
Refactoring Functional Programs (GR/R75052/01) Final Report

Simon Thompson & Claus Reinke (Investigators), Huiqing Li (Research Associate)
Computing Laboratory, University of Kent

1 Introduction and Background

Refactorings are source-to-source program transformations
that change program structure and organisation, but not
program functionality. Documented in catalogues and sup-
ported by tools, refactoring provides the means to adapt and
improve the design of existing code, and has thus helped
to address long-standing problems in software maintenance
while also enabling the trend towards modern agile software
development processes. Two typical refactoring scenarios
are: adapting the structure of an existing code base to pre-
pare for adding functionality or fixing a bug; cleaning up a
code base after extensive functional changes.

The UK is a world leader in functional programming re-
search. Haskell is the principal lazy functional programming
language, and its main implementation, the Glasgow Haskell
Compiler, is a UK product (whose original implementations
were supported by EPSRC funding). Other activity spon-
sored by EPSRC in this area includes Runciman and Chitil’s
work on tracing and debugging, and the resource-bounded
computation activity around Hume by Hammond, Michael-
son and their co-workers.

Complementing these activities, our project has brought
the ideas and techniques of refactoring to functional pro-
gramming. The project has taken a practical approach to
the investigation by building a fully-featured tool, called
HaRe for ‘Haskell Refactorer’, for performing refactorings
for the Haskell programming language. HaRe supports the
full Haskell 98 standard, is integrated with the most pop-
ular Haskell development environments and is implemented
to preserve the appearance of source code after refactoring.
HaRe is thus designed to be a practical programmers’ tool,
rather than a prototype. More details of HaRe are given in
Section 3.1.

It is an indication of the progress that functional program-
ming has made that the project was able to build on the work
of others. In particular, we were able to use the front-end of
the Programatica [13] system to assist our program parsing
and analysis and also to use the Strafunski [6] library of tree
transformation code. We are very grateful to the interna-
tional collaboration of these development teams, in the USA
and Europe, both for their systems and for the advice and
modifications that they have performed on our behalf.

The remainder of the report is structured thus. The next
section reports our project’s objectives and progress. Section
3 reports major activities, including the HaRe system and
Huiqing Li’s PhD thesis. Section 4 outlines our dissemina-
tion of the work, including papers published, presentations,
meetings and summer school courses. We conclude with a
discussion of plans for future work.

2 Project objectives and progress

The revised objectives for the project are listed here. The
original objective 4 was not pursued, and was replaced by
objective 6. Progress against each objective follows its state-
ment, and refers to the narrative in later sections.

1. To develop a functional programming perspective
on recent, practice-driven research into flexible pro-
gram structure and refactoring. This is reported in
Huiqing Li’s thesis (Section 3.2) and disseminated by means
of publications and presentations (Sections 4.3, 4.4 and 4.5).

2. To develop a catalogue of candidate refactorings
for a modern functional language. This is available on
the web; more details in Section 3.3.

3. To develop prototypical tool support for a selec-
tion of refactorings from this catalogue. The HaRe
tool for refactoring in the Haskell language is described in
detail in Section 3.1. Progress in this objective exceeds our
original expectations: the system is not merely a prototype,
but covers the full Haskell 98 language, is integrated with
the most commonly used Haskell development environments
and preserves the appearance of the source code which is
being transformed.

4. To evaluate the work with reference to existing
change histories of large Haskell systems, including
that of the Glasgow Haskell Compiler. This objective
was predicated on the existence of suitable open source soft-
ware development archives for substantial Haskell projects.
These development archives certainly exist, but Chris Ry-
der’s PhD project [15] showed to us that the existing Haskell
archives provided insufficient support for identifying individ-
ual changes and their intentions (refactoring/bug fix/feature
change) without manual inspection of the code by the project
researchers. In [15] this work was done for a small set of li-
braries, but the ratio of effort to outcome was too high to
make it cost effective. For this reason this objective was not
pursued.

We would still consider it valuable to investigate the
change history of a large Haskell system, in terms of met-
rics, refactoring, design patterns, etc. . However, this would
involve substantially more effort than originally envisioned,
including a more disciplined use of revision control within
a development project which was prepared to collaborate in
the exercise, provision of tool support for analysis of versions
as well as substantial, dedicated person-time.

1



5. To investigate the connection between the work
on program structure and refactoring in the object-
oriented and functional communities. Our experience
in investigating this issue was that the differences between
refactoring in the OO and the functional context were, ini-
tially at least, less marked than we had expected. This may
well be due to the fact that simple refactorings affect pro-
gram representation and binding structures, i.e., aspects of
syntax and static semantics more than those of dynamic se-
mantics, and, at this level, structural issues and refactor-
ings are similar in OO and FP. More complex refactorings,
such as that making a concrete type abstract, begin to show
paradigm-specificity.

In developing the system we were able to confirm that it is
possible to implement checks of refactoring side-conditions
which guarantee the correctness of the transformation. This
is due to the cleaner intuitive semantics of functional lan-
guages, and has enabled proofs of correctness of certain
refactorings to be constructed (Section 3.2).

6. To build a reusable platform/research infras-
tructure for Haskell 98 program transformation and
analysis (HaRe API). This objective arose directly from
community feedback on our early prototypes and further de-
velops the tool to allow the work of this project to be ex-
tended and reused by the Haskell community. Specifically, it
provides a collection of libraries for the analysis and (source
to source) transformation of Haskell 98 programs. The refac-
torings in HaRe are, in the released version, implemented
using this API, and its availability allows others to imple-
ment their own refactorings in HaRe (instead of needing the
HaRe team to do this). Moreover, the API is of value to
all who seek to build tool support for program transforma-
tions in Haskell; the API has been used by colleagues at the
University of the Minho amongst others. Further details are
provided in Section 3.1.

3 Major activities

This section reports on the HaRe refactoring system and
the PhD thesis Refactoring Functional Programs and the
catalogue of Haskell refactorings, before discussing a number
of other project-related activities.

3.1 The HaRe system

The major deliverable from the project Refactoring Func-
tional Programs is the Haskell Refactorer, HaRe. Three
major releases have taken place through the project, each
extending the facilities of its predecessor. Minor updates
of these releases have continually been released up to the
present point. Features of the currently released system in-
clude:

The refactorings implemented Before discussing the
details of which refactorings have been implemented,
it is worth stressing the motto

Refactoring = Transformation + Condition

That is, the implementation of each refactoring has two
distinct aspects. Taking the example of renaming a par-
ticular binding, from foo to bar, say. It is necessary
to implement the transformation so that only those in-
stances of foo referring to the definition of interest are
renamed, throughout the project. Prior to performing
the transformation it is necessary to check the condition
that the renaming will not affect the bindings of the
program, by any sort of ‘name capture’.It has been our
experience that it requires more programming effort cor-
rectly to implement the conditions than to implement
the transformations themselves.

As should also be apparent from this short example,
implementing the refactorings calls for much more than
text editing facilities. Lexical analysis, parsing, static
semantics, type and module analyses, in other words
all the facilities provided by the front end of a compiler,
are required correctly to implement the transformations
and conditions of the refactorings.

The refactorings supported by HaRe are listed in groups
of related operations now.

Names/Scopes These refactorings affect the naming
or scope of a definition. They share preconditions
which require that they leave unchanged the bind-
ing structure of uses of names to their defining oc-
currences.

• Rename any entity (function, variable, type)
in the system.

• Lift a local definition to the top level in the
module which contains it.

• Lift a definition by one level, i.e. to its inner-
most enclosing scope.

• Demote a definition to the unique definition
which calls it.

Definitions These refactorings modify the definitions
provided by a module, either by adding or remov-
ing definitions or by changing – for example gener-
alising – existing definitions. A refactoring to move
a definition between modules is also provided.

• Introduce a new definition for an existing piece
of code, e.g. a sub-expression of a given func-
tion.

• Unfold a definition by replacing an instance of
its left-hand side by an instance of its right.

• Generalise a definition. This replaces a sub-
expression (e.g. a constant) within a definition
by a formal parameter; at every existing call
site the sub-expression is passed in as the ac-
tual value. This refactoring prepares the def-
inition to be reused with different parameter
values.

• Remove a definition which is no longer used.
• Duplicate a definition prior to making a mod-

ification to one of the instances.
• Add a new parameter to an existing definition.
• Remove a parameter which is not used within

the body of the definition.

2



• Move a definition to another module.

Import/Export This set of refactorings allows control
of the bindings that are imported and exported by
a module.

• Clean the list of imports, so as to import only
the modules and bindings that are used.

• Make an import explicit by listing the required
bindings in the import statement, rather than
importing a complete module.

• Add a binding to the list of exports.
• Remove a binding from the list of exports.

Data types This class of refactorings supports various
atomic steps in the composite refactoring which re-
places a concrete, algebraic, data type (t, say) by
an abstract type. This in turn enables the imple-
mentation of the type to be changed without any
client code being affected.

• Add field labels to the type t, so that instead
of using pattern matching for selecting fields of
a data value of type t, the labels (qua selector
functions) can be used instead.

• Add discriminator functions which can be used
to decide which constructor has formed a data
value of type t.

• Add constructor functions, which are used to
construct data values of t, replacing the con-
structors themselves.

• Before patterns involving the constructors of
type t can be eliminated, it is necessary to
eliminate any patterns over other types which
are nested within t patterns.

• Once nested patterns have been removed, it is
possible to eliminate patterns in favour of the
selector and discriminator functions.

• Create an ADT module, so that all but the
constructors of t are exported.

• If the preceding five refactorings are com-
posed, this has the effect of replacing a con-
crete data type by an ADT.

Undo It is possible to undo the effect of any sequence
of refactorings, so that refactoring can be carried
out in a speculative way without incurring any cost
or commitment to any undesired consequences.

The project could only implement a selection of the pos-
sible refactorings for Haskell; in order to allow others
to implement further refactorings, we have developed a
programmers’ API; more details of this below.

System uses existing components and libraries A
fully-featured refactoring tool requires all the facilities
provided by the front end of a compiler. At the start
of the project, the Programatica system [13] emerged
as the only system to provide these facilities with a
relatively accessible and stable interface, and so HaRe
builds on the Programatica infrastructure. An API [1]
has recently been developed for the Glasgow Haskell
Compiler, and the HaRe team are actively exploring
the possibility of porting HaRe to GHC while using

our own project experience to provide feedback on the
evolving API design (see also Section 3.4).

Each refactoring implemented consists of two
parts:checking that the preconditions of the refac-
toring hold, and then performing the transformation
of the AST. In both cases, it is necessary to walk
through a tree representing the program structure.
Such tree walks consist in the main of ‘boilerplate’ code
performing default actions with non-default actions
occurring only at particular points. Support for this
style of code, within the strongly-typed environment of
Haskell, is provided by the Strafunski system [6].

Integration with programmers’ preferred tools
HaRe, which is implemented in Haskell, can be used
stand-alone, but it is also embedded within the
programmers’ editors emacs and vim, as it is the
experience of previous projects that stand-alone tools
fail to be adopted, if they require the programmer to
change their development routine. These particular
editors were selected as they were the most popular
program development environments chosen in a survey
of Haskell developers at the start of the project.

Preservation of source code appearance If program-
mers are to use the system they must recognise the out-
put from a refactoring. Initial experiments showed that
it was insufficient to pretty print the refactored abstract
syntax tree (AST): programmers have definite, individ-
ual layout and comment styles. So, it was necessary
for the system to retain whitespace and comment infor-
mation. Off-the-shelf systems such as the Programatica
front end do not retain this information in the AST, and
so, if the Programatica system was to be used without
modification, it was necessary simultaneously to process
the AST and the token stream from the lexical analyser.
This caused substantial complication, but resulted in a
system with high fidelity to a programmer’s style.

Coverage of the Haskell 98 standard The third re-
quirement necessary to the system being usable by
working programmers is that it covers the full language:
in this case the standardised language Haskell 98 [5].

Fully module-aware All the HaRe refactorings operate
across multiple-module programs, since any practical
Haskell system will consist of a collection of modules. In
a typical refactoring, such as generalisation, the mod-
ule containing the generalised definition certainly must
change, but all clients of the generalised function, from
any module in the project, need to be modified too.

System widely tested The correctness of refactorings can
be assessed in multiple ways. The first criterion is that
the abstract syntax tree representing the transformed
program meets the appropriate conditions. More
strongly, it is possible to check that the layout of the
resulting program is as required. Both aspects of the
systems have been extensively tested.

System widely available To avoid locking out any group
of potential users, HaRe is designed to be platform inde-
pendent (including MacOS, Windows and Solaris), and

3



the separation of refactorer and GUI should facilitate
integration with newly emerging Haskell IDEs.

Application Programmer Interface The application
programmer interface (API) is designed to allow users
to define new refactorings for themselves. The API
is structured as two layers over the syntax provided
by Programatica and the traversal infrastructure of
Strafunski. The lower layer allows a programmer
explicitly to modify the AST and the layout of the
program. However, it is the upper layer, which hides
token-stream manipulation, which is intended to serve
as the general purpose programmers’ API. Using this,
it is possible to modify the program structure in a
number of general ways, and it is this layer that is used
internally to implement the refactorings in HaRe.

Other aspects of the system, including plans for future
developments, are outlined below.

3.2 Refactoring Functional Programs PhD
thesis by Huiqing Li

The project research associate, Huiqing Li, registered for a
PhD during the project period. She submitted her thesis in
September 2005, and it will be examined by the end of 2005.

Introduction Introduction to the fields of functional pro-
gramming and refactoring, including discussion exam-
ples, tool support and formal description of refactorings.

A Model of Refactoring This chapter examines the no-
tion of refactoring for functional programs in more de-
tail, including addressing the question of the precise ba-
sis of behaviour preservation, and other properties, such
as source code layout preservation, desirable in a refac-
toring tool. The chapter then gives an overview of the
refactorings implemented in HaRe.

Technology Background A tool for refactoring requires
infrastructure support, both for language processing
and for effective implementation of tree processing al-
gorithms. HaRe uses Programatica and Strafunski for
these; this chapter gives the rationale for this before
describing aspects of the systems relevant to HaRe.

The Design of HaRe This chapter gives a high-level
overview of the design rationale for HaRe, referring to
a running example. This is followed by a description of
the high-level architecture of the system and in partic-
ular the interfaces that it presents to the user and the
application programmer.

The Implementation of HaRe Here the detailed imple-
mentation is described, referring to two refactorings
whose full implementation is contained in an appendix.

An API for Writing Refactorings The application pro-
grammer interface is described in this chapter. The ac-
count includes coverage of the two levels of the API
which, respectively, hide and reveal manipulation of the
lexical token stream.

Formalisation of Refactorings This chapter formalises
two refactorings – generalising and moving a definition
between modules – in the context of the λletrec-calculus.
In order to formalise the latter refactoring, it is neces-
sary to extend the calculus to the λM -calculus, which
includes a notion of modules akin to those of Haskell.

Related Work This chapter summarises a variety of work,
principally in machine support for refactorings for a va-
riety of languages and for a spectrum of different kinds
of program transformation for functional programs.

Conclusions and Future Work The future work flagged
here includes use of type information in refactorings,
more fine-grained user interactions, further formalisa-
tion, and ‘bad smell’ detection.

Appendices The appendices include the algorithm for lay-
out preservation; a complete description of the HaRe
API and complete implementations of renaming and
moving definitions between modules.

3.3 Catalogue of refactorings

An online catalogue of refactorings for Haskell – some of
which are implemented in HaRe – is available at http://
www.cs.kent.ac.uk/projects/refactor-fp/catalogue/.

3.4 Haskell 98 and GHC Haskell

The project team made an early decision to target the full
Haskell 98 standard in designing the system. To this end, it
was necessary to choose a front-end system which would sup-
port the standard and which would provide all the facilities
that we required, not simply parsing and lexical analysis.
Programatica provided this facility, and we would like to
take this opportunity to acknowledge the support given by
the Programatica team, and in particular Thomas Hallgren,
to the HaRe project.

It has become clear, however, that despite the existence
of the de jure standard Haskell 98, a de facto standard
has emerged, namely Glasgow Haskell as implemented in
the Glasgow Haskell Compiler(GHC). At the point when we
made the decision about front ends, GHC was not in a state
suitable for providing a front end, but recently, and indeed
in collaboration with the HaRe team, the GHC team have
devised an API which, among other things, packages up the
GHC front-end services (such as the parser, type checker and
module analysis) [1]. In order to explore the feasibility of
porting HaRe to the GHC API, Chris Ryder has performed
a feasibility study, the results of which are reported in [14].

3.5 Related projects

Chris Ryder, whose PhD degree was confirmed in summer
2005, has written a thesis on the subject of metrics and pro-
gram visualization for functional programs in Haskell. His
Medina system is available for download [11], and is reported
in [16]. This work was used by the summer intern Jonathan
Cowie, who investigated ways of detecting ‘bad smells’ in
Haskell during his internship in summer 2004 and in a sub-
sequent final-year student project.

4

http://www.cs.kent.ac.uk/projects/refactor-fp/catalogue/
http://www.cs.kent.ac.uk/projects/refactor-fp/catalogue/


Chau Ngyuen Viet, received a Nuffield Undergraduate
Bursary URB/01607/G in summer 2004 to work on imple-
menting ‘traditional’ functional transformations, such as de-
forestation, in HaRe. This informed the development of the
API for HaRe [10], and Chau’s work is reported in [12].

4 Interactions and Dissemination

The HaRe project has been active in its interactions with
the research community, including students and peers.

4.1 Visits & visitors

A number of researchers visited the Computing Lab at the
University of Kent to interact with the Kent research team.

Ralf Lämmel (CWI, Amsterdam; September 2002): Ralf
visited the department to explain and demonstrate to us
the Strafunski [6] system, which is used within HaRe to
support tree traversals in both condition checking and
effecting refactoring transformations.

Lars-Åke Fredlund (SICS, 2003, 2004): Lars-Åke visited
the department to collaborate with an ongoing project
on verification for the Erlang [2] programming language,
and engaged in discussions with the HaRe team about
refactoring for Erlang, and particularly about the se-
mantics of such refactorings.

Francesco Cesarini (Erlang Consulting; May 2004):
Francesco presented a a one-day version of his five day
course on programming in Erlang using the Open Tele-
coms Platform. The context of this was ongoing discus-
sions about refactoring in Erlang and other work in the
department on verifying Erlang/OTP systems.

Tom Mens (University of Mons-Hainaut; June 04): Tom
visited Kent to present his work on describing and
implementing refactorings using graph transformation
techniques, in contrast to our use of tree transforma-
tions (implemented as Haskell functions). This allowed
us to clarify the advantages and disadvantages of our
respective approaches.

Martin Erwig (University of Oregon, March 2005): Mar-
tin visited Kent to discuss work on monadification of
Haskell programs. His work [4] describes a particular
style of monadification and shows that neither the ex-
isting monadification algorithms nor their outputs are
comparable; we wrote a discussion paper on the various
forms of monadification and solicited comments on this
on-line [3] and are investigating an alternative, type-
directed approach that does generalise previous work1.

José Proença (University of the Minho; April-May 2005):
José visited the HaRe team to implement a number
of ‘pointfree’ transformations using the HaRe program-
mers’ API. In the course of this José was able to give
valuable feedback on the design and details of the API

1Claus Reinke, work in progress. Prototype code and successful test
runs for examples in Erwig’s [4] and our work [3] available on request.

4.2 Mid-project workshop, February 2004

A mid-project workshop was held in the Computing Lab at
Kent in February 2004. This allowed us to do three things.
We were able to disseminate information about the current
state of the HaRe system. Equally important we were able
to gather valuable feedback from the community, not only on
the generalities of Haskell refactoring and HaRe, but also on
the detailed implementation of the system. Finally, we were
able to acquaint ourselves with related work in the field.

Attendees included Stephen Drape, Ran Ettinger, Jeremy
Gibbons and Ganesh Sittampalam (Oxford University Com-
puting Lab); Thomas Hallgren (PacSoft, Oregon Gradu-
ate Institute, Beaverton, USA); Simon Marlow (Microsoft
Research, Cambridge, UK); Patrik Jansson (Computing
Science, Chalmers University, Göteborg, Sweden); Eelco
Visser (Center for Software Technology, Utrecht Univer-
sity, The Netherlands); Ralf Lämmel (CWI and VU, Am-
sterdam, The Netherlands); Joost Visser (Departamento
de Informática, Universidade do Minho, Portugal) as well
a number of Computing Lab staff. Further details of
the workshop are available at http://www.cs.kent.ac.uk/
projects/refactor-fp/workshop.html.

4.3 Presentations by the HaRe team

• A Case Study in Refactoring Functional Programs,
Invited keynote presentation by Simon Thompson,
7th Brazilian Symposium on Programming Languages
(SBLP’2003), May 2003. [19]

• Tool Support for Refactoring Functional Programs, pre-
sented by Claus Reinke, ACM SIGPLAN 2003 Haskell
Workshop, August 2003. [7]

• HaRe: The Haskell Refactorer, presentation by Huiqing
Li, Workshop on Datatype-Generic Programming, Ox-
ford, June 2004.

• Progress on HaRe, the Haskell Refactorer poster pre-
sentation by Huiqing Li and Simon Thompson, Interna-
tional Conference on Functional Programming (ICFP
2004), September 2004. [9]

• The Haskell Refactorer, HaRe, and its API, tool demon-
stration by Huiqing Li, Fifth Workshop on Language
Descriptions, Tools and Applications (LDTA 2005),
April 2005. [10]

• Designing and implementing a refactoring tool for an
existing functional programming language: Haskell, pre-
sentation by Simon Thompson, Meeting on Transfor-
mation Techniques in Software Engineering, Schloss
Dagstuhl, April 2005. [17]

• HaRe: the Haskell Refactorer invited presentation by
Simon Thompson at the Second EPSRC ASTReNet
Workshop, London, June 2005.

• Formalisation of Haskell Refactorings, presented by
Huiqing Li, Trends in Functional Programming, Tallin,
Estonia, September 2005. [8]

4.4 Summer Schools

Simon has also delivered short courses on Refactoring Func-
tional Programs to audiences of advanced undergraduate and

5

http://www.cs.kent.ac.uk/projects/refactor-fp/workshop.html
http://www.cs.kent.ac.uk/projects/refactor-fp/workshop.html


postgraduate students, industrialists and academics at

• 5th International Summer School on Advanced Func-
tional Programming, Tartu, Estonia, 14-21 August,
2004. [18]

• Central-European Functional Programming School Etvs
Lornd University, Budapest, Hungary, 4-16 July, 2005.

4.5 Research Presentations

Members of the HaRe team have also made presentations
about the project at the University of the Minho, Braga,
Portugal, at the Centrum voor Wiskunde en Informatica,
Amsterdam, and in the UK at the Universities of Exeter,
Durham, Manchester, Oxford, Kingston and Heriot-Watt.

4.6 Other Dissemination

The HaRe project is open source, with a BSD-style licence,
and so is available to others to develop further. As well as
making HaRe available, it provides additional leverage on
other open source projects upon which we have built.

Martin Fowler has written the key text on object-oriented
refactoring, and maintains the website www.refactoring.
com. HaRe is linked from the Tools section of that site.

5 Future work

Work on the HaRe system is being continued by Chris
Brown, a PhD student supported by a Brian Spratt Bur-
sary in the Computing Lab at the University of Kent. It
is anticipated that Chris will add a suite of data-oriented,
type-aware, refactorings to HaRe and investigate the devel-
opment of a user-level language for composing refactorings.

The experience gained in the HaRe project will be invalu-
able in building refactoring support for Erlang as part of the
EPSRC supported Formally-based Tool Support for Erlang
Development (EP/C524969/1) jointly with the University
of Sheffield. Huiqing Li, the HaRe research associate, is the
named researcher on this project, which started in July 2005.

The team will continue to collaborate with HaRe users and
programmers to develop the system as an open source enter-
prise, and to publish and disseminate the results as widely
as possible. In particular, we plan to seek funding to port
the system to the GHC API (see Section 3.4) to ensure the
even wider exploitation of HaRe and its API.

Bibliography

[1] Krasimir Angelov and Simon Marlow. Visual Haskell
A full-featured Haskell development environment. In
Daan Leijen, editor, Haskell Workshop 2005. ACM
Press, 2005.

[2] Joe Armstrong, Robert Virding, and Mike Williams.
Concurrent Programming in ERLANG. Prentice Hall,
1993.

[3] Martin Erwig, Claus Reinke, and Simon Thomp-
son. Online survey on Monadification as a

Refactoring. http://www.cs.kent.ac.uk/projects/
refactor-fp/Monadification.html.

[4] Martin Erwig and Deling Ren. Monadification of Func-
tional Programs. Science of Computer Programming,
52(1-3):101–129, 2004.

[5] John Hughes and Simon Peyton Jones, editors. Re-
port on the Programming Language Haskell 98. http:
//www.haskell.org/report/, 1999.

[6] Ralf Lämmel and Joost Visser. Generic Program-
ming with Strafunski, 2001. http://www.cs.vu.nl/
Strafunski/.

[7] Huiqing Li, Claus Reinke, and Simon Thompson. Tool
Support for Refactoring Functional Programs. In ACM
Sigplan Haskell Workshop, 2003.

[8] Huiqing Li and Simon Thompson. Formalisation of
Haskell Refactorings. In Trends in Functional Program-
ming, 2005.

[9] Huiqing Li, Simon Thompson, and Claus Reinke.
Progress on HaRe, the Haskell Refactorer. In Inter-
national Conference on Functional Programming 2004.
ACM Press, 2004.

[10] Huiqing Li, Simon Thompson, and Claus Reinke. The
Haskell Refactorer, HaRe, and its API. In Fifth Work-
shop on Language Descriptions, Tools and Applications
(LDTA 2005), 2005.

[11] The Medina Metrics Library. Available from http://
www.cs.kent.ac.uk/people/staff/cr20/medina/.

[12] Chau Nguyen Viet. Transformation in HaRe. Techni-
cal report, Computing Laboratory, University of Kent,
2004. http://www.cs.kent.ac.uk/pubs/2004/2021.

[13] The Programatica project. http://www.cse.ogi.edu/
PacSoft/projects/programatica/.

[14] Chris Ryder. Porting HaRe to the GHC API. Technical
Report 8-05, Computing Lab, Univ. of Kent, 2005.

[15] Chris Ryder. Software Measurement for Functional
Programming. PhD thesis, University of Kent, 2005.

[16] Chris Ryder and Simon Thompson. Software Metrics:
Measuring Haskell. In Trends in Functional Program-
ming, 2005.

[17] Simon Thompson. Designing and implementing a refac-
toring tool for an existing functional programming lan-
guage: Haskell. In J. Cordy, R. Lämmel, and A. Win-
ter, editors, TransformationTechniques in Software En-
gineering. http://www.dagstuhl.de/05161/.

[18] Simon Thompson. Refactoring Functional Programs. In
5th International Summer School on Advanced Func-
tional Programming, Tartu, Estonia, volume XXX.
Springer Lecture Notes in Computer Science, 2005.

[19] Simon Thompson and Claus Reinke. A Case Study in
Refactoring Functional Programs. In Brazilian Sympo-
sium on Programming Languages, 2003.

6

www.refactoring.com
www.refactoring.com
http://www.cs.kent.ac.uk/projects/refactor-fp/Monadification.html
http://www.cs.kent.ac.uk/projects/refactor-fp/Monadification.html
http://www.haskell.org/report/
http://www.haskell.org/report/
http://www.cs.vu.nl/Strafunski/
http://www.cs.vu.nl/Strafunski/
http://www.cs.kent.ac.uk/people/staff/cr20/medina/
http://www.cs.kent.ac.uk/people/staff/cr20/medina/
http://www.cs.kent.ac.uk/pubs/2004/2021
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.cse.ogi.edu/PacSoft/projects/programatica/
http://www.dagstuhl.de/05161/

	Introduction and Background
	Project objectives and progress
	Major activities
	The HaRe system
	Refactoring Functional Programs PhD thesis by Huiqing Li
	Catalogue of refactorings
	Haskell 98 and GHC Haskell
	Related projects

	Interactions and Dissemination
	Visits & visitors
	Mid-project workshop, February 2004
	Presentations by the HaRe team
	Summer Schools
	Research Presentations
	Other Dissemination

	Future work

