
A Catalogue of Functional Refactorings
Version 1

Simon Thompson, Claus Reinke
Computing Laboratory, University of Kent

1 August 2001

Abstract

This document is the first draft of a catalogue of refactorings for functional programs. Most are applicable to a variety of modern
functional programming languages – with the example code begin written in Haskell – but some relate specifically to Haskell and are
marked as such.

What is Refactoring?

Refactoring is ‘improving the design of existing code’ and as
such, it has been practised as long as programs have been
written. It was first identified as an activity in its own right
within the object-oriented programming community [3, 4]
(http://www.refactoring.com).

When does refactoring arise? To take an example, we might
first program a system using an algebraic data type, and then
decide to change the way that the data are represented. How
should we proceed with this? One option is to modify the data
type directly, that is to achieve the modification in a single step:
this will require us to make substantial modifications to a pro-
gram’s functionality and structure simultaneously.

On the other hand, we might do the same in two stages. First
we could transform the algebraic data type into an abstract data
type (ADT), and only after this refactoring is done, would we
modify the definition of the ADT. This two-stage transforma-
tion aims to separate the structural changes (from algebraic to
abstract data type) from the changes in functionality. It also
makes the program more amenable to further change, as ADT
representations can be modified with no cost to the client.

We refactor in other situations too. We might program in an
exploratory way: first establishing the functionality we seek,
and then refactoring into a more elegant form. We suspect that
functional languages are particularly suited to this form of pro-
gramming, because their clean semantic basis makes wholesale
transformations more feasible than for a language in the C fam-
ily, say.

Finally, we might refactor someone else’s program to make
it more readable; some of the refactorings given in this note
were inspired by trying to fully understand some non-trivial
student assessments written in Haskell.

The Nature of Refactoring

One of the simplest refactorings – Refactoring 1 in this cat-
alogue – is to rename a function to reflect its use. We have
already discussed the rather more complex Refactoring 9 from
an algebraic to an abstract data type. These examples share two
important characteristics of refactorings.

Di�use Their effect is diffuse, in that they require changes
throughout a module and indeed throughout a system of
modules. A change of function name needs to be effected
at each function call; a change from a data type to an
ADT will require changes to all functions that directly
manipulate the data by pattern matching, for instance.

Bidirectional A change from a general name (e.g. f) to
a more specific one (e.g. findMaxVolume) might later
be followed by a change to a more general name (e.g.
findMax).

We have discussed the change from an algebraic data
type to an ADT, but in other situations it is perfectly rea-
sonable to change an ADT into an algebraic type. One
motivation might be to use pattern matching, another to
use the deriving facilities over data in Haskell.

Supporting Refactoring

We have seen that refactorings have a bureaucratic aspect:
changes have to be made at all sites that a function is called,
for example. With current technology we would use a text edi-
tor to assist in making the changes, and rely on a type checker
to catch any errors introduced in the refactoring. OO refactor-
ers underline the importance of continual (re)testing of code to
ensure correctness [1].

For a functional programming language one could use rea-
soning to establish the correctness of many classes of refactor-
ings. Moreover, it is entirely feasible to support these refac-
torings in a variety of tools of increasing levels of sophistica-
tion; the experience of the OO community [2] in this respect
is broadly positive. A tool could allow users to do and undo
refactorings of various sorts; it could also check the applicabil-
ity of certain transformations, such as renaming or lifting. More
detailed considerations of tool design are to be found in [5].

The catalogue

The body of this paper is a list of refactorings applicable to
functional programs written in the ML/Haskell/Miranda school
of strongly-typed functional language.

1

Refactoring 1: Renaming

f x y = ...
findGreaterVolume x y = ...

(= =)

The name is general enough to be re-used in many differ-
ent circumstances; it may be that the name is too specific for
reuse, or it is mis-named.

The name is chosen to reflect the purpose of the function in
the module (F, say) that it is used.

This requires all calls of f to be renamed to findGreaterVolume; this will certainly have an effect in the module F. By default,
it can also affect any module importing F.
It can have an effect beyond those modules explicitly importing F depending upon the visibility given to f by modules that
import F.

Refactoring 2: Lifting / Demoting

f x y = ... h ...

where

h = ...

f x y = ... (h x y) ...

h x y = ...

(= =)

The effect of defining h locally is to clear up the namespace
(of the module containing it, F, say, and of the whole system).
In many situations a top-level function (f here) uses an auxil-
iary function whose only use is within f. An example is where
fAux takes an extra parameter, and f is a call to fAux with an
initial value of the parameter. A concrete example is given by
a search function which takes a list of already-visited nodes as
arguments; at the top level this will be called with an empty
list.
Another justificication is in creating circular data structures:
a where-defined h such as h = 1:h will create a circular rep-
resentation of the infinite list of ones.

Lifting h to the top-level makes it accessible to the other func-
tions in the module F, say, and to all modules importing F.

Changing the scope of a definition of h in either direction has potential effects. Making h local will be a problem if it is used
by any function other than f. Lifting it to the top level can potentially cause name clashes; all calls to h within f need to be
modified to pass the extra arguments: in this case x and y.

Refactoring 3: Naming a type

f :: Int -> Char

g :: Int -> Int

type Length = Int

f :: Length -> Char

g :: Int -> Length

(= =)

Reuse supported. Clearer specification of the purpose of f,g. (Morally) can only
apply to lengths, but in fact a synonym is transparent, so can
apply in exactly the same circumstances as the left hand ver-
sion.

The intention is delivered by Refactoring 4.

Refactoring 4: Opaque Type Naming

f :: Int -> Char

g :: Int -> Int

data Length

= Length f length::Int g

f' :: Length -> Char

g' :: Int -> Length

f' = f . length

g' = Length . g

(= =)

reuse supported. Clearer specification of the purpose of f,g. Can only apply to
lengths.

The changes to types f :: Length -> Char and g :: Int -> Length require us to modify

� the calls to f, to replace an integer e by Length e;

� and the callers of g, to replace F[g x] by F[length(g x)].

This can be done without labelled fields, but will in that case need to define an auxiliary selector

length (Length b) = b

or to use let expressions throughout the code. Taking length as the field name shows a potential clash of names: length is
also defined in the standard prelude.
See also Refactoring 3.

Refactoring 5: Explicit or implicit arguments

f x = g (h x) f = g . h

(= =)

Definitions which use variables are often easier to read. An explicit use of a higher-order operation, in this case ‘.’, can
pave the way for further transformations.

There are no further code changes required by this refactoring.

Refactoring 6: Generalise / Inline

f x ... = ... e ... f' g x ... = ... (g x) ...

g x = e

(= =)

Might have f' with only a single application; could then
transform to f and remove the definition of f' completely.

The particular behaviour e involves x as the only free variable.
It is encapsulated in the function g.
The same transformation could be applied to an expression e

with a number of free variables: all would go into the formal
parameters of the newly defined function g.

This transforms the particular function f into the more general f'. Such a generalisation often results in the type becoming
generalised also. For instance

add2s :: Int -> Int add2s' :: (a -> b) -> [a] -> [b]

add2s xs = [2+x | x<-xs] add2s' add2 xs = [add2 x | x<-xs]

add2 x = 2+x

The example of add2s' is ready for renaming to a more general operation (e.g. applyAll or map).

Refactoring 7: Add/Remove Field Names in data Types

data Tree a = Leaf a |

Node (Tree a) (Tree a)

sumTree (Leaf n) = n

sumTree (Node t1 t2)

= sumTree t1 + sumTree t2

data Tree a = Leaf f leaf :: a g |

Node f left, right :: Tree a g

sumTree t = case t of

(Leaf _) -> leaf t

(Node _ _) -> sumTree (left t) +

sumTree (right t)

(= =)

Simpler format; pattern matching used to select components
of arguments as well as to select between the two different
cases.

Halfway house to making the data type abstract.
It is still necessary to distinguish between different cases using
pattern matching, either explicit (as here) or implict (by means
of isLeaf, isNode functions which are themselves defined
by pattern matching).

Field names have the additional advantage that the same name can be used within different constructors of the same data type,
as in

data Vtree a = VLeaf f value :: a g |

VNode f value :: a, left, right :: Tree a g

where the field value names the field of type a in both constructors of the VTree type.
See also Refactorings 8, 9.

Refactoring 8: Pattern Matching or Selectors and Discriminators

count (Add e1 e2) = 1 + count e1 + count e2

count (Mul e1 e2) = 1 + count e1 + count e2

count ... = ...

count e

| isBinary e = 1 + count (left e) + count (right e)

| otherwise = ...

isBinary (Add _ _) = True

isBinary (Mul _ _) = True

isBinary _ = False

(= =)

Pattern matching is the simplest approach for a small defini-
tion.

Similar cases – here the case of a binary operator – are treated
as one.
If the fields (within Add and Mul) are named left and right
then the selectors need not be defined; isBinary has to be
defined by pattern matching.
This is closer to an abstract data type.

Related to Refactorings 7, 9.

Refactoring 9: Algebraic or Abstract Type?

data Tr a

= Leaf a |

Node a (Tr a) (Tr a)

flatten :: Tr a -> [a]

flatten (Leaf x) = [x]

flatten (Node s t)

= flatten s ++

flatten t

A type which exports the operations:

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode, ...

flatten :: Tr a -> [a]

flatten t

| isleaf t = [leaf t]

| isNode t

= flatten (left t) ++

flatten (right t)

(= =)

Pattern matching syntax is more direct . . . but can achieve a
considerable amount with field names.
Can declare Tr as an instance of a class anywhere that it is
used.
Can use the deriving facilities of Haskell to derive defini-
tions of equality, a show function and so forth.

Allows changes in the implementation type without affecting
the client: e.g. might memoise values of a function within the
representation type (itself another refactoring Xref?2).
Can only declare the type to be an instance of a class within
the abstraction capsule, rather than at the point of use.
Allows an invariant to be preserved: suppose trees are to be
kept ordered (search trees); this can be ensured if all the func-
tions in the signature preserve it. If the carrier type is exposed,
it becomes the user’s responsibility to maintain the invariant,
rather than the supplier of the type.

Such a refactoring has widespread effects. All examples of functions creating or accessing trees will need to be modified.
This is a good case for automatic support, in identifying definitions anf indeed in transforming pattern matching definitions into
selector/discriminator definitions. This is made particularly easy if the fields have already been labelled, as one only needs to
provide discriminators which can be named isLeaf, isNode etc. in a completely routine way.
See also Refactorings 7, 8.

Refactoring 10: Migrate functionality

A type which exports the operations:

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode, ...

depth :: Tr a -> Int

depth t

| isleaf t = 1

| isNode t

= 1 +

max (depth (left t))

(depth (right t))

A type which exports the operations:

isLeaf, isNode,

leaf, left, right,

mkLeaf, mkNode, ..., depth

(= =)

If the type is reimplemented, need to reimplement everything
in the signature, including depth. The smaller the signature
the better, therefore,

Can modify the implementation to memoise values of depth,
or to give a more efficient implementation using the concrete
type.

This refactoring should have no effect on the surrounding code; it simply moves responsibility for the definition of depth from
the client to the implementor of the type.
Related to Refactoring 9.

Refactoring 11: Algebraic or Existential type?

data Shape

= Circle Float |

Rect Float Float

area :: Shape -> Float

area (Circle f) = pi*r^2

area (Rect h w) = h*w

perim :: Shape -> Float

perim (Circle f) = 2*pi*r

perim (Rect h w) = 2*(h+w)

data Shape

= forall a. Sh a => Shape a

class Sh a where

area :: a -> Float

perim :: a -> Float

data Circle = Circle Float

instance Sh Circle

area (Circle f) = pi*r^2

perim (Circle f) = 2*pi*r

data Rect = Rect Float

instance Sh Rect

area (Rect h w) = h*w

perim (Rect h w) = 2*(h+w)

(= =)

Pattern matching is available. Adding a new sort of Shape
requires modification of all functions which have Shape ar-
guments.
Possible to deal with binary methods: impossible to deal with
== on Shape as an existential type.

Can add new sorts of Shape e.g. Triangle without modi-
fying existing working code, since (unary) functions are dis-
tributed across the different Sh types.

This can be seen as the result of a sequence of simpler refactorings; see citatation for further details.

Refactoring 12: Replace Function by Constructor

data RegExp = Star RegExp |

Then RegExp RegExp | ...

plus e = Then e (Star e)

data Expr = Star RegExp |

Plus RegExp |

Then Expr RegExp | ...

(= =)

A function over RegExp only needs to be defined over Star,
Then, . . . ; the case of plus is handled automatically by the
functions over the RegExp type.
A function over RegExp is therefore more compact.

Can treat Plus differently, e.g.

literals (Plus e) = literals e

rather than the definition given by the ‘syntactic sugar’ of
plus which expands thus

literals (plus e)

= literals (Then e (Star e))

= nub (literals e ++ literals (Star e))

= nub (literals e ++ literals e)

= ...

The disadvantage of this approach is that each function over
RegExp needs to have a Plus clause defined.

The change will require modifications to all functions working over RegExp.
A more pertinent example here is a range of characters within a regular expression: one can expand [a-z] into a|b|c|...|y|z
but it is much more efficient to treat it as a new constructor of regular expressions.

Refactoring 13: Layered data types

data Expr = Lit Float |

Add Expr Expr |

Mul Expr Expr |

Sub Expr Expr

eval (Lit r) = r

eval (Add e1 e2) = eval e1 + eval e2

eval (Mul e1 e2) = eval e1 * eval e2

eval (Sub e1 e2) = eval e1 - eval e2

data Expr = Lit Float |

Bin BinOp Expr Expr

data BinOp = Add | Mul | Sub

eval (Lit r) = r

eval (Binop op e1 e2)

= evalOp op (eval e1) (eval e2)

evalOp Add = (+)

evalOp Mul = (*)

evalOp Sub = (-)

(= =)

This approach is simpler: the different sorts of arithmetic ex-
pressions are all collected into a single data type. Its disadvan-
tage is that the type does not reflect the common properties of
the Add, Mul and Sub nodes, each of which has two Expr

fields.

After the refactoring, the Bin node is a general binary node,
with a field from BinOP indicating its sort. Operations which
are common to Bin nodes can be written in a general form,
and the pattern matching over the original Expr type can be
reconstructed thus:

eval' (Bin Add e1 e2) = eval' e1 + eval' e2

This approach has the advantage that it is, in one way at least,
more straightforward to modify. To add division to the ex-
pression type, it is a matter of adding to the enumerated type
an extra possibility, Div, and adding a corresponding clause
to the definition of evalOp.

The modification requires the rewriting of all definitions that either use or return an Expr.

Refactoring 14: Set comprehensions (Haskell-specific)

makeSet

[f x y |

x <- flatten xs,

y <- flatten ys,

p x y]

do x <- xs

y <- ys

guard (p x y)

return (f x y)

(= =)

The notation looks more like

ff x y | x<-xs, y<-ys, p x yg

the monadic notation has a different connotation.

Doesn’t require the abstraction to be broken by

flatten :: Set a -> [a]

Depending upon the particular implementation of sets, it
might not be possible to define a flatten function.

Neither is ideal: one would like set comprehensions in the form ff x y | x<-xs, y<-ys, p x yg.

Refactoring 15: Enlarge the return type of a function

f :: S -> T f :: S -> Maybe T

f :: S -> [T]

f :: S -> Either T T'

(= =)

This form is the most appropriate for a function which returns
a single element of type T.

This form is suitable prior to generalising or modifying the
behaviour of f to accommodate

� the possibility of f returning no result (Nothing);

� the possibility of f returning a number of results of type
T, as a list;

� the possibility that f would return a value either in T or
in T'.

This modification is simple to achieve for the definition of f, which is pre-composed with Just, (:[]) or Left. All call sites
of the function will need to be modified; it would be advantageous if the built-in types had field names, as in

data Maybe a = Just f just::a g | Nothing

so that the call F[f s] could be replaced by F[just (f s)] etc.
See also Refactoring 4. This refactoring may well precede addition of error reporting or avoidance measures.

Refactoring 16: Reorganise Arguments

f :: S -> T -> U

g :: S -> T -> U

f :: T -> S -> U

g :: (S,T) -> U

(= =)

The curried form of functions gives a cleaner notation for
function application, and, more importantly, allows functions
to be partially applied.
A function can only be partially applied to arguments from the
left of the argument list, and so the order of arguments is sig-
nificant. Its first two arguments can be swapped by applying
the flip combinator, but to achieve an arbitrary permutation
of its arguments, a function needs in general to be redefined.

The redefined order of arguments allows partial application to
the argument of type T.
The uncurried form of the function is particularly useful for
composition with a function that returns a pair of elements.

These require modifications at all sites where f and g are called. The changes required are entirely mechanical, and are a good
first candidate for automation in a refactoring tool.
See also Refactoring 17

Refactoring 17: Add / Remove Arguments

h :: S -> U
h :: S -> T -> U

(= =)

If the result of the function does not depend on the second
argument, then it can be removed. This situation would not
occur deliberately, but might well be the result of other refac-
torings. input of type

This refactoring appears to be pointless, but it can be made
prior to modifying the definition of h; if done in this way, the
structure of the program is modified before the substantive
change in functionality is made to the modified structure.

It is possible to detect situations in which an argument to a function is not used; this could form a component of a refactoring
tool.
See also Refactoring 16.
One example of adding an argument is as a value to be returned when an error condition holds. For instance

head :: [a] -> a headEr :: a -> [a] -> a

head (x:xs) = x headEr y (x:xs) = x

head [] = error "head of empty list" headEr y [] = y

Refactoring 18: Monadic presentation

data Expr = Lit Float |

Add Expr Expr |

Mul Expr Expr |

Sub Expr Expr

eval :: Expr -> Float

eval (Lit r) = r

eval (Add e1 e2) = eval e1 + eval e2

...

evalM :: Expr -> M Float

evalM (Lit r) = return r

evalM (Add e1 e2) = do v1 <- evalM e1

v2 <- evalM e2

return (v1+v2)

...

(= =)

This is the direct definition of evaluation. If one wants to add

� error handling,

� updateable variable within expressions, or

� other instrumentation

then it is necessary to modify the return type (and argument
types) of the function.

The monadic presentation here allows the modification of the
monad M whilst preserving the top-level structure of the com-
putation.

Modifications here are potentially wide-ranging. The type of the eval function suggests that a (single) result is returned for all
expressions; this will not be the case for a general monad. It therefore becomes necessary for the part of the program using the
results of evalM to be put into monadic form, unless there is an ‘escape’ function of type M a -> a available for the monad in
question.

Refactoring 19: Iteration / Fixedpoint

it 0 f x = x

it n f x = it (n-1) f (f x)

solution = it e f v

fix f x

| x==next = x

| otherwise = fix f next

where next = f x

solution = fix f v

(= =)

If the number of iterations supplied, e, is defined, then the
solution is defined. The computation proceeds without
equality tests, but needs a (tight) bound on the number of it-
erations required to be efficient. Making it strict in its third
argument will make for space efficiency.

Termination is only guaranteed if there is a fixed point in the
sequence x, f x, f (f x), ..., but it will halt as soon as
a fixed point is reached.

This only has an effect on the definition of the solution and not on any of the places that it is used.

Refactoring 20: Recursion / Fold operator

map f [] = []

map f (x:xs) = f x : map f xs

map f = foldr ((:).f) []

(= =)

This has the advantage of readability, since the recursive call
(at xs) appears explicitly in the definition.

The form of the recursion is evident from the definition, and
indicates termination of the definition (if the arguments to
foldr are of the appropriate kind).

This only has an effect on the definition (of map here) and not on any of the places that it is used.

Refactoring 21: Case switch flags

f 1 e ... = g e ...

f 2 e ... = h e ...

f' e ...

| c1 = g e ...

| c2 = h e ...

(= =)

The values 1, 2, and so forth are generated separately from f. The calculations of the first argument flag in f are folded into
the function f' by means of the conditions c1, c2 etc.

See also Refactoring 22.

Refactoring 22: Layered case switches

f (C1 ...) = ...

f (C2 ...) = ...

...

f (Cm ...) = ...

f t

| splitCase t = fSplit t

| otherwise = fNoSplit t

(= =)

Suppose that the m cases of pattern matching fit into two dif-
ferent modes, ‘splitting’ and ‘non-splitting’: this is not imme-
diately apparent from this definition.

The top-level structure of the algorithm is manifest in the top-
level case split between splitting and not: separate functions
handle the two cases.

See also Refactoring 21.

Conclusion

The list of refactorings presented here is plainly incomplete and
unclassified. Our longer-term aims in this work are to compile,
through case studies and other means, a more complete set of
refactorings for functional languages; to classify the refactor-
ings and, finally, to build tool support for the most useful refac-
torings. To be used by practising programmers the tool sup-
port would need to be integrated into the current programmer’s
toolset.

Bibliography

[1] Kent Beck. eXtreme Programming eXplained: Embrace
Change. Addison-Wesley, 2000.

[2] John Brandt and Don Roberts. Refactory.
http://st-www.cs.uiuc.edu/users/brant/Refactory/.

[3] Martin Fowler. Refactoring: Improving the Design of
Existing Code. Object Technology Series.
Addison-Wesley, 2000.

[4] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[5] Simon Thompson and Claus Reinke. Refactoring
Functional Programs. Grant application: available from
the authors on request.

