
7/5/01

Copyright G. S. Stiles 2001 1

5 July 2001 Copyright G. S. Stiles 2001 1

Design, Verification, and Testing
of Synchronization and

Communication Protocols with
Java

G. S. Stiles, D. D. Rice,
and J. R. Doupnik

Electrical and Computer Engineering
Utah State University

5 July 2001 Copyright G. S. Stiles 2001 2

Introduction
Communication and Synchronization –
an important part of the curriculum:

• Networking – all levels!
• Distance Education Systems
• Real-time & Embedded Systems
• Concurrent Systems Design

– Operating Systems
– Applications

7/5/01

Copyright G. S. Stiles 2001 2

7/5/01 Copyright G. S. Stiles 2001 3

Introduction
• Concurrent design: an important part

of software engineering:
– Modular design, with
– small, simple modules…
– that run concurrently, and
– interact infrequently.

• Much easier than a single, large
program!!

7/5/01 Copyright G. S. Stiles 2001 4

Introduction

Possible platforms:
– Visual C++

• Complex concurrency features
• A year or more of experience
• .. and some OS experience

– Java
• Simple concurrency model
• Widely taught at the introductory level

7/5/01

Copyright G. S. Stiles 2001 3

7/5/01 Copyright G. S. Stiles 2001 5

Java Concurrency
Concurrency support:

– Simple thread model
– Mutual exclusion via synchronized:

• Objects
• Methods

– A limited conditional wait
– Shared variables
– Message-passing libraries
– Many texts

7/5/01 Copyright G. S. Stiles 2001 6

Java Concurrency

The Java synchronized primitive
– Each object has a hidden lock controlling

access to code marked as synchronized.
– Only one thread at a time may execute a

synchronized block of code.

7/5/01

Copyright G. S. Stiles 2001 4

7/5/01 Copyright G. S. Stiles 2001 7

Java Concurrency

Conditional Wait
– If a condition is not satisfied, wait() can be

called – releasing the lock.
– notify (or notifyAll) wakes the waiting threads.

7/5/01 Copyright G. S. Stiles 2001 8

Java Concurrency

• Caution!
– Java does not require that access to shared

resources be synchronized.
– The Java specification does not say which

thread is awakened on a notify.
• These operations must be used very

carefully!

7/5/01

Copyright G. S. Stiles 2001 5

7/5/01 Copyright G. S. Stiles 2001 9

CSP

• CSP: a process algebra for dealing
with interactions between processes.

• The notation is simple and intuitive.
• CSP does not deal (easily) with the

internal behavior of processes.

7/5/01 Copyright G. S. Stiles 2001 10

CSP

The two components of CSP systems:
– Processes: indicated by upper-case: P, Q, R, …
– Events: indicated by lower-case: a, b, c, …

7/5/01

Copyright G. S. Stiles 2001 6

7/5/01 Copyright G. S. Stiles 2001 11

CSP

Example: a process P engages in
events b, c, a, and then refuses any
further action:

P = b → c → a → STOP

“→” is the prefix operator; STOP is a special process that
never engages in any event.

7/5/01 Copyright G. S. Stiles 2001 12

CSP

A practical example: a simple pop machine
accepts a coin, returns a can of pop, and
then repeats forever:

PM = coin → pop → PM

7/5/01

Copyright G. S. Stiles 2001 7

7/5/01 Copyright G. S. Stiles 2001 13

CSP

A customer who purchases only one can,
consumes it, and then terminates:

Cust = coin → pop → drink → STOP

7/5/01 Copyright G. S. Stiles 2001 14

CSP
The pop machine and the customer
run in parallel:

System = PM [| A |] Cust

and synchronize on the alphabet
A = {coin, pop}

7/5/01

Copyright G. S. Stiles 2001 8

7/5/01 Copyright G. S. Stiles 2001 15

CSP
A multiplexer that accepts
an input from either channel 0
or channel 1, passes it out over
the channel out, and then repeats:

Mux = ch0?x → out!x → Mux
[]
ch1?x → out!x → Mux

out

ch0

ch1

Mux

7/5/01 Copyright G. S. Stiles 2001 16

CSP and Java Design Procedure

• Design in CSP
• Verify the CSP with the FDR CASE

tools:
– Correctness
– Deadlock
– Livelock

• Implement and test in Java

7/5/01

Copyright G. S. Stiles 2001 9

7/5/01 Copyright G. S. Stiles 2001 17

Shared Memory Synchronization –
the bank balance problem
Original balance = $1000

Interleaving 1:
ATM Payroll Computer

t1 fetch $1000
t2 balance = $1000 - $100
t3 store $900
t4 fetch $900
t5 balance = $900 + $1000
t6 store $1900

Final balance = $1900: Correct!

7/5/01 Copyright G. S. Stiles 2001 18

The bank balance problem

Original balance = $1000

Interleaving 2:
ATM Payroll Computer

t1 fetch $1000
t2 fetch $1000
t3 balance = $1000 + $1000
t4 store $2000
t5 balance = $1000 - $100
t6 store $900

Final balance = $900: WRONG!

7/5/01

Copyright G. S. Stiles 2001 10

7/5/01 Copyright G. S. Stiles 2001 19

Bank Balance: Java
Solution:

force the fetch-store-update
sequence to be executed
atomically.

In Java: use a synchronized method (which returns the
new balance):

public synchronized
float update_balance(float deposit);

7/5/01 Copyright G. S. Stiles 2001 20

Create a CSP process that will
synchronize with all customers and
force the update to be done atomically.

First the customer:
Customer = enter!deposit ->

exit?new_balance ->
Customer

Bank Balance: Modeling in CSP

7/5/01

Copyright G. S. Stiles 2001 11

7/5/01 Copyright G. S. Stiles 2001 21

Bank Balance: CSP
The synchronization process:

accept enter request from the customer
fetch old balance
store new balance
return new balance to customer

Update_
Balance

enter

exit

fetch

store

7/5/01 Copyright G. S. Stiles 2001 22

Bank Balance: CSP

The synchronization process:

Update_Balance =
enter?deposit ->
fetch?balance ->
store!(balance + deposit) ->
exit!(balance + deposit)->
Update_Balance

7/5/01

Copyright G. S. Stiles 2001 12

7/5/01 Copyright G. S. Stiles 2001 23

Bank Balance: CSP

Multiple customers interleave –
and do not interact with each other:

Customers =
Customer1 |||
Customer2 |||
… ||| CustomerN

7/5/01 Copyright G. S. Stiles 2001 24

Bank Balance: CSP
The complete system consists of
the customers running in parallel with
the update process and synchronizing
on the enter and exit events:

System = Customers
[| A |]
Update_Balance

where A = {enter, exit}

7/5/01

Copyright G. S. Stiles 2001 13

7/5/01 Copyright G. S. Stiles 2001 25

Correct operation: only one customer
is in the critical update section at a time;
enforce by requiring the enter and exit events
to alternate:

Safety_Spec = enter.x ->

exit.y ->

Safety_Spec

Bank Balance: Check the CSP

7/5/01 Copyright G. S. Stiles 2001 26

Bank Balance: Check the CSP

The CSP CASE tool FDR will verify that
all possible behaviors of the System
satisfy the safety specification.

7/5/01

Copyright G. S. Stiles 2001 14

7/5/01 Copyright G. S. Stiles 2001 27

Bank Balance: CSP

A more robust version:
add a customer ID and require
that successive enters and exits
have the same ID.

7/5/01 Copyright G. S. Stiles 2001 28

Message Passing

CSP-style message-passing libraries for Java:

• JCSP (University of Kent at Canterbury)
• CTJ (University of Twente)

… available on the web:

• http://www.cs.ukc.ac.uk/projects/ofa/jcsp/

• http://www.rt.el.utwente.nl/javapp/

7/5/01

Copyright G. S. Stiles 2001 15

7/5/01 Copyright G. S. Stiles 2001 29

Nagle Mode Enhancement

TCP messages:
• Messages broken into packets for

transmission
• Each packet requires ACK
• Save bandwidth via Nagle mode: ACK only

after every second or third packet – or
timeout (0.2 s)

7/5/01 Copyright G. S. Stiles 2001 30

TCP messages
• But: if message is not a multiple of the

packet size, we have a “small tail” at the
end;

• – a waste of bandwidth, so hold until
another message arrives or timeout.

• This may result in a significant delay!
• Short messages: max 5 per second!

Nagle Mode Enhancement

7/5/01

Copyright G. S. Stiles 2001 16

7/5/01 Copyright G. S. Stiles 2001 31

Nagle Mode Enhancement

The Doupnik solution:
• Transmit small tail immediately if it is

the last of the application’s data;
• otherwise hold the tail for arrival of

more application data.
• Result: significant improvement in

performance!!

7/5/01 Copyright G. S. Stiles 2001 32

Nagle Mode Enhancement
• The problem:

– Verify improvement with CSP
• The approach:

– Assume a clock that produces regular tocks.
– Nagle mode will not be able to transmit a short

tail until a timeout (a tock) occurs
– Enhanced mode will transmit the short tail prior

to the tock.

7/5/01

Copyright G. S. Stiles 2001 17

7/5/01 Copyright G. S. Stiles 2001 33

Nagle Mode Enhancement
• Assume 1 packet = 2 “chunks”

• A 3-chunk message: 1 packet plus a
short tail

• A transmission of 2 chunks (one
packet):
send!2

7/5/01 Copyright G. S. Stiles 2001 34

Nagle Mode Enhancement

• The original Nagle mode will not
transmit the third chunk until the
200 ms timeout (a tock) occurs.

• Thus the original Nagle mode
cannot transmit the message with no
intervening tocks.

7/5/01

Copyright G. S. Stiles 2001 18

7/5/01 Copyright G. S. Stiles 2001 35

Nagle Mode Enhancement

The specification:
Under the enhanced mode, a
message with a short packet must be
able to be transmitted with no
intervening tocks:

TCP_SPEC =
start -> send?2 -> send?1 ->
finish -> STOP

7/5/01 Copyright G. S. Stiles 2001 36

Nagle Mode Enhancement

Verification with FDR:
• FDR verifies that the original Nagle

mode cannot meet the spec.
• FDR verifies that the enhanced

Nagle mode can transmit the 3-
chunk message with no intervening
tocks.

7/5/01

Copyright G. S. Stiles 2001 19

7/5/01 Copyright G. S. Stiles 2001 37

Conclusions
• CSP provides an intuitive method

for describing synchronization and
communication protocols.

• FDR supplies the tools to verify the
correctness of the protocols.

• Java + CSP libraries provides the
means for implementing and testing
the protocols.

7/5/01 Copyright G. S. Stiles 2001 38

The fast track to success:
• Design with CSP
• Verify with FDR
• Implement in Java with little

pain!
• Students readily handle systems

with up to 60 or so concurrent
processes.

