
KRoC — Calling C Functions from occam
David C. Wood, Computing Laboratory, University of Kent at Canterbury

D.C.Wood@ukc.ac.uk

1. Intr oduction

This document describes the mechanism for callingC functions fromoccam running on x86 Linux KRoC.

2. TheProblem

The parameter-passing convention used byoccam on the transputer, and hence byKRoC, is in general
different from that used byC (and other languages). The mechanism described here for converting between
these conventions is designed so thatKRoC needs to know very little about those used byC; as far as possible,
this is left to the localC compiler.

3. Mechanism

The parameters of anoccam PROC are passed in consecutive locations at the start of theoccam workspace
of the process making the call.To access aC function, these parameters have to be re-organised according to
the conventions of theC compiler. Fortunately, this can be done in a fairly transparent way, using theC
compiler itself, so that neitherKRoC nor the programmer need to know those conventions.

Suppose we wish to call aC function with the prototype:

int foo bar (float this, float that);

then we need anoccam ‘prototype’ to make the call fromoccam. Although we could model this with an
occam FUNCTION, functions inC cannot be trusted to be free from side-effect. Therefore,we model allC
‘functions’ by occam PROCs that include an extra result parameter (or parameters).Theoccam ‘prototype’
is introduced using the#PRAGMA EXTERNAL mechanism, since its implementation is ‘external’ to the
occam system. For the aboveC function, we need:

#PRAGMA EXTERNAL "PROC C.foo.bar (INT result, VAL REAL32 this, that) = 0"

The initial ‘C.’ is a naming convention used byKRoC so that it can generate the special calling sequence for a
C function. Pleasenote that this means thatKRoC occam programs must not declarenormal PROCs (or
FUNCTIONs) with names starting ‘C.’

The zero at the end of this#PRAGMA declaration is the number of words ofoccam workspace needed to
execute thePROC. Howev er, C functions create new stack frames for their workspace and these do not live in
theoccam world.

TheKRoC system cannot compile a call ofC.foo.bar directly into a call of theC functionfoo bar, since
it doesn’t know the full parameter passing conventions required by theC compiler. Instead,KRoC compiles it
into a call of aC ‘interface function’ (with the name foo bar) and which the programmer has to supply.
Its name is derived from theoccam #PRAGMA name, substituting ‘ ’ (double underscore) for the opening
‘C.’ and changing any other dots into underscores.

KRoC C interface functions always have the same signature for their prototypes: they returnvoid and take
only one parameter− a pointer to theoccam workspace where the actual parameters have been set up.For
our example, the interface prototype is:

void foo bar (word w[]);

whereword is aC data type corresponding to anoccam INT. For the x86 Linux system, this is:

typedef int word;

Note that theoccam workspace is simply represented as an array ofwords. Notealso thatKRoC has to
know just a little about the parameter passing convention required byC in order to pass this single pointer.



- 2 -

It is the responsibility of theC interface function to make the actual call of theC target function, supplying it
with parameters extracted from theoccam workspace. To write this function, the programmer needs to know
how occam has placed the arguments in its workspace and how to convert betweenoccam data types and
parameter modes and those inC.

This is not as hard as it sounds.For our example, the interface function is:

void foo bar (word w[]) {
*INT(w[0]) = foo bar (VAL REAL32(w[1]), VAL REAL32(w[2]));

}

Comparing this with theoccam C.foo.bar, we see thatoccam parameters appear onw[] in ascending
order from element zero, with the leftmost parameter atw[0]. All occam parameters occupy just one word,
except for open arrays which are passed in two words (a pointer to their start and their actual size).occam
data structures occupying more than one word are always passed by pointer (even if they areVAL parameters).

To convert between the basicoccam data types and parameter modes and those inC, a set of macros
(e.g.INT, VAL REAL32, ...) is provided. Theseare needed to keep theC type-checker happy and generate
no run-time code.A full list is given in Section 4.

If the localC compiler provides a mechanism for calling other languages (e.g.Fortran), there is nothing to
stop theseC interface functions directly making such calls. In this way, access to routines in other languages
is automatically inherited byKRoC occam.

Similarly, the interface function may be written in native assembler, allowing direct access to the x86
instructions fromKRoC. [For information, the single parameter to this function (which points to theoccam
workspace and, hence, theoccam parameters) is passed on the top of the stack.However, programmers will
need to obey the Intel 386/486/Pentium calling Convetions.

4. MAPPING BETWEEN THE BASIC occam AND C TYPES

Mappings between the basicoccam and C types and given in Figure 1. Equivalent headings between an
example occam PROC (which would appear in a#PRAGMA EXTERNAL declaration) and the target C
function are given in Figure 2. The interface function that connects theoccam call with the targetC function
is given in Figure 3. The interface function uses a number ofC macros which are defined in the file
callc\callc.h (in the KRoC release directory).For information, a listing of these is given in Figure 4.
Use of these macros is not compulsory, but they simplify the writing of interface functions and make them
portable toKRoC systems running on other processors.

occam C
BYTE char
BOOL char
INT16 short int
INT int
INT32 int
INT64 long long int
REAL32 float
REAL64 double

Figure 1: Mapping betweenoccam andC basic types



- 3 -

occam PROC heading C function prototype
PROC C.basic (VAL BYTE v.c, void basic (char v c,

VAL BOOL v.b, char v b,
VAL INT16 v.s, short int v s,
VAL INT v.i, int v i,
VAL INT32 v.j, int v j,
VAL INT64 v.l, long long int v l,
VAL REAL32 v.f, float v f,
VAL REAL64 v.d, double v d,
BYTE c, char *c,
BOOL b, char *b,
INT16 s, int *s,
INT i, int *i,
INT32 j, int *j,
INT64 l, long long int *l,
REAL32 f, float *f,
REAL64 d) double *d);

Figure 2: Equivalentoccam andC prototypes (basic types)

void basic (int w[]) {
basic
(VAL BYTE (w[0]),
VAL BOOL (w[1]),
VAL INT16 (w[2]),
VAL INT (w[3]),
VAL INT32 (w[4]),
VAL INT64 (w[5]),
VAL REAL32 (w[6]),
VAL REAL64 (w[7]),
BYTE (w[8]),
BOOL (w[9]),
INT16 (w[10]),
INT (w[11]),
INT32 (w[12]),
INT64 (w[13]),
REAL32 (w[14]),
REAL64 (w[15]));

}

Figure 3: Interface function (basic types)

Summary: when anoccam process makes a call toC.basic, KRoC implements this as a call to the interface
function basic, which makes the actual call to the target functionbasic. The interface function
effectively maps the parameters from the structure set up byoccam to whatever is needed byC.



- 4 -

typedef int word;

#define VAL BYTE(w) (*(char *)&(w))
#define BYTE(w) ((char *)(w))

#define VAL BOOL(w) (*(char *)&(w))
#define BOOL(w) ((char *)(w))

#define VAL INT16(w) (*(short int *)&(w))
#define INT16(w) ((short int *)(w))

#define VAL INT(w) (w)
#define INT(w) ((int *)(w))

#define VAL INT32(w) (w)
#define INT32(w) ((int *)(w))

#define VAL INT64(w) (*(long long int *)(w))
#define INT64(w) ((long long int *)(w))

#define VAL REAL32(w) (*(float *)&(w))
#define REAL32(w) ((float *)(w))

#define VAL REAL64(w) (*(double *)(w))
#define REAL64(w) ((double *)(w))

Figure 4: Interface macros (basic types)

5. MAPPING BETWEEN ARRAY TYPES

When anoccam formal parameter array is declared asVAL, the correspondingC formal parameter should be
declared asconst. Howev er, both occam and C pass arrays by reference, regardless ofVAL or const
decoration. Infact, C does not distinguish between arrays and pointers, so thatint p[] andint *p are
equivalent as parameters− both are passed simply as addresses. Hence, in the interface function, arrays can
be treated as reference parameters of their base type and we just use those macros whose names are the basic
occam types.

It is important to know that anoccam formal open array parameter (e.g.[]REAL64, [][]BYTE) is
supplied as the pointer to the start of the array, followed by the sizes for all missing dimensions.A formal
sized array parameter (e.g.[42]REAL64, [768][1024]BYTE) is just supplied as the pointer to the start of
the array.

Figures 5 and 6 show equivalent occam andC headers for an example containing various array parameters.
Not all basic types are illustrated.For others, simply substitute theoccam names in theoccam header and
interface function macros and match the target function type according to the table in Figure 1.

6. MAPPING BETWEEN OTHER TYPES

There are no equivalents in occam to C unsignedint types. They can be passed as the corresponding
signed types; but if there is a need to do arithmetic on them in theoccam world, the unchecked operators
PLUS andMINUS should be used.

RECORDs in occam correspond tostructs in C. Howev er, theoccam compiler may layoutRECORD fields
in a different order to the way theC compiler lays out itsstruct fields. For example,occam RECORD
fields are packed in ascending order of size. No guarantees are, therefore, given that these data structures can
be directly mapped.



- 5 -

occam PROC heading C function prototype
PROC C.array (VAL [42]REAL32 a, void array (const float a[42],

VAL []REAL32 b, const float b[],
int b size,

[42]REAL32 c, float c[42],
[]REAL32 d, float d[],

int d size,
VAL [768][1024]BYTE e, const char e[768][1024],
VAL [][]BYTE f, const char f[][],

int f size 0, int f size 1,
[768][1024]BYTE g, char g[768][1024],
[][]BYTE h) char h[][],

int h size 0, int h size 1);

Figure 5: Equivalentoccam andC prototypes (array types)

void array (int w[]) {
array
(REAL32 (w[0]),
REAL32 (w[1]), VAL INT (w[2]),
REAL32 (w[3]),
REAL32 (w[4]), VAL INT (w[5]),
BYTE (w[6]),
BYTE (w[7]), VAL INT (w[8]), VAL INT (w[9]),
BYTE (w[10]),
BYTE (w[11]), VAL INT (w[12]), VAL INT (w[13]));

}

Figure 6: Interface function (array types)

On the other hand, if we only needoccam to declare and hold data structures (includingC unions) whose
values are initialised and used byC functions, thenINT arrays (of the correct size) may represent theC
structures. [Notetheatoccam INT arrays will be aligned on word (i.e.32-bit) boundaries in memory. If it i s
necessary that the structures should be double-word (i.e. 64-bit) aligned,INT64 arrays should be used.]

Similarly, occam INTs may be used to holdC pointers-to-pointers or pointers-to-functions; but they only
have meaning in theC world.

Finally, occam CHANs may be turned intoINT values by theRETYPES mechanism and, hence, passed toC
− but this is getting a little exotic!


