
A Comparative Study of Refactoring Haskell and Erlang Programs

Huiqing Li
Computing Laboratory

University of Kent
H.Li@kent.ac.uk

Simon Thompson
Computing Laboratory

University of Kent
S.J.Thompson@kent.ac.uk

Abstract

Refactoring is about changing the design of existing code
without changing its behaviour, but with the aim of making
code easier to understand, modify, or reuse. Taking Haskell
and Erlang as examples, we investigate the application of
refactoring techniques to functional programs, and building
tools for supporting interactive refactoring.

Although both Haskell and Erlang are general-purpose
functional programming languages, they have many differ-
ences in their language design and programming idioms. As
a result, program refactoring in the two languages has much
in common, but also considerable differences. This paper
makes this comparison, and in particular looks in more de-
tail at the refactorings applicable in each language, the pro-
gram analysis required by typical refactorings, and at tool
support for refactoring Haskell and Erlang programs.

1. Introduction

Refactoring [4] is the process of improving the design
of a program without changing its external behaviour. Be-
haviour preservation guarantees that refactoring does not in-
troduce (nor remove) any bugs. Separating general soft-
ware updates into functionality changes and refactorings
has well-known benefits. While it is possible to refactor
a program by hand, tool support is invaluable as it is more
reliable and allows refactorings to be done (and undone)
easily. Refactoring tools can ensure the validity of refactor-
ing steps by automating both the checking of the conditions
for the refactoring and the refactoring transformation itself,
making the process less painful and error-prone.

Our project ‘Refactoring Functional Programs’ [10], has
developed the Haskell Refactorer, HaRe [7], providing sup-
port for refactoring Haskell programs. HaRe is a mature
tool covering the full Haskell 98 standard, including “no-
toriously nasty” features such as monads, and is integrated
with the two most popular development environments for
Haskell programs: Vim and (X)Emacs. HaRe refactorings

apply equally well to single- and multiple-module projects.
HaRe is itself implemented in Haskell.

Haskell layout style tends to be idiomatic and personal,
especially when a standard layout is not enforced by the
program editor, and so needs to be preserved as much as
possible by refactorings. HaRe does this, and also retains
comments, so that users can recognise their source code
after a refactoring. The current release of HaRe supports
24 refactorings, and also exposes an API [5] for defining
Haskell refactorings and program transformations.

The refactorings supported by HaRe fall into three cate-
gories: structural refactorings affecting the names, scopes
and structure of the entities defined in a program; module
refactorings affecting the imports and exports of modules
and the definitions contained in them; and data-oriented
refactorings of data types. All these refactorings have been
successfully applied to multiple module systems containing
tens of thousands of lines of code.

‘Formally-Based Tool Support for Erlang Develop-
ment’ [3] is a joint research project between Universities
of Kent and Sheffield, to build a variety tools to support
working Erlang programmers. The aspect relevant here is
the construction of a refactoring tool which can be used by
Erlang programmers in practice. This work allows us to
continue our investigation of the application of refactoring
techniques to the functional programming paradigm.

Both Haskell and Erlang are general-purpose functional
programming languages, but they also have many differ-
ences. Haskell [12] is a lazy, statically typed, purely func-
tional language featuring higher-order functions, polymor-
phism, type classes, and monadic effects. Erlang [1] is a
strict, dynamically typed functional programming language
with built-in support for concurrency, communication, dis-
tribution, and fault-tolerance. In contrast to Haskell, which
arose from an academic initiative, Erlang was developed in
the Ericsson Computer Science Laboratory, and has been
actively used in industry both within Ericsson and beyond.

We have established the architecture of the Erlang refac-
torer, the Wrangler, and two refactorings, rename an iden-
tifier and generalise a function definition, have been imple-



module Fact(fac) where
fac :: Int -> Int
fac 0 = 1
fac n | n>0 = n * fac(n-1)

Figure 1. Factorial in Haskell

mented in the Wrangler. While we are still in the early stage
of the project, it is already clear to us that implementing
refactorings within the Wrangler is by no means a simple
reimplementation of a collection of refactorings for Haskell.

In this paper, we compare the similarities and differences
between refactoring Haskell and Erlang programs based on
our experience so far. The comparison is carried our from
three perspectives: the refactorings supported by each lan-
guage; the program analysis necessitated by typical refac-
torings; and the implementation of HaRe and the Wrangler.

The rest of this paper is organized thus: in Section 2, we
give a brief description of Haskell and Erlang; in Section 3,
we introduce refactoring and illustrate how it can be part of
the program development process. In Section 4, we discuss
tool support for the refactoring process; in Section 5, we
discuss and compare some typical refactorings for Haskell
and Erlang; in Section 6, we compare the program analysis
required by typical refactorings in the two languages. The
implementations of HaRe and the Wrangler are discussed in
Section 7; Section 8 completes the paper with a conclusion
and some observations on future work.

2. Haskell and Erlang

Haskell [12] is a typical of many modern functional lan-
guages. It manifests features such as higher-order functions,
lazy evaluation, equations, and pattern matching over alge-
braic data types, a type system with Hindley-Milner type
inference and type classes, overloading, monadic program-
ming, and a module system. Haskell has evolved continu-
ously since its first publication. The current standard ver-
sion is Haskell 98, and defined in Haskell 98 Language and
Libraries: the Revised Report [12]. A Haskell program is
a collection of modules. A module defines a collection of
values, data types, type synonyms, classes, etc. A Haskell
module may import definitions from other modules, and re-
exports some of them and its own definitions, making them
available to other modules. Figure 1 shows a Haskell mod-
ule containing the definition of the factorial function.

Erlang is a strict, dynamically typed, functional pro-
gramming language with support for higher-order func-
tions, pattern matching, concurrency, communication, dis-
tribution, fault-tolerance, and dynamic code reloading [1].

-module (fact).
-export ([fac/1]).
fac(0) -> 1;
fac(N) when N > 0 -> N * fac(N-1).

Figure 2. Factorial in Erlang

Erlang’s elementary data types are atoms, numbers (inte-
gers and floats), process identifiers, references, binaries, and
ports; compound data types are tuples and lists.

Erlang also comes with a module system. An Erlang
program typically consists of a number of modules, each
of which defines a collection of functions. Only functions
exported explicitly may be called from other modules, and
a module can only export functions which are defined in the
module itself.

Erlang has built-in support for concurrency. Processes
and communication between processes are fundamental
concepts in Erlang. A process is a self-contained, separate
unit of computation which executes concurrently with other
processes in the system. The primitives spawn, “!” (send)
and receive allow a process to create a new process and
to communicate with other processes through asynchronous
message passing.

The Erlang language itself is small, but it comes with
libraries containing a large set of built-in functions. Er-
lang has also been extended by the Open Telecom Platform
(OTP) middleware platform, which provides a number of
ready-to-use components and design patterns, such as finite
state machines, generic servers, etc, embodying a set of de-
sign principles for Erlang systems.

Figure 2 shows an Erlang module containing the defi-
nition of the factorial function. In this example, fac/1
denotes the function fac with arity of 1. In Erlang, a func-
tion name can be defined with different arities, and the same
function name with different arities represents entirely dif-
ferent functions computationally.

3. Functional Refactoring

3.1 An Example

Figures 3 - 7 illustrate how refactoring techniques can be
used in the program development process. This example is
written in Erlang, however the same ideas apply to Haskell
programs. The example presented here is small-scale, but it
is chosen to illustrate aspects of refactoring which can scale
to larger programs and multi-module systems.

In Figure 3, the function printList/1 has been de-
fined to print all elements of a list to the standard output.



-module (sample).
-export([printList/1]).

printList([H|T]) ->
io:format("˜p\n", [H]),
printList(T);

printList([]) -> true.

Figure 3. The initial program

-module (sample).
-export([printList/1, broadcast/1]).

printList([H|T]) ->
io:format("˜p\n", [H]),
printList(T);

printList([]) -> true.

broadcast([H|T]) ->
H ! "The message",
broadcast(T);

broadcast([]) -> true.

Figure 4. Adding a new function naı̈vely

Next, suppose the user would like to add another function,
broadcast/1, which broadcasts a message to a list of
processes. broadcast/1 has a very similar structure to
printList/1, as they both iterate over a list doing some-
thing to each element in the list. Naı̈vely, the new function
could be added by copy, paste, and modification as shown
in Figure 4. However, a refactor then modify strategy, as
shown in Figures 5 - 7, would make the resulting code eas-
ier to maintain and reuse.

Figure 5 shows the result of generalising
the function printList on the sub-expression
io:format("˜p/n", [H]). The expression contains
the variable H, which is only in scope within the body of
printList. Instead of generalising over the expression
itself, the transformation is achieved by first abstracting
over the free variable H, and by making the generalised
parameter a function F. In the body of printList
the expression io:format("˜p/n", H]) has been
replaced with F applied to the local variable H.

The arity of the printList has thus changed; in or-
der to preserve the interface of the module, we create a
new function, printList/1, as an application instance
of printList/2 with the first parameter supplied with
the function expression:

-module (sample).
-export([printList/1]).

printList(L) ->
printList(fun(H) ->

io:format("˜p\n", [H]) end, L).

printList(F,[H|T]) ->
F(H),
printList(F, T);

printList(F,[]) -> true.

Figure 5. The program after generalisation

-module (sample).
-export([printList/1]).

printList(L) ->
forEach(fun(H) ->

io:format("˜p\n", [H]) end, L).

forEach(F,[H|T]) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true.

Figure 6. The program after renaming

fun(H) -> io:format("˜p/n", [H]) end.
Note that this transformation gives printList a func-
tional argument, thus making it a characteristically ‘func-
tional’ refactoring.

Figure 6 shows the result of renaming printList/2
to forEach/2. The new function name reflects the func-
tionality of the function more precisely. In Figure 7, func-
tion braodcast/1 is added as another application in-
stance of forEach/2.

Generalise a function definition and rename an identifier
are typical structural refactorings, supported by both HaRe
and the Wrangler.

3.2 Behaviour Preservation

The essential criterion for behaviour preservation is that
given the same input value(s), the program should produce
the same output value(s) before and after the refactoring.

The value of a Haskell program is the value of the main
function defined in the Main module. Therefore, for be-
haviour preservation, we require that given the same input
value(s), the identifier main defined in the Mainmodule of



-module (sample).
-export([printList/1, broadcast/1]).

printList(L) ->
forEach(fun(H) ->

io:format("˜p\n", [H]) end, L).

broadcast(Pids)->
forEach(fun(H) ->

H ! "The message" end, Pids).

forEach(F,[H|T]) ->
F(H),
forEach(F, T);

forEach(F,[]) -> true.

Figure 7. The program after adding a function

the program under refactoring should produce the same out-
put value(s) before and after the refactoring. The semantics
of other functions defined in the program could be changed
after a refactoring, as long as the change does not affect the
value of main.

No such Main module is mandatory for an Erlang pro-
gram. An Erlang program is more like a library with each
module exporting a number of functions. In this case, it is
reasonable to require refactorings to preserve the function-
alities of those functions exported by each module. This is
also reflected by the example shown in Figure 5 where an
extra function has been added but the interface of the mod-
ule is not changed. However, if the user feels that this is too
restrictive, the refactorer should allow the module interface
to be changed, and automatically compensate the change
throughout the system in question.

3.3 Semantics and Transformation

Refactorings are not simply syntactic. In order to pre-
serve the functionality of a program, refactorings require
awareness of various aspects of the semantics of the pro-
gram including types and module structure and most impor-
tantly the static semantics of the program: that is the scope
of definitions, the binding structure of the program (the as-
sociation between the use of an identifier and its definition),
the uniqueness of definitions and so forth.

Each refactoring comes with a set of side conditions,
which embody when a refactoring can be applied to a pro-
gram without changing its meaning. Our experience of
building refactoring tools so far shows that for most refac-
torings, the side-condition analysis is more complex than
the program transformation part. Taking a concrete exam-

ple, among the side conditions for renaming an identifier
could be:

The existing binding structure should not be affected. No
binding for the new name may intervene between the bind-
ing of the old name and any of its uses, since the renamed
identifier would be captured by the renaming. Conversely,
the binding to be renamed must not intervene between bind-
ings and uses of the new name.

The above side-conditions apply to both Haskell and Er-
lang programs, and indeed to most other programming lan-
guages. However, each programming language may also
impose its own particular constraints on this refactoring.
For example, in a Haskell program, the main function de-
fined in the Main module should not be renamed. In an
Erlang program using the OTP library, a user should not re-
name certain functions exported by a call-back module, for
instance.

One difference between Haskell and Erlang emerges at
this point. Conditions on Haskell refactorings can gener-
ally be checked at compile time; the more dynamic nature
of Erlang means that some necessary conditions can only
decided at run-time; we return to this point below.

4. Tool Support for Refactorings

Although it is possible to refactor a program manually,
it would be very tedious and error-prone to refactor large
programs this way. In this case, interactive tool support for
refactoring is invaluable, as it is more reliable and allows
refactorings to be done and undone very easily.

A refactoring tool needs to get access to both the syn-
tactic and static semantic information of the program un-
der refactoring. While detailed implementation techniques
might be different, most refactoring tools go through the
following process: first transform the program source to
some internal representation, such as an abstract syntax
tree (AST); then analyse the program to extract the neces-
sary static semantic information, such as the binding struc-
ture of the program, type information and so forth. After
that, program analysis is carried out based on the internal
representation of the program and the static semantics in-
formation to validate the side-conditions of the refactoring.
If the side-conditions are not satisfied, the refactoring pro-
cess stops and the original program is unchanged, otherwise
the internal representation of the program is transformed ac-
cording to the refactoring. Finally, the transformed repre-
sentation of the program need to be presented to the pro-
grammer in program source form, with comments and the
original program appearance preserved as much as possible.



5 Haskell vs. Erlang Refactoring

A growing catalogue of Haskell refactorings is available
from our project webpage [10], and we are still in the pro-
cess of collecting practically useful Erlang refactorings. In
this paper, we select a small number of representative refac-
torings to illustrate how different language features and pro-
gramming idioms can exhibit different refactoring opportu-
nities and challenges.

5.1 Common Refactorings

These refactorings mainly concern the name and scope
of the entities defined in a program, the structure of defi-
nitions and the module system. Apart from the previously
mentioned renaming an identifier and generalising a defini-
tion, some other refactorings are:

• Removing unused function definitions or parameters.

• Introducing a new definition to represent an identified
expression.

• Swapping arguments of a function definition.

• Lifting a locally defined function to top level of the
module. In Erlang, a function name needs to be sup-
plied for the lifted function.

• Unfolding a definition by replacing an identified oc-
currence of the left-hand side of a definition with the
instantiated right-hand side.

• Moving a definition from one module to another.

• Splitting a large module into two.

5.2 Haskell-specific Refactorings

In Haskell, type classes provide a structured way to con-
trol overloading. They allow the declaration of types as
instances of the class by providing definitions of the over-
loaded operations associated with a class [12]. One of the
type class related refactorings is:

• Introduce overloading by identifying a type, a class
definition and a collection of functions over that type
which are to form the body of the instance declaration.

Haskell is a statically typed language and allows the decla-
ration of algebraic data types. There is a collection of data-
type related refactorings which are also Haskell specific. A
couple of examples are:

• Naming a type using type by identifying uses of a
type in a particular way and making them instances of
a type synonym.

• From concrete to abstract data type. This refactoring
turns an identified concrete data type into an abstract
data type. A concrete data type exposes the represen-
tation of the data type, so that the users can get access
to the data constructors defined in the data type and
write pattern matching definitions, whereas an abstract
data type hides the data representation from the users.
Making a data type abstract allows changing the rep-
resentation of the data type without affecting the client
functions that use this data type. This refactoring is de-
scribed in more detail in [14]. This refactoring is less-
well suited for Erlang programs because Erlang does
not allow the use of user-defined functions in guards.

5.3 Erlang-specific Refactorings

Built-in support for concurrency is one of the main fea-
tures of Erlang. In an well-designed Erlang program, there
should be a one-to-one mapping between the number of par-
allel processes and the number of truly parallel activities in
the real world. The following refactoring allows to adjust
the process structure in a program.

• Introduce/remove concurrency by introducing or re-
moving concurrent processes so as to achieve a better
mapping between the parallel processes and the truly
parallel activities of the problem being solved. For ex-
ample, using processes and message passing when a
function call can be used instead is a bad program-
ming practice, and this refactoring should help to elim-
inate the un-desired process and message passing with
a function call.

While defensive-style programming is a good program-
ming practice when a sequential programming language
is used, non-defensive style programming is the right
thing to do when programming with Erlang. Erlang’s
worker/supervisor error handling mechanism allows a clear
separation of error recovery code and normal case code.
In this mechanism, both workers and supervisors are pro-
cesses, where workers do the job, and supervisors observe
the workers. If a worker crashes, it sends an error signal to
its supervisor.

• From defensive-style programming to non-defensive
style. This refactoring helps to transform defensive-
style sequential error-handling code written in Erlang
into concurrent error handling, typically using super-
visor trees.

Erlang programming idioms also expose various refactoring
opportunities. Some examples are:

• Transform a non-tail-recursive function to a tail-
recursive function. In Erlang, all servers must be tail-
recursive, otherwise the server will consume memory
until the system runs of it.



• Remove import attributes. Using import attributes
makes it harder to directly see in what module a func-
tion is defined. Import attributes can be removed by
using remote function call when a call of function de-
fined in another module is needed.

• From meta to normal function application by re-
placing apply(Module, Fun, Args) with
Module:Fun(Arg1, Arg2,..., ArgN) when
the number of elements in the arguments, Args, is
known at compile-time.

• Refactoring non-OTP code towards an OTP pattern.
Doing this from pure Erlang code is going to be very
challenging, but the whole transformation can be de-
composed into a number of elementary refactorings,
and each elementary refactoring brings the code a bit
closer to the desired OTP pattern.

6 Analysis of Haskell and Erlang Programs

This section discusses and compares some typical static
semantic analysis involved when refactoring Haskell and
Erlang programs, and illustrates the fact that analysing Er-
lang programs is in general more complex than analysing
Haskell programs in several respects.

6.1 The Binding Structure of Variables

Binding structure refers to the association of uses of
identifiers with their definitions in a program. In general, a
refactoring should not disrupt the existing binding structure.
However, in a programming language which allows decla-
rations of the same name across nested scopes, the binding
structure can be very easily disrupted without leading to an
incorrect program (which fails to compile). For instance, in
the following Haskell example:

g y = f y + 17 where h z = z + 34

the free variable f refers to some function defined outside
the definition of g. Renaming function h to f would bind
the free variable f to the renamed definition. This kind of
change of binding structure would not always be detected
by the compiler, and can only be avoided by proper side-
condition checking and transformation rules.

Both Haskell and Erlang allow static scoping of vari-
ables, in other words, matching a variable to its binding only
requires analysis of the program text. However, Erlang still
differs from Haskell in three different ways.

First, in Haskell, every occurrence of a variable in a pat-
tern is a binding occurrence, whereas in Erlang the binding
occurrence of a variable always occurs in a pattern, but a
pattern may also contain applied (i.e. non-binding) occur-
rences of variables.

Secondly, in Haskell, all patterns must be linear, i.e. no
variable may appear more than once in the same pattern,
whereas in Erlang, non-linear patterns with multiple occur-
rences of the same variable are allowed.

Finally, in Haskell, a variable is only associated with
one binding occurrence, whereas in Erlang, a variable
may have more than one binding occurrence, due to that
case/receive expressions in Erlang can export vari-
ables. For instance, in the following Erlang code:

bar(S) -> case S of 1 -> S1 = 3, S1;
_ -> S1 = 4, S1

end,
S1 *S1.

both branches of the case expression export the variable S1.
The applied occurrences of S1 after the case expression are
bound to both pattern bindings in the case expression.

Allowing a variable to have more than one occurrence
has impacts on a number of refactorings. The most obvi-
ous case is renaming a variable, in which case renaming
one binding occurrence of a variable might also need an-
other binding occurrence of the same variable name to be
renamed.

6.2 Finding the Call-sites of a Function

The function call graph is essential for refactorings that
change the arity of type of a function. These refactorings,
in general, modify not only the function definition itself, but
also all the call-sites in order to compensate for the changes
to the function definition itself.

Both Haskell and Erlang allow higher-order function
calls. A function call in Haskell has the form: e1e2; and
a function call in Erlang has the form: e0(e1, e2, ...en), or
em : e0(e1, e2, ..., en), where em should evaluate to a mod-
ule name. Unlike Haskell, Erlang syntactically does not al-
low partial application of functions.

Apart from these forms of function application, Er-
lang also allows meta-applications using the built-in
function apply/3. apply/3 takes the following
form: apply(Module, Function, Args), where
Module represents a module name, Function represents
a function name, and Args is a list of terms. apply/3
applies Function in Module to Args, and the arity of
the applied function is the length of Args.
apply/3 is useful when the number of arguments is not

known at compile-time. However, as Erlang allows defining
functions with the same name but different arities, it also
imposes some difficulties with refactorings. For example,
in the following trivial example:

f (X) -> X.
f (X, Y) -> X + Y + 1.
foo(Args)-> erlang:apply(math, f, Args).



for a refactoring tool that does only static semantic analysis,
it is not possible to decide whether f/1 or f/2 will be
called by the function foo. This causes problems for some
refactorings. Most obviously, renaming of f/1 might need
f/2 to be renamed as well.

Another difference between Haskell and Erlang is that
unlike in Haskell, where a function name is a variable, a
function name in Erlang is an atom literal. This causes two
problems with refactoring Erlang programs:

First, as atoms can be used as function names, module
names, process names, or just normal literals, it may not be
straightforward to see whether an atom refers to a function
name of not. For instance, in the following function call:

start() -> spawn(ch1, ch1, [])
The first ch1 refers to a module name, and the second ch1
refers to a function name.

Secondly, since atoms can be created from lists using the
list to atom/1 function, and a list can be computed
from other lists, this provides the possibility of composing
function names at run time, which again makes finding the
call-sites of a function difficult.

The refactorer should give a warning message when it is
not possible to tell whether a function is called at a specific
site of the program.

6.3 Strict / Non-strict; Pure/ Impure

Haskell is a non-strict programming language, which
means that an expression is only evaluated when its value
is needed. On the contrary, Erlang is a strict language, so
that arguments are evaluated before function application.

For a pure functional programming language, like
Haskell, changes of the evaluation order of expressions
should not change the functionality of the program. How-
ever for a non-pure language such as Erlang, in which mu-
table stuff (message sends/receives and state-dependent re-
sponses) plays an important part in most large programs,
changes of the evaluation order could easily change the
functionality of the program. For instance, in the follow-
ing example:

repeat(0) -> ok;
repeat(N) -> io:format ("Hello"),

repeat(N-1).
f() -> repeat(5).

The function repeat/1 echoes the string "Hello"
a specified number of times, and function f/1 echoes the
string 5 times by calling repeat/1 with the argument 5.

Naı̈vely generalising function repeat/1 on the sub-
expression io:format ("Hello") could produce:

repeat(A, 0) -> ok;
repeat(A, N) -> A,

repeat(A,N-1).
f() -> repeat(io:format("hello"), 5).

In the above produced code, expression io:format
("Hello") will be evaluated with a returned value ok,
before the body of the function repeat/2 is executed. As
a result, f/0 only echoes the string "Hello" once instead
of 5 times.

The above transformation changes the functionality of
f/1. In order to preserve the behaviour of the function
f/1, when generalising a function on a sub-expression with
side-effect, we have to wrap this sub-expression in a func-
tion expression, and hence to delay the evaluation of the
actual argument, as shown below.

repeat(A, 0) -> ok;
repeat(A, N) -> A(),

repeat(A,N-1).
f() ->
repeat(fun()->io:format("Hello") end,5).

It is the refactorer’s responsibility to decide whether an ex-
pression has side-effects or not.

6.4 The Module System

Both Haskell and Erlang have a module system. When a
refactoring allows the module interface to be changed, this
refactoring may have an effect in not only the module where
the refactoring is initiated, but also in those modules that
import the current module. For example, renaming an ex-
ported identifier affects not only the module, A say, con-
taining the identifier’s definition, but also those modules
importing A, directly or indirectly. How a number of dif-
ferences between the Erlang and Haskell module systems
affect the implementation of refactorings are discussed now.

In Haskell, an identifier exported by a module, A say,
can be used by another module, B say, only if module B
imports A either directly or indirectly; whereas in Erlang, a
module can use functions (by remote function application)
exported by another module, B say, without explicitly im-
porting module B. From the point of view of program anal-
ysis, a module-level call graph of a Haskell program can
be constructed by examining the import declarations of the
modules in a program; whereas building a module-level call
graph for an Erlang program needs the individual functions
in each module of the program to be checked

Erlang does not allow transitive export of entities; that
is, an Erlang module can only export functions which are
declared in this module; whereas a Haskell module can ex-
port entities which are imported by this module. Therefore,
an Erlang module, A say, does not propagate changes in its
server modules (modules which are imported by A) to its
client modules (modules which import A).



module M1 where

sq x = x ˆ 2
---------------------------------------------

module M2(module M1, bar) where
import M1

bar x y = x + y
---------------------------------------------

module Main where
import M2

foo = x ˆ 3
main x y = print $ foo x + bar x y

Figure 8. Adding a definition named foo to
module M1 would cause ambiguity in module
Main

Omitting the export attribute in an Erlang module means
that none of the functions defined in the module would be
exported; whereas omitting the export list in a Haskell mod-
ule means that all the names bound at the top level of the
module would be exported.

Finally, in Haskell, an entity in the export list can be of
the form Module M, which represents the set of all entities
that are in scope with both an unqualified name “e” and a
qualified name “M.e”; whereas, in Erlang, a function can
only be exported by explicitly specifying its name and arity.

From the refactoring point of view, Haskell’s export
mechanism complicates the refactoring process when the
module’s export list is omitted or an entity like Module M
is used in the export list. For example, when a new identifier
is brought into scope in a module by a refactoring, the iden-
tifier could also be exported automatically by this module,
and then further exported by other modules if this module
is imported and exported by those modules. This is poten-
tially dangerous as the new entity could cause name con-
flict/ambiguity in modules which import it either directly or
indirectly, as shown in the example in Figure 8.

6.5 Static Typing vs. Dynamic Typing

Both Haskell and Erlang are typed programming lan-
guages, however Haskell features static typing whereas Er-
lang features dynamic typing.

Static typing could help the refactoring process (espe-
cially manual refactoring) by playing the role of testing dur-
ing refactoring. Apart from that, type information is needed
by some Haskell refactorings in order to succeed. For ex-
ample, lifting a simple pattern binding (i.e. a pattern bind-

ing in which the pattern consists of only a single variable) to
the top level may make an originally polymorphic definition
monomorphic, with the result that the refactored program
might fail to compile. This problem could be avoided by
adding a proper type signature to the lifted pattern binding.
Another example is that, when generalising a function def-
inition which has a type signature declared, the type of the
identified expression needs to be inferred and added to the
type signature as the type of the function’s first argument.

Erlang is a weakly typed programming language. For
most Erlang refactorings, type information is not needed,
but there are also some cases where type information can
help. For example, type information has been used by Dia-
lyzer [13], an Erlang tool that identifies software discrepan-
cies, to detect redundant type tests.

6.6 Conclusions

We can make some general conclusions about Haskell
and Erlang refactoring on the basis of this section.

Erlang is a smaller language than Haskell, and in its pure
functional part, very straightforward to use. It does how-
ever have a number of irregularities in its static semantics,
such as the fact that it is possible to have multiple defin-
ing occurrences of identifiers, and to nest scopes, despite
the perception that there is no shadowing of identifiers in
Erlang.

Erlang is also substantially complicated by its possibili-
ties of reflection: function names, which are atoms. can be
computed dynamically, and then called using the apply
operator; similar remarks apply to modules. Thus, in prin-
ciple it is impossible to give a complete analysis of the call
structure of an Erlang system statically, and so the framing
of side-conditions on refactorings which are both necessary
and sufficient is impossible.

Two solutions to this present themselves. It is possible to
frame sufficient conditions which prevent dynamic function
invocation, hot code swap and so forth. Whilst these condi-
tions can guarantee that behaviour is preserved, they will in
practice be too stringent for the practical programmer. The
other option is to articulate the conditions to the program-
mer, and to pass the responsibility of complying with them
to him or her. This has the advantage of making explicit the
conditions without over restricting the programmer through
statically-checked conditions. It is, of course, possible to in-
sert assertions into the transformed code to signal condition
transgressions.

7 Implementation Considerations

Different techniques have been used in the implemen-
tation of HaRe and the Wrangler. HaRe is implemented



Figure 9. A snapshot of HaRe

Figure 10. A snapshot of the Wrangler

in Haskell using the Programatica [9] frontend (includ-
ing lexer, parser, module analysis, and type checker) for
Haskell, and the Strafunski [6] library for generic AST
traversals.

The Wrangler is implemented in Erlang using the Erlang
Syntax Tools [11] library from the Erlang/OTP release and
Distel [8] which is an extension of Emacs Lisp with Erlang-
style processes and message passing and the Erlang distri-
bution protocol. We have modified the Erlang Syntax Tools
library to add the binding structure information to the AST.

HaRe is integrated with two most commonly used pro-
gram editors for Haskell: (X)Emacs and Vim, while the
Wrangler is integrated with Emacs, as most Erlang pro-
grammers use Emacs as the Erlang editor. Snapshots of
HaRe and the Wrangler embedded in the Emacs environ-
ment are shown in Figure 9 and Figure 10 respectively. This
section compares the implementation of the two refactorers.

7.1 The Implementation Language

HaRe is implemented in Haskell using the Programatica
frontend [9], and Strafunski [6]. More detailed explanation
of the implementation of HaRe can be found in [7].

When we started to prototype the Wrangler, we needed
to decide which language we would use as the implemen-
tation language. After experimenting with the available Er-
lang frontends, we decided to commit to Erlang. The main
reason is that almost all of available Erlang frontends are
written in Erlang, and there is a library, i.e. Erlang Syntax
Tools [11] from the Erlang release, which supports source-
to-source program transformation. Apart from that, Dis-
tel [8] provides a very convenient way to integrated the
refactoring tool with the Emacs editor. The other reason is
that we feel that an Erlang refactorer implemented in the Er-
lang language might be more acceptable to the Erlang com-
munity; the same argument applies to the HaRe tool.

7.2 Analysis and Transformation

Program analysis and transformation involve frequent
traversals of ASTs. Both HaRe and the Wrangler use an
AST as the internal representation of the program under
refactoring. However, unlike the Erlang ASTs produced by
the Erlang Syntax Tools, in which all the non-leaf nodes
have the same type, the Haskell ASTs are many-typed.
While higher order function such as map, fold make
traversals of Erlang ASTs less complicated, they do not
help too much with traversing Haskell’s complex, recursive,
nested ASTs. The Haskell 98 abstract syntax contains a
large number of mutual recursive algebraic data types, each
being a sum of a large number of data constructors. A naı̈ve
traversal of a many typed AST could produce huge amount
of boilerplate code, which is tedious to write and hard to
maintain. To solve this problem, we used the Strafunski li-
brary to program AST traversal functions.

Strafunski is a library supporting strong-typed generic
programming in application areas that involve term traver-
sals over large abstract syntaxes. It is based on the notion
of functional strategy. A functional strategy is a first-class
generic function, which can be applied to arguments of any
type, can exhibit type-specific behaviour, and can perform
generic traversal to sub terms. Using Strafunski, we were
able to write concise, type-safe, generic functions for AST
traversals, in which only the strictly relevant constructors
need to be mentioned.

7.3 Program Appearance Preservation

Program layout and comment preservation are issues
when tool support for interactive refactoring is concerned.
A real-world refactoring tool should preserve the original



program layout and comments as much as possible so that
the program still looks familiar to the programmer after
a refactoring has been applied. This requirement holds
right across the programming spectrum as observed by J. R.
Cordy in a keynote paper [2]. Unfortunately, most existing
programming language frontends discard white space and
comment information during the transformation from pro-
gram source to the internal representation of the program,
and most pretty-printing tools produce program source from
ASTs by pretty-printing the layout and completely ignoring
the original one. Together, this makes program appearance
preservation a hard task.

In HaRe, we use both the AST and the token stream as
the internal representation of source code. Layout and com-
ment information is kept in the token stream, and some lay-
out information is kept in the AST. After a refactoring, in-
stead of pretty-printing the AST, we extract the source code
from the transformed token stream. More details are pre-
sented in [7].

In the Wrangler, we again make use of the functionalities
provided by Erlang Syntax Tools [11]. Erlang Syntax Tools
provides functionalities for reading comment lines from Er-
lang source code, and for inserting comments as attach-
ments on the AST at the correct places; and also the func-
tionality for pretty printing of abstract Erlang syntax trees
decorated with comments. The Wrangler therefore pretty-
prints the transformed ASTs resulting from a refactoring.

8 Conclusions

In this paper, we have compared refactoring Haskell and
Erlang programs from several aspects, including the useful
refactorings for each language; the program analysis and
transformation necessitated by typical refactorings; and the
implementation of the refactoring tools. While both Haskell
and Erlang benefit from the referential transparency prop-
erty of functional programming languages, different lan-
guage characteristics and programming idioms still affect
the catalogue of useful refactorings, and the required pro-
gram analysis and transformation of individual refactoring
considerably.

The study begs the question of whether it is possible
to design a generic refactoring tool which can be applied
to several programming languages. The language-generic
refactorer is an elusive beast. In theory, it should be pos-
sible to construct it, just as it should be possible to build
semantically-driven compiler generator, which takes a de-
scription of a language and spits out a compiler, or at least
its front end. What we have seen instead is that parser-
generation technology is relatively common – though by no
means universally used – but no production compiler is built
automatically. As we have seen, a refactoring tool calls on
all the front-end services of a compiler: static semantics,

type checking, module analysis and so forth, and so all the
practical obstacles to the full compiler generator carry over
to the language-generic refactorer.

Another attack on the problem is API-oriented rather
than semantic; we could see a generic system as providing a
toolkit of language processing and transformation elements.
A plethora of such systems exist, but in practice ‘real’ lan-
guages have sufficient peculiarities to make it difficult to
embed their processing within such generic frameworks.

What is clear from our work is that insights are certainly
transferable, and that implementing for Erlang a refactoring
such as generalisation is made substantially easier with the
experience of implementing it already for Haskell.

References

[1] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in Erlang. Prentice-Hall, second
edition, 1996.

[2] J. R. Cordy. Comprehending Reality - Practical Barriers
to Industrial Adoption of Software Maintenance Automa-
tion. In International Workshop on Program Comprehen-
sion, pages 196–206, 2003.

[3] FORSE. Formally-Based Tool Support for Erlang Develop-
ment. http://www.cs.kent.ac.uk/projects/forse/.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[5] Huiqing Li and Simon Thompson and Claus Reinke. The
Haskell Refactorer, HaRe, and its API. Electr. Notes Theor.
Comput. Sci., 141(4):29–34, 2005.

[6] R. Lämmel and J. Visser. Generic Programming with Stra-
funski. http://www.cs.vu.nl/Strafunski/, 2001.

[7] H. Li, C. Reinke, and S. Thompson. Tool Support for Refac-
toring Functional Programs. In J. Jeuring, editor, ACM SIG-
PLAN Haskell Workshop, Uppsala, Sweden, Aug. 2003.

[8] Luke Gorrie. Distel: Distributed Emacs Lisp (for Erlang).
[9] PacSoft. Programatica: Integrating Pro-

gramming, Properties, and Validation.
http://www.cse.ogi.edu/PacSoft/projects/programatica/.

[10] Refactor-fp. Refactoring Functional Programs.
http://www.cs.kent.ac.uk/projects/refactor-fp/.

[11] Richard Carlsson. Erlang Syntax Tools.
http://www.erlang.org/doc/doc-5.4.12/lib/syntax tools-
1.4.3/doc/html/.

[12] S.Peyton Jones, editor. Haskell 98 Language and Libraries:
the Revised Report. Cambridge University Press, 2003.

[13] T. Lindahl and K. Sagonas. Detecting Software Defects in
Telecom Applications Through Lightweight Static Analysis:
A War Story. In Proceedings of the Second Asian Sympo-
sium (APLAS’04), volume 3302 of LNCS, pages 91–106.
Springer, Nov. 2004.

[14] S. Thompson. Refactoring Functional Programs. In V. Vene
and T. Uustalu, editors, Advanced Functional Programming,
5th International School, AFP 2004, volume 3622 of LNCS,
pages 331–357. Springer Verlag, September 2005.


