KRoC — Calling C Functions from occam

David C. Wood, Computing Laboratory, University of Kent at Canterbury
D. C. Wod@kc. ac. uk

1. Introduction
This document describes the mechanism for callifignctions fromoccam running on x86 Linux KRoC.

2. TheProblem

The parameter-passing eention used byoccam on the transputerand hence byKRoC, is in general

different from that used b§ (and other languages). The mechanism described here faribog between
these cowventions is designed so théRoC needs to knw very little about those used 6y, as far as possible,
this is left to the locaC compiler.

3. Mechanism

The parameters of asccam PROC are passed in conseaugtilocations at the start of thicam workspace
of the process making the callo access & function, these parametersviedo be e-oganised according to
the cowentions of theC compiler Fortunately this can be done in aifly transparent ay, using theC
compiler itself, so that neith&RoC nor the programmer need to kmthose cowentions.

Suppose we wish to call@function with the prototype:
int foo_bar (float this, float that);

then we need anccam ‘prototype’ to male the call fromoccam. Although we could model this with an
occam FUNCTI QN, functions inC cannot be trusted to be free from sidieetf Thereforewe model allC
‘functions’ by occam PRQOCs that include an extra result parameter (or paramet@&fsg.occam ‘prototype’

is introduced using thé&¢PRAGVA EXTERNAL mechanism, since its implementation is ‘external’ to the
occam system. Br the abwe C function, we need:

#PRAGVA EXTERNAL "PROC C.foo.bar (INT result, VAL REAL32 this, that) = 0"

The initial ‘C. ' is a naming comention used bKRoC so that it can generate the special calling sequence for a
C function. Pleasaote that this means th&RoC occam programs must not declarermal PROCs (or
FUNCTI ONs) with names starting_. ’

The zero at the end of thisPRAGVA declaration is the number of words @fcam workspace needed to
execute thePROC. Howeve, C functions create mestack frames for their arkspace and these do neglin
theoccam world.

TheKRoC system cannot compile a call@f f 0o. bar directly into a call of the functionf oo_bar , since

it doesnt know the full parameter passing a@ntions required by th€ compiler InsteadKRoC compiles it
into a call of aC ‘interface function’ (with the name_f oo_bar) and which the programmer has to supply
Its name is devied from theoccam #PRAGVA name, substituting '’ (double underscore) for the opening
‘C. " and changing another dots into underscores.

KRoC C interface functions alays hare the same signature for their prototypesytheturnvoi d and talke
only one parameter a pointer to theoccam workspace where the actual parameterehzen set up.For
our example, the interface prototype is:

void _foo_bar (word W]);
wherewor d is aC data type corresponding to accam | NT. For the x86 Linux system, this is:

typedef int word;

Note that theoccam workspace is simply represented as an arrawmfds. Notealso thatKkRoC has to
know just a little about the parameter passingvention required byC in order to pass this single pointer.

It is the responsibility of th€ interface function to makthe actual call of th€ target function, supplying it

with parameters extracted from tbecam workspace. @ write this function, the programmer needs towno
how occam has placed the gmments in its workspace andwdo convert betweenoccam data types and

parameter modes and thoseCin

This is not as hard as it sound=or our example, the interface function is:

void _foo_bar (word W) {
*INT(wW0]) = foo_bar (VAL_REAL32(wW 1]), VAL_REAL32(W 2]));

}

Comparing this with theccam C. f 0o. bar, we e thatoccam parameters appear o] in ascending
order from element zero, with the leftmost parametef &) . All occam parameters occygust one word,
except for open arrays which are passed ia words (a pointer to their start and their actual sizecam
data structures occupying more than one word arayalpassed by pointerv@n if they are VAL parameters).

To oorvert between the basioccam data types and parameter modes and thosg, ia £t of macros
(e.g.I NT, VAL_REAL32, ...) is provided. Theseare needed to keep tletype-checkr hapy and generate
no run-time codeA full list is given in Section 4.

If the local C compiler provides a mechanism for calling other languagesHatgan), there is nothing to
stop theseC interface functions directly making such calls. In thimywaccess to routines in other languages
is automatically inherited biyRoC occam.

Similarly, the interface function may be written in natiassembler, dlowing direct access to the x86
instructions fronKRoC. [For information, the single parameter to this function (which points t@¢ham
workspace and, hence, tbecam parameters) is passed on the top of the sthitkvever, programmers will
need to obethe Intel 386/486/Pentium calling CGaations.

4. MAPPING BETWEEN THE BASIC occam AND C TYPES

Mappings between the basiccam and C types and gien in Figure 1. Equivdent headings between an
example occam PROC (which would appear in #PRAGVA EXTERNAL declaration) and the et C
function are gien in Fgure 2. The interface function that connectsdbeam call with the tagetC function

is given in Hgure 3. The interface function uses a numberComacros which are defined in the file
cal I c\ cal | c. h (in the KRoC release directory)For information, a listing of these isvgh in Fgure 4.
Use of these macros is not compulsdiyt they simplify the writing of interface functions and mafhem
portable tacKRoC systems running on other processors.

occam C

BYTE char

BOOL char

I NT16 short int

I NT i nt

| NT32 i nt

| NT64 I ong I ong int
REAL32 | fl oat

REAL64 | doubl e

Figure 1 Mapping betweewccam andC basic types

occam PROC heading C function prototype

PROC C. basic (VAL BYTE v.c, voi d basic (char v_c,
VAL BOOL v. b, char v_b,
VAL | NT16 v. s, short int v_s,
VAL I NT v.i, int v_i,
VAL I NT32 v.j, int vj,
VAL | NT64 v.I, long long int v_I,
VAL REAL32 v.f, float v_f,
VAL REAL64 v.d, doubl e v_d,
BYTE c, char *c,
BOOL b, char *b,
I NT16 s, int *s,
INT i, int *i,
I NT32 j, int *j,
I NT64 |, long long int *I,
REAL32 f, float *f,
REAL64 d) doubl e *d);

Figure 2 Equivdlentoccam andC prototypes (basic types)

void _basic (int W]) {

basi c
(VAL_BYTE

VAL_BOOL
VAL_I NT16
VAL_I NT
VAL_I NT32
VAL_I NT64
VAL_REAL32
VAL_REAL64
BYTE
BOOL
| NT16
I NT
| NT32
| NT64
REAL32
REAL64

~NOoO oM~ WNPEO
e e e e b e bt

e e e e e i e e N N N N N N

— N N N N N

2252525222222 %2

NN TN TN NN AN AN TN N AN AN AN AN NN
PP P RPRPEPOO®
UG hWN PR Oo——

Figure 3 Interface function (basic types)

Summary: when anoccam process makes a call @ basi ¢, KRoC implements this as a call to the interé
function __basi ¢, which males the actual call to the target functibasi c. The interface function
effectively maps the parameters from the structure set ugpcbgm to whateer is needed byC.

typedef int word;

#defi ne VAL_BYTE(w) (*(char *)&w)

#tdefi ne BYTE(w) ((char *)(w))

#def i ne VAL_BOOL(W) (*(char *)&(w)
#tdef i ne BOOL(w) ((char *)(w))

#defi ne VAL_INT16(w) (*(short int *)&w)
#tdefi ne | NT16(w) ((short int *)(w))
#defi ne VAL_I NT(w) (w)

#tdefi ne | NT(w) ((int *)(w)
#define VAL_INT32(w) (W)

#tdefi ne | NT32(w) ((int *)(w)

#define VAL_INT64(w) (*(long long int *)(w))
#define | NT64(w) ((long long int *)(w))

#def i ne VAL_REAL32(w) (*(float *)&w))
#tdefi ne REAL32(w) ((float *)(w))

#def i ne VAL_REAL64(w) (*(double *)(w))
#tdef i ne REAL64(w) ((double *)(w))

Figure 4 Interface macros (basic types)

5. MAPPING BETWEEN ARRAY TYPES

When anoccam formal parameter array is declaredvdd., the correspondin@ formal parameter should be

declared azonst . Howeve, both occam and C pass arrays by referencegaalless of VAL or const

decoration. Infact, C does not distinguish between arrays and pointers, sa tap[] andi nt *p are

equialent as parametersboth are passed simply as addresses. Hence, in thegetéunction, arrays can

be treated as reference parameters of their base type and we just use those macros whose names are the basic
occam types.

It is important to knev that anoccam formal open array parameter (e.gf] REAL64, [][] BYTE) is
supplied as the pointer to the start of the arfayowed by the sizes for all missing dimensio#sformal
sized array parameter (e.f42] REAL64, [768] [1024] BYTE) is just supplied as the pointer to the start of
the array.

Figures 5 and 6 shoequivalent occam andC headers for an example containing various array parameters.
Not all basic types are illustratedror others, simply substitute theccam names in theccam header and
interface function macros and match the target function type according to the table in Figure 1.

6. MAPPING BETWEEN OTHER TYPES

There are no equalents inoccam to C unsignedi nt types. Thg can be passed as the corresponding
signed types; but if there is a need to do arithmetic on them ioctteen world, the unchecked operators
PLUS andM NUS should be used.

RECORDs in occam correspond tat r uct s in C. Howeve, theoccam compiler may layouRECORD fields

in a different order to the way th@ compiler lays out itst r uct fields. For example,occam RECORD
fields are packed in ascending order of size. No guarantees are, thergéoréhajithese data structures can
be directly mapped.

occam PROC heading

C function prototype

PROC C.array (VAL [42] REAL32
VAL []REAL32 b,

[42] REAL32 c,
[] REAL32 d,

VAL [768][1024]
VAL [][]1BYTE f,

[1[]1BYTE h)

[768] [1024] BYTE g,

a, void array (const float a[42],

BYTE e,

const float b[],

int b_size,

float c[42],

float d[],

int d_size,

const char e[768][1024],
const char f[][],

int f_size O, int f_size_1,
char g[768][1024],

char h[]][],

int h_size 0, int h_size_1);

Figure 5 Equivdentoccam andC prototypes (array types)

array
(REAL32
REAL32
REAL32
REAL32
BYTE
BYTE
BYTE
BYTE

£225555%

void __array (int W]) {

VAL_I NT (w[2]),
VAL_I NT (w[5]),
VAL_I NT (w[8]),

VAL_I NT (w[12]),

VAL_I NT (w[9]),

VAL_I NT (w] 13]));

Figure 6 Interface function (array types)

On the other hand, if we only needcam to declare and hold data structures (includihgni ons) whose
values are initialised and used B functions, then NT arrays (of the correct size) may representGhe
structures. [Not¢heatoccam | NT arrays will be aligned on word (i.82-bit) boundaries in memaryfitis
necessary that the structures should be double-word (i.e. 64-bit) alig\ieg¥ arrays should be used.]

Similarly, occam | NTs may be used to hol@ pointers-to-pointers or pointers-to-functions; butytioaly

have meaning in theC world.

Finally, occam CHANs may be turned intd NT values by theRETYPES mechanism and, hence, passe€to

- but this is getting a little exotic!

