ‘ogi.farm’

• OGIs may handle > 1 client simultaneously

– simple setup protocol required to do this
correctly

occwserv – The occam Web-Server 11/18

OGIs

• OGIs can be one-shot or persistent

– removing the OS-process startup/shutdown

cost associated with CGI scripts

• Since an OGI may handle multiple clients,

interactions between clients:

– are simple to implement

– and are controllable

• Simple web-based ‘chat’ OGI, for example

• ... or something more complex

occwserv – The occam Web-Server 12/18

The occam Adventure

ogimain

in? out!

read/write

IRC TCP

read/write

TCP

game

event.filter

irc.client irc.client

irc.interface

object object

• Supports an IRC interface in addition to
the web-interface

– Creates a ‘bot’ that interacts with users

• Adding a traditional MUD ‘telnet’ interface
would be trivial :-)

occwserv – The occam Web-Server 13/18

A New Adventure

in? out!

ogimain

web.client web.client irc.client irc.client

irc.interface
read/write

IRC TCP

objectobject

HTTP TCP
read/write

• Decentralised state, cleaner design

• Channel-ends move around the network

occwserv – The occam Web-Server 14/18

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200 400 600 800 1000 1200 1400 1600

re
sp

on
se

s/
se

co
nd

attempted requests/second

apache
occwserv

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0 200 400 600 800 1000 1200 1400 1600

ba
nd

w
id

th
 (k

b/
s)

attempted requests/second

apache
occwserv

occwserv – The occam Web-Server 15/18

Deficiencies

• Performance is limited

– not an ideal benchmark

– server was run with full debugging

• Bottleneck from blocking system-calls

– collect/dispatch time is significant

– frequent (Linux) rescheduling

• Each client request requires at least three

blocking calls for a request

– could do something more intelligent in

the front-end farm

occwserv – The occam Web-Server 16/18

Improving Performance

timed.buffertimed.buffer timed.buffer

n.select.read n.select.read n.select.read

acceptor

from

TCP

read

front−end farm

to modified

timed

out

• Each ‘timed.buffer’ process holds a number
of connections

– inactive connections move left to right

– active connections stay put

• Reduces the number of blocking calls made

• ... or get a faster PC..! :-(

occwserv – The occam Web-Server 17/18

On-going Research

• Although performance is currently limited

– design simplicity and correctness count

for a lot

– no buffer overflow potential, zero alias-

ing, zero race-hazard, ...

• Blocking syscalls are being ‘upgraded’

– including a new Linux device-driver to

significantly improve performance

– the ‘cspdriver’

• Raw-metal web-serving (with RMoX)

occwserv – The occam Web-Server 18/18

Accessing the Server

http://wotug.kent.ac.uk/ocweb/

• Currently off-line while I move offices

• Should be back around the 20th Sept.

• Hope to have performance issues resolved

in a month or two.. :-)

