
Process Oriented Design for Java:
Concurrency for All

P.H.Welch
Computing Laboratory

University of Kent at Canterbury
CT2 7NF – England

Abstract: Concurrency is thought to be an advanced topic – much harder than serial computing
which, therefore, needs to be mastered first. This paper contends that this tradition is wrong, which
has radical implications for the way we educate people in Computer Science – and on how we apply
what we have learnt. A process-oriented design pattern for concurrency is presented with a specific
binding for Java. It is based on the algebra of Communicating Sequential Processes (CSP) [1, 2, 3]
as captured by the JCSP [4, 5, 6, 7, 8, 9] library of Java classes. No mathematical sophistication is
needed to master it. The user gets the benefit of the sophistication underlying CSP simply by using it.
Those benefits include the simplification wins we always thought concurrency should generate.
Although the Java binding is new, fifteen years of working with students at Kent have shown that the
ideas within process-oriented design can be quickly absorbed and applied. Getting the ideas across as
soon as possible pays dividends – the later it's left, the more difficult it becomes to wean people off
serial ways of thought that fit the world so badly. Concurrency for all (and for everyday use) in the
design and implementation of most kinds of computer system is both achievable and necessary.

Keywords: processes, channels, design patterns, Java™, CSP, JCSP.

1 Introduction

To be of use in the real world, computer systems
need to model, at an appropriate level of
abstraction, those parts of it for which they aim to
be of service. Interesting things happen in the
world as the result of the actions and interactions
of vast numbers of independent agents
(processes) operating at many levels of scale –
from sub-atomic, through human to astronomic.
If our computer modeling can reflect the natural
concurrency in the system, it ought to be much
simpler.
 But concurrency, as traditionally presented and
used, is very hard. The monitor-threads model
provided by Java, whilst easy to understand in its
primitives, proves very difficult to apply with
confidence in any system above a modest level of
complexity [5, 10]. Numerous warnings in Java
textbooks (and on some of Sun's web pages)
emphasize the difficulties of multi-threading
(race hazards, deadlock, livelock and process
starvation) and recommend getting involved only
as a last resort. Teaching such models to first year
undergraduates would not be a good idea.
 However, concurrency is too powerful and,
indeed, too simple an idea to be set aside. With a
better handle, it can simplify both the design and

the implementation of most complex systems, as
well as boost performance. If this were not the
case, nature would not have evolved the highly
concurrent mechanisms we see all round us.

2 Objects Considered Harmful

An object encapsulates both data and the methods
for inspecting and manipulating that data. An
individual object is but one instance of a general
class, of which there may be many other distinct
instances. Classes are related to each other
through an inheritance relation, whereby a sub-
class extends the behavior of the super-class by
adding data fields and methods and by changing
the algorithms of existing methods. This is
supposed to reflect a natural world order and is
the philosophy that has revolutionized our
approach to system design and implementation
over the past decade.
 Yet weaknesses are apparent in this philosophy,
particularly in the context of concurrent systems.
 Firstly, most objects are dead – they have no
life of their own. All object methods have to be
invoked directly (or indirectly) by an external
thread of control – they have to be caller-oriented
(a somewhat curious property of so-called object-
oriented systems).

 In serial object-oriented design, a single thread
of control must snake around all objects in the
system, bringing them to life transiently as their
methods are executed. In a concurrent system, an
object’s methods (and, hence, state) are at the
mercy of any thread that can see it. Nothing can
be done to prevent method invocation, even when
the invoked object is not in a fit state to receive it.
The object is not in control of its life. Threads cut
across object boundaries in spaghetti-like trails,
paying no regard to the underlying structure.
 Finally, data encapsulation breaks down all too
easily. For one thing, the supposedly private
attributes of an object may themselves be objects.
Since all objects live in a universally accessible
heap, those attributes may be shared between any
number of other objects – sometimes by design
but often by accident. Either way, individual
control of an attribute is lost and, hence, local and
simple reasoning about its properties.
 Even when the attribute is a primitive data-type,
we are not safe. [I am indebted to Tom Locke for
the following example.] Consider a Java class, X,
with a private integer field, count, and public
methods that change it. Suppose the following
lines of code occur in one of its methods:

 count = 42;
 thing.f ();

where thing is declared as an interface type that
includes the f() method. What is the value of
count after these two lines?
 The answer is that we do not know! Suppose
me is the object instance of X whose above two
lines of code are being executed. Whoever
constructed me may have given my reference to
the actual object represented by thing. In
which case, my invocation of its f() method
may call me back and change the value of count.
 This lack of ability to reason locally about key
variables is strangely familiar. In the bad old
days, free use of globals led us into exactly the
same mess. Structured programming led us out
that mire. Is object-orientation taking us back in?
 Note that the above is not a problem introduced
by concurrency. However, Java’s monitor
concepts do nothing to eliminate it. Suppose the
count modifying methods were synchronized,
along with the method containing the two code
lines above. That certainly prevents other threads
from interfering with the count variable during
execution of the sequence – but allows the thread
executing the sequence to re-enter the monitor
when it calls me back and still make the change!

 With inheritance, the problem deepens. Now,
even if thing is an instance of a concrete class
for which we have full documentation and source
code and we can see that the f() method does
not touch anything that could be me, we can still
draw no conclusion about the value of count!
The thing may actually be an instance of some
sub-class, whose overridden f() method may do
anything it likes.
 The concept of process orientation described in
the rest of this paper addresses these weaknesses
in OO, at the same time providing an elementary
and powerful model of concurrency.

3 Process Oriented Design

Concurrent behavior from the objects in a system
ought to be our normal expectation – not
something difficult that we add in as an advanced
feature to improve user response times or other
performance indicators. Concurrency should
provide:

• a powerful tool for simplifying the description
of systems;

• performance that the spins out from the
above, but is not the primary focus;

• a model that is mathematically clean, springs
no engineering surprises and scales well with
system complexity.

Java’s in-built monitor concepts score badly on
the above [5, 10]. We outline instead a model
based on Communicating Sequential Processes
(CSP) [1, 2, 3]. CSP is a mathematical theory for
specifying and verifying complex patterns of
behavior arising from interactions between
concurrent objects. CSP has a formal and
compositional semantics that lines up with our
informal intuition about the way things work. No
formal CSP algebra, therefore, need be presented
to teach and use this model. Most ideas can be
introduced through images of physical objects.
 So, CSP deals with processes, networks of
processes and various forms of synchronization
and communication between them. A network of
processes is also a process – so CSP naturally
accommodates layered structures (networks of
networks). It is with these ideas that we work.
 We can leave aside the formal mathematics,
secure in the knowledge that it is mature and
well-founded (and that some powerful model
checking tools[11] – based on that mathematics –
are available for when we need them).

3.1 Processes

A CSP process is a component that encapsulates
data structures and algorithms for manipulating
that data. Both its data and algorithms are private.
The outside world can neither see that data nor
execute those algorithms. It is not an object.

 Each process is alive, executing its own
algorithms on its own data. Processes interact
solely via CSP synchronizing primitives (such as
channels) – not by calling each other's methods.
Objects implementing those primitives form the
CSP interface to a process (e.g. the channels in
Figure 1).

3.2 Synchronizing Channels

The simplest form of process interaction is
synchronized message-passing along channels.
The simplest form of channel is zero-buffered
and point-to-point. Such channels correspond
directly with our intuition about a wire
connecting two hardware components.

 In Figure 2, A and B are processes and c is a
channel connecting them. Wires have no capacity
to hold information, being only media for
transmission. To avoid undetected loss of data,
channel communication is synchronized. This
means that if A transmits before B is ready to
receive, then A will block. Similarly, if B tries to
receive before A transmits, B will block. When
both are ready, data is transferred – directly from
the state space of A into the state space of B.

3.3 Networks

 A process-oriented design consists of layered
networks of processes. A network is simply a
parallel composition of processes connected
through a set of passive synchronization objects
(e.g. wires) and is itself a process.

 Each process fulfills a contract with its
environment that specifies not only what
functions it performs, but how it is prepared to
synchronize with that environment to obtain
information and deliver results.
 Note that a process does not interact directly
with other processes, only with the wires to
which it is connected. This is a familiar form of
component interface – certainly to hardware
engineers – and one that allows considerable
flexibility and reuse.

4 The JCSP Binding

JCSP[4] is a Java class library providing a base
range of CSP primitives plus a rich set of
extensions, some of the latter being experimental
at the moment. Also included is a package
providing CSP process wrappers giving a channel
interface to all Java AWT widgets and graphics
operations. It is extensively (javadoc)umented
and includes much teaching material. [Check out,
also, the CTJ [12] library.]
 JCSP (and CTJ) enables multithreaded systems
to be designed, implemented and reasoned about
entirely in terms of CSP synchronising primitives
(channels, events, etc.) and constructors (parallel,
choice, etc.). This allows 20 years of theory,
design patterns (with formally proven good
properties – such as the absence of race hazards,
deadlock, livelock and thread starvation), tools
supporting those design patterns, education and
experience to be deployed in support of Java
multithreaded applications.

4.1 A Process Design Pattern for Java

With JCSP, a process is an instance of a class
implementing the CSProcess interface:

 public interface CSProcess {
 public void run ();
 }

Figure 1: a process with a channel interface

MyProcess

 c
 A B

Figure 2: a simple network

Figure 3: a layered network

 The behavior of a process is defined by the
implementation of this run() method.
 The set of CSP synchronization primitives that
defines the interface between a process and its
environment is not part of any Java interface.
Instead, it must be plugged into each process via
public constructors (or mutator methods when the
process is not running – i.e. before or in between
runs). It is safe to extract information from a
process via accessor methods, but only after (or
in between) runs.
 The structure of a JCSP process should follow
the outline:

 import jcsp.lang.*;

 ... other imports

 class Example implements CSProcess {

 ... private shared synchronization

 objects (channels etc.)

 ... private state information

 ... public constructors

 ... public accessors/mutators

 (only used when not running)

 ... private support methods

 (part of a run)

 ... public run method

 (the process starts here)

 }

 The pattern of use for these methods is simple
and well-disciplined.
 The public constructors or mutator methods
must install the shared synchronization objects
into the private fields. They may also, of course,
initialize other private state information.
 The public accessor/mutator methods (simple
sets and gets) may be invoked only when this
process is not running. They should be the
responsibility of a single process only – usually
the process that constructed this one.
 That constructing process is also responsible for
triggering the public run() method that kicks
this one into life (usually in Parallel with
some other constructed processes – see Section
4.3). The private support methods are invoked
only by each other and by the run() method and
express the live behavior of this process.
 A process instance may have several lives but
these must, of course, be consecutive. Different

instances of the same process class may, also of
course, be alive concurrently
 When a process is running, it is in sole charge
of its private fields. Its thread of control never
leaves the process and no foreign threads can
enter. No other processes can inspect or interfere
with those fields.
 Changes of state may be requested by other
processes (e.g. through channel communication),
but this process is at liberty to refuse even to
listen to such requests. Both sides must actively
cooperate to exchange information – so neither
can be surprised when this happens.
 Now, consider a JCSP process, X, with a private
integer field, count, and a channel interface
through which it communicates with other
processes. Suppose the following lines of code
occur in its run() method (or one of its private
support methods):

 count = 42;
 thing.write (something);

where thing is an output channel. What is the
value of count after these two lines?
 This time we do know. What-you-see-is-what-
you-get: the answer is 42. The only way count
can be changed is if this process changes it – and
writing something to a channel doesn’t do that!
Our intuitive understanding of the sequence of
instructions has been honored. We have no need
to consider what lies on the other side of the
thing channel – local analysis is sufficient.
 This property of localized semantics, preserved
under parallel composition, is a major reason why
CSP-concurrent design is so manageable.

4.2 Alternation – Choosing between Events

A crucial CSP operator is choice – the ability of a
process to wait for one of several events to occur,
reacting to whichever shows up and choosing
between them if many are pending.
 JCSP provides a passive mechanism for doing
the waiting (there is no active polling for events)
and three ways for resolving any offered choice
(arbitrary, user-prioritized and fair).
 Figure 4 shows a process, Sample, that
services any of three events (two inputs and one
timeout) that may occur. Its parameter, t,
represents a time interval. Every t milliseconds,
sample must forward (to its out channel) the
last object that arrived (on its in channel) during
the previous time slice. If nothing has arrived, it

must output null. The value of t may be reset
at any time by a command on its reset channel.

Here is a JCSP definition of this process:

import jcsp.lang.*;

class Sample implements CSProcess {

 private long t;
 private final AltingChannelInput in;
 private final
 AltingChannelInputInt reset;

 private final ChannelOutput out;

 public Sample (long t,
 AltingChannelInput in,
 AltingChannelInputInt reset,
 ChannelOutput out) {
 this.t = t;
 this.in = in;
 this.reset = reset;
 this.out = out;

 }

 ... public void run ()

}

The above code sets up the channel interface and
initial time-slice interval. The in and reset
channels are declared for input and out for
output. The in and out channels carry Java
objects, but the reset is reserved for ints. The
two input channels are explicitly flagged as
Alting (i.e. useable as operands for a CSP choice).
 All the action takes place within the run()
method, so there is no need for other state fields.
Here are the opening declarations of run():

public void run () {

 final CSTimer tim = new CSTimer ();

 final Alternative alt =
 new Alternative (
 new Guard[] {reset, tim, in}
);

 final int RESET = 0, TIM = 1, IN = 2;

 A CSTimer is a JCSP object used for setting
timeouts. The Alternative is used for waiting
and choosing between events (called Guards in
JCSP) and must be bound to those guards at
construction time. Allowable guards are input
channels (various kinds), CSTimers and Skips
(which are events that are always pending).
 We need to decide how the choice is to be made
should more than one of the guards be ready. In
this case, using priorities makes sense. The least
common event will be the reset, so make that
the highest priority. The timeout triggers output,
which is probably more crucial in this case than
accepting a late arriving object on in.
 When using prioritized choice, the ordering in
the Guard array bound to the Alternative
defines those priorities – hence, the sequence we
have used. The three named values (RESET, TIM
and IN) are indices to this Guard sequence and
are convenient to have around.
 Continuing the run()method:

 Object sample = null;
 long timeout = tim.read () + t;
 tim.setAlarm (timeout);

This declares the variable to hold any samples
delivered on the in channel – only one is needed
since only one sample (the latest one) ever needs
to be held. Then, the first timeout value is
computed (the current time plus the time-slice
period) and the alarm call is set (on tim).

 while (true) {
 switch (alt.priSelect ()) {
 case RESET:
 t = reset.read (); // assume OK
 break;
 case TIM:
 out.write (sample);
 sample = null;
 timeout += t;
 tim.setAlarm (timeout);
 break;
 case IN:
 sample = in.read ();
 break;
 }
 }

}

At the start of the main loop, alt.priSelect()
waits (consuming no processor cycles) until one
or more of its associated events occurs. It, then,
makes its choice and returns the index of the
chosen one. If that index represents a channel
guard, that channel must be read().

Figure 4: real-time sampler

out
Sample(t)

in

reset

 The rest of the loop is straightforward serial
programming. Incoming samples just overwrite
what was previously saved. At the end of a time-
slice, the current sample is output and reset to
null and the next timeout is computed and set. If a
reset occurs, the value defines the period of the
next (and subsequent) time-slices – the current
time-slice is not interrupted.
 The above code does not check that the reset
values are sensible (e.g. positive), but that is
trivial to add. If we want the reset to end the
time-slice, read the current time into timeout
and remove the break at the end of the RESET
case (so that the logic falls through to TIM).

4.3 Going Parallel

The code defining a process network is a simple
representation of the network diagram.

 Figure 5 shows the final stage processing of a
real-time control signal. Computed control
values are delivered – at varying rates – on the in
channel to Actuator. Hardware control is
realized by values sent on the out channel and
these must take place every t milliseconds (or
control will be lost). Depending on conditions
detected externally, the time period for that
control may need to be reset.
 If the external logic fails to deliver a new
control value in time, a best guess based on the
last n control outputs must be output. The best
guess algorithm will be much simpler and faster
than the proper control laws computed by the
external logic. If best guesses have to be
employed m times in a row, a panic signal must
be generated.
 In the above system, Sample(t) is responsible
for passing on the last properly computed control
value in each time-slice, reporting a null if none
were received and for accepting resets to the
time-slice interval.

 Check(m) just forwards everything it gets, but
counts passing nulls – if it sees m in a row, it
fires the panic signal.
 Decide(n) passes on non-null control values
directly, but maintains a buffer of its last n
outputs. If a null arrives, it applies the best
guess algorithm and delivers the result.
 Here is the code for this network:

class Actuator implements CSProcess {

 ... private state (t, m and n)

 ... private interface channels

 (in, reset, panic and out)

 ... public constructor
 (assign t, m, n, in, reset, panic
 and out parameters to the above)

 public void run () {

 final One2OneChannel a =

 new One2OneChannel ();

 final One2OneChannel b =
 new One2OneChannel ();

 new Parallel (
 new CSProcess[] {
 new Sample (t, in, reset, a),
 new Check (m, a, panic, b),
 new Decide (n, b, out)
 }
).run ();

 }

The hidden parts are the same as their equivalents
in Sample – except that there are two extra state
fields and one more channel.
 The interesting part is the run() method. This
declares the two internal wires (a and b) needed
to make up the circuit. These are actual channel
objects (as opposed to the formal channel
parameters, which are known to this process only
through Java interfaces). Instances of this process
will be given actual channel arguments when they
are constructed. In turn, those instances pass on
the channels they are given, and/or the new ones
they make, to the sub-processes they construct.
 The JCSP Parallel constructor takes an array
of (sub-)processes and returns a process, which is
then run. That run is the parallel composition of
the given processes. It terminates when, and only
when, all its given processes terminate.

Actuator(t,m,n)

Sample(t) Check(m) Decide(n)
in out

ba

reset panic

Figure 5: final stage actuator

5 Conclusions

This paper has outlined the basic primitives for
process-oriented design: processes, synchronizing
channel communication, alternation and parallel
composition. It has demonstrated the WYSIWYG
nature of CSP design whereby each process can
be considered individually, computing on its own
data and interacting with its environment through
synchronizing I/O devices (e.g. channels). Leaf
processes in the network hierarchy are traditional
serial programs, where all our past skills and
intuition can safely be applied. The new skills for
concurrency sit happily alongside those earlier
ones, with no cross-interference.
 The JCSP library contains much more than the
set of classes introduced above to illustrate CSP
design for Java. Several varieties of channel are
provided (e.g. buffered, any-to-any and variant
calls) plus other kinds of synchronization (e.g.
barrier, bucket and CREW), but all have well-
defined CSP characterization. JCSP also provides
a complete set of AWT classes converted into
active processes with channel interfaces.

 Figure 6 shows an application making use of
these facilities – only the smiley workers and the
control, farmer and harvester processes are
specially written. It contains a classic process
farm for generating graphics images with GUI
control over that generation. This (Mandelbrot)
example is one of the demonstrations included in
the JCSP release. On a multiprocessor (SMP)
architecture, the process farm yields almost linear
speed-up for image computation.
 Not addressed in this paper are the avoidance of
race hazards and deadlock. Hazards arise from

unsynchronized access to shared resources (e.g.
when object references are passed between
processes). However, because all processes must
actively be involved in such distribution, design
rules are not hard to devise to ensure safety. A
rich set of design rules (e.g. [13-16]) also exists
that have formally proven guarantees against
deadlock and livelock errors. Future work will
look to provide design tools to automate and/or
police these rules as well as to combine this work
with developments in occam (e.g. CSP kernels
with nanosecond management overheads [17]).

6 References

[1] C.A.R.Hoare. Communicating Sequential Processes. CACM,
21-8, pp. 666-677, August 1978.

[2] C.A.R.Hoare. Communicating Sequential Processes. Prentice
Hall, 1985.

[3] A.W.Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, ISBN 0-13-674409-5, 1997.

[4] P.H.Welch and P.D.Austin. The JCSP Home Page.
http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 1999.

[5] P.H.Welch, Java Threads in the Light of occam/CSP. In
‘Architectures, Languages and Patterns for Parallel and
Distributed Applications’, WoTUG-21, pp. 259-284, IOS
Press (Amsterdam), ISBN 90 5199 391 9, April 1998.

[6] P.H.Welch. Parallel and Distributed Computing in Education.
In J.Palma et al. ‘VECPAR’98’, Lecture Notes in Computer
Sciince, vol. 1573, Springer-Verlag, June 1998.

[7] G.S.Stiles, A.Bakkers, G.H.Hilderink and P.H.Welch. Safe
and Verifiable Design of Concurrent Programs. In
‘Proceedings of the 3rd. International Conference on Software
Engineering and Applications’, pp 20-26, IASTD, Oct. 1999.

[8] D.Lea. Concurrent Programming in Java (Second Edition):
Design Principles and Patterns. The Java Series, Addison-
Wesley, section 4.5, 1999.

[9] J.M.R.Martin and P.H.Welch. A CSP model for Java
Multithreading. In ‘Proceedings of the International
Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE 2000)’, IEEE Computer Society
Press, June 2000 (to appear).

[10] P.Brinch-Hansen. Java’s Insecure Parallelism. ACM
SIGPLAN Notices, 34, 4, pp. 38-45, April 1999.

[11] Formal Systems (Europe) Ltd. Failures-Divergence-
Refinement: FDR2 Manual, http://www.formal.demon.co.uk
/FDR2.html , 1997.

[12] G.H.Hilderink. The CTJ (Communicating Threads for Java)
home page. http://www.rt.el.utwente.nl/javapp/

[13] P.H.Welch, G.R.R.Justo and C.Wilcock. High-Level
Paradigms for Deadlock-Free High-Performance Systems. In
‘Transputer Applications and Systems 1993’, pp. 981-1004,
IOS Press (Amsterdam), ISBN 90 5199 140 1, 1993.

[14] J.M.R.Martin and P.H.Welch. A Design Strategy for
Deadlock-Free Concurrent Systems. Transputer
Communications 3(4), pp. 215-232, John Wiley & Sons, ISSN
1070 454 X, October 1996.

[15] J.M.R.Martin and S.A.Jassim. A Tool for Proving Deadlock
Freedom. In ‘Parallel Programming and Java’, WoTUG-20,
pp1-16, IOS Press (Amsterdam), ISBN 90 5199 336 6, 1997.

[16] J.M.R.Martin, A Tool for Checking the CSP sat Property. The
Computer Journal, Vol. 43, No. 1, 2000.

[17] P.H.Welch, J.Moores, F.R.Barnes and D.C.Wood. The KRoC
Home Page. http://www.cs.ukc.ac.uk/projects/ofa/kroc/, 2000.

Figure 6: a GUI/graphics network

...

farmer

harvester

graphics

mouseMovement

key
mouse

displayList

control

cancel

>>>

<<<

top

scale

left

canvas

scrolling

iterations

target

colours

http://www.cs.ukc.ac.uk/projects/ofa/jcsp
http://www.formal.demon.co.uk/
http://www.rt.el.utwente.nl/javapp/
http://www.cs.ukc.ac.uk/projects/ofa/kroc/

