
Refactoring functional programs

Simon Thompson, Claus Reinke
Computing Laboratory, University of Kent

1 Executive Summary

Refactoring

Refactoring is aboutimproving the design of existing codeand
as such it must be familiar to every programmer, software engi-
neer and designer. Its key characteristic is the focus on structural
changes, strictly separated from changes in functionality:

Beforechanging the functionality of a software system, it is of-
ten necessary to restructure it to make it more amenable to change.
After establishing a working piece of software, it is often neces-
sary to revise its structure of names, modules, types and so forth.

A common example of refactoring is the replacement of a con-
crete data type by an abstract data type (ADT): all direct refer-
ences to the representation type must be replaced by uses of the
ADT selectors and discriminators. After this refactoring, it is pos-
sible to change the implementation of the abstract data type with-
out affecting its client code at all; refactoring thus enables system
change, modifying a design to introduce information hiding as
and when it becomes necessary.

This example illustrates two properties common to most refac-
torings. First, the impact of a refactoring isdiffuse: to effect the
change, edits and checks are needed not only in the module ex-
porting the type, but in all importing modules as well, potentially
affecting every file in the source tree of a large system. Secondly,
the refactoring isbi-directional: in some situations it will be ap-
propriate to replace an ADT by a concrete type (in functional lan-
guages, pattern matching offers a particularly succinct notation
when working with concrete, algebraic types).

Within the SE and OO communities, refactoring has been iden-
tified as central to the software engineering process [10, 6, 18].
The web sitehttp://www.refactoring.com contains a com-
prehensive, evolving catalogue of refactorings of object-oriented
designs. Refactoring in object-oriented languages is supported by
tools like the Refactory [23], whose purpose is to help a user to
make the diffuse set of changes that comprise a refactoring.

The overall goals of the project proposed here are to compile a
library of refactorings for functional programs and to implement
a tool to support refactoring for programs in Haskell.

Functional Programming

Functional programming languages such as Haskell and ML em-
body a powerful, abstract programming model, including type
systems with algebraic data types, polymorphism, type classes
and overloading, (type-)parameterised modules called functors;
higher-order functions; lazy and strict evaluation styles [12].

The languages have a clean mathematical semantic basis on
which it is possible to establish the formal equivalence of pro-
grams. This has allowed functional programmers to describe and
validate a variety of program transformations for programs in both
source and compiler intermediate languages.

Functional languages have been used in substantial projects,
initially within the research community [21, 2, 9]. More recently,
evolving libraries of general purpose code, many extensions (in-
cluding concurrent programming) and foreign function interfaces
have allowed these languages to be used to build ‘real world’ sys-
tems, such as web servers (see [1, 27] for details).

Refactoring Functional Programs

Some refactorings are paradigm-independent:
• move a definition from one module to another;
• change the scope (i.e. visibility) of a definition;

others have a functional flavour:
• replace pattern matching over an algebraic data type with the

operations of an abstract data type;
• generalise a function working over a single type into apoly-

morphicfunction applicable to a whole class of types
• replace a function by a constructor.

Some functional refactorings have OO counterparts; others are
unique to the functional paradigm. Examples of functional refac-
torings are discussed in more detail in our online catalogue [25].

In the work on OO refactoring, heavy emphasis is put on test-
ing to validate particular instances of refactorings. In refactoring
functional programs we will be able to take a different approach.
From experience, we know that the majority of the errors intro-
duced by hand refactoring tends to be caught by the strong type
system of Haskell. We also expect to be able toprove the va-
lidity of refactorings, in the presence of certain identified side-
conditions; this is often not practicable for existing OO languages.

Existing work on program transformation in functional pro-
gramming has concentrated on ‘vertical’, algorithmic transforma-
tions which move from abstract specifications to efficient imple-
mentations. The ‘horizontal’ transformations involved in refac-
toring operate on the structure of systems in an orthogonal way.

Project Aims

I to develop a functional perspective on recent, practice-driven
research into flexible program structure and refactoring

II to develop a catalogue of candidate refactorings for a modern
functional language

III to develop prototypical tool support for a selection of refac-
torings from this catalogue

IV to evaluate the work with reference to existing change histo-
ries of large Haskell systems, including that of GHC [9]

V to investigate the connection between the work on program
structure and refactoring in the object-oriented and func-
tional communities

The work described here isnovel: it will investigate the no-
tion of refactoring in an entirely new context, it will exploit the
strengths of functional languages for a new application, and it will
document correspondences between OOP and FP design patterns.

The work istimely, as it will leverage developments in func-
tional compilers and build on the ‘real world’ capabilities men-
tioned above to support a community which is beginning to com-
mercialise the functional approach [7]. It will also establish a
bridge between current software engineering and FP research.

The work has a number of differentbeneficiaries. Functional
programmers will gain immediately from the catalogue produced
and in the longer term by being able to use the refactoring tool.
Reflections on refactoring will inevitably have implications for
language designers and implementors, and work on functional
refactoring will complement ongoing work on OO refactoring.

1

http://www.refactoring.com


Thompson, Reinke Refactoring Functional Programs 2

2 Background

Refactorings are source-to-source program transformations that
change program structure and organisation, but not program func-
tionality. Seen as the realisation of software re-design, such
changes to software representation and organisation are imme-
diately visible to software developers who operate on the source
code as an artifact, whereas other users of the software are only
affected by changes in functionality. Refactoring is therefore most
relevant to software development and maintenance, with longer-
term implications for language design.

The aim of early work on assistance for program restructuring
[11] wasto reduce the negative impact of fixed program structure
on the costs of software maintenance: over time, adding small
changes to a program without ever adapting its fundamental struc-
ture degrades the overall quality of the code and makes successive
maintenance activities ever more difficult, until finally the original
structure is so encrusted in modifications that it becomes cheaper
to re-start from scratch.

Manual restructuring is a time-consuming long-term invest-
ment, error-prone and hard to justify in the short term. Tool sup-
port for program restructuring, proven to preserve program func-
tionality, can alleviate this problem, going a long way towards
making software soft, i.e., malleable for the maintenance pro-
grammer. Refactoring itself should ideally not involve any risk
of introducing or hiding bugs, and if this is guaranteed by good
tool support, even short-term refactorings suddenly become fea-
sible, e.g., providing simplified program views by separating out
bug-related program fragments can ease debugging.

It is important to realise that the need for design changes is not
necessarily a consequence of bad design: designers cannot “get
the design right” from the start, simply because there is no single
best design. What constitutes a good software design depends on
the uses the software is put to, and as these uses vary over the
software lifetime, so does the value of any given design.

This realisation, combined with tool support for the code ma-
nipulations involved in re-design, has opened a new focus of in-
terest in refactoring, asa core technique for a new approach to
software development. Taking the shift from waterfall models to
iterative development methods to its extremes, new lightweight or
agile methods [5], such as extreme programming [28], acknowl-
edge the importance of maintenance, being at least as costly as the
original development, the difficulties of achieving perfect up-front
design, and the importance of software evolution: “Refactor mer-
cilessly to keep the design simple as you go and to avoid needless
clutter and complexity” [28].

The positive influences of refactoring on software maintenance
and software design havebrought the issue of program structure
flexibility to the attention of language designers, who are now
faced with the problem of evaluating those recent advances and
elevating them into improved language designs. Research on this
third, language design aspect of program restructuring is still in
its early, experimental stages, and not clearly separated from de-
velopments in tools and programming environments. The issues
of flexible program structure and multiple views of source code
are currently being researched from several angles [13, 15, 19].

In brief,successful software evolution depends on design evolu-
tion, and the role of refactoring research is to formulate the trans-
formations involved, and to develop tools that translate semantic-
level design changes into code-level representation changes.

2.1 Why investigate functional refactoring?

Functional languages differ from object-oriented languages in
their theory and practice so that an investigation of refactoring
in the context of functional languages promises results at two lev-
els. The functional programming community will gain access to
the benefits of refactoring tools and theories, and the project will
also offer a useful perspective on object-oriented refactoring.

Good Theoretical Foundations

Refactorings form a theory which is ultimately grounded on the
semantics and program equivalences for the language in question.
Functional programming research provides rich theoretical foun-
dations for reasoning about programs using denotational and ob-
servational program equivalences, and a store of related work.

Meaning-preserving program transformations themselves have
been used for reasoning about programs, to specify operational
semantics for functional languages [22], for deriving efficient
implementations from readable specifications at the source level
[3, 4, 20]; for compiler optimisations at an intermediate language
level [14] and for implementing functional languages directly ac-
cording to their operational semantics [8].

We will exploit these foundations for our work: existing trans-
formations for optimisation or derivational program develop-
ment can provide guidance for the choice of refactorings and
their decomposition; proving that refactorings are functionality-
preserving should minimize the need for testing, and the program
analyses needed for tool support should also profit from estab-
lished theory.

Note however that refactoring is different from optimisation
and program derivation. These ‘vertical’ transformations tend to
be localised, addressing a program’s control or data flow. The
kind of program structure considered for refactoring is often non-
localised and related to the overall program design and knowledge
representation, i.e., to large-scale declarative aspects rather than
smaller-scale operational ones.

Refactoring’s ‘horizontal’ transformations address program
structure, and as such can be applied equally well to high-level ex-
ecutable specifications as to more efficient lower-level programs.

Functional Refactoring

Program restructuring in imperative languages has to cater for
the presence of side-effects, which weakens the theoretical basis
available for reasoning about programs and complicates the anal-
ysis of programs, necessary to decide whether program transfor-
mations are applicable and functionality-preserving [11, 10, 17].
Work on refactoring in the object-oriented world over the last
decade has focussed on program restructuring at a larger scale,
taking into account the corresponding language features, such as
objects and classes [18, 24, 6], but inheriting the same problems in
program theory and analysis from the imperative core languages.

In pure functional languages, links to theory tend to be stronger
and reasoning about programs less complicated than in imper-
ative languages. At a small scale, it should be possible to
import refactorings directly from the theory of functional lan-
guages. Even at this level, differences in programming style
and language features (e.g., the wide-spread use of algebraic
data types, pattern-matching, and higher-order functions in func-
tional languages[12]) should become apparent in the catalogues
of refactorings.



Thompson, Reinke Refactoring Functional Programs 3

At a larger scale, language features supporting programming in
the large differ completely, in that functional programming is in-
herently compositional, objects and object classes are absent, and
type theory and logic exert a strong influence on language design.
Type (inference) systems and type classes will have to be taken
into account, as well as patterns for modular programming that
build on general abstractions instead of specific language features
(such as monads and monad transformers).

Design Changes characterise Design Patterns

A catalogue of refactorings effectively provides programmers
with a list of pairs of program design patterns, together with dis-
cussions of their pros and cons, and instructions about how to
transform one pattern into the other without introducing bugs.
Work on refactoring can thus help to formalise and document de-
sign experience, furthering the exploitation of the results of func-
tional programming research, by giving an extended answer to the
question: “What constitutes good functional programming style,
and why?”.

Refactoring interacts with Language Design

Just as language design decisions are reflected in refactorings,
program structures and the problems of manipulating them have
an impact on language and program design.

A key example is that ofmonads, which represent an abstrac-
tion over various control-flow-related program aspects, such as
threading data structures through a program, or implementing
algorithms involving backtracking [26]. A program written in
monadic style is easily extended to include more of the aspects
covered by the monad abstraction, whereas retrofitting a monadic
structure into a program that was designed without it is a major
undertaking. Tool support for this monadic restructuring will al-
low programmers to choose a monadic structure on a by-need ba-
sis only, rather than conservatively adopting a monadic (and thus
more imperative) style from the start.

Choice of Language

The interactions between refactoring and language design require
some consideration in the choice of functional language to use.
Haskell combines a rich base language with a rather simple mod-
ule system, whereas the situation is just the other way round for
languages in the ML family. In addition, Haskell strives for a
clear separation between side-effecting and side-effect-free (pure)
code, and features a non-strict semantics. To clearly separate our
perspective from refactoring in object-oriented, imperative lan-
guages, we choose Haskell as our research vehicle, but we expect
that many of the results will carry over to ML-like languages.

2.2 Prototype Tools

In our experience, functional programs tend to start small, as pro-
totypes focussing on the critical aspects of problems, to get ap-
proximative results quickly. If one approach does not work, we
would still like to reuse functionality for the next prototype, which
will – almost by definition – employ a different program structure.
Once an approach has shown itself to be feasible in principle, we
then need to fill in the details for the less problematic aspects and
bring the code into an acceptable shape for the next level of work.
This involves identifying code patterns for reuse, capturing those

patterns in (higher-order) functions and modules, and cleaning up
the interfaces between the program parts.Prototyping, fill-in-the-
details, and design consolidation all tend to involve substantial,
complex and wide-ranging program transformations, and as the
code base grows in size, tool support becomes indispensable.

Currently, we use programmable editors, which employ
“syntax”-highlighting based on regular expression matching, but
otherwise operate at the level of characters, words, lines, and para-
graphs. We rely on static typechecking to flag up most of the
errors that creep in during extensive non-local program manipu-
lations, on short edit-compile cycles to fix simple typos and gaps,
and on multi-level undo to be able to revert to the last-known-
good version of our programs if a partially performed program
transformation turns out to be incompletable after several steps.

This situation is unsatisfactory: practical program transforma-
tions consist of large numbers of individual source code manip-
ulations, potentially distributed over the whole code base. Apart
from the difficulties of keeping track of progress, goals and recov-
ery points, the worst problem is thatprogrammers and compilers
communicate via an unreliable low-level channel: both program-
mers and compilers operate in terms of syntactically valid seman-
tics entities, such as functions, expressions, types, and modules,
whereas the tools currently used for source-code manipulation are
almost entirely unaware of such concepts, so that any of the many
text editing steps can introduce syntactic or semantic errors.

Language-aware refactoring tools can improve the situation by
supporting “semantic editing”: suppose we have a working proto-
type of a program and want to move some reusable functionality
to a separate module; it should only be necessary to highlight the
declarations involved and to issue a command“move marked dec-
larations to new module, named M”. To make this work, the tool
has to be aware of syntactic restrictions, variable scoping, type
information, the very concepts of “declarations” and “modules”.

The tool has to verify that the declarations to be moved are self-
contained, create the necessary module header, export and import
declarations, clean up the context from which the declarations are
removed, and verify that the newly imported functionality will
actually be visible at its original place and will not interfere with
other definitions. Of course, the tool should refuse the operation
with an instructive message if it cannot guarantee that the original
functionality will be preserved. Actually moving the code is the
least of the problems, and the only one solved by current tools.

Griswold [11, 10] characterises the main benefits of refactoring
tools as follows:engineers communicate intended restructurings
at a high level, and the tools either infer and perform all necessary
follow-on modifications to preserve the program functionality, or
flag up the requested change as not implementable.

Refactoring tools are a considerable improvement over syntax-
aware editors (aka structure editors) and integrated development
environments which are aware of static semantics, because they
employ both static and dynamic semantics for non-local program
manipulations. However, having worked with a syntax-directed
editing environment for a functional language [16], we know that
the pros and cons of such language-specific tools lie close together
and that many programmers refuse to let their creativity be re-
stricted to valid transformations and language-specific editors.

We thus imagine a combined approach, in which a syntax-
and semantics-aware refactoring tool is used for code browsing
and refactoring, while programmers are free to use their favourite
general purpose editors for tasks not covered by our tool. We
will avoid getting involved in editor wars or having to implement



Thompson, Reinke Refactoring Functional Programs 4

extensive functionality not relevant to our project, and the dual
user interface clearly distinguishes between safe, functionality-
preserving refactorings and potentially dangerous free-form edit-
ing.

In his thesis [24, chapter 6], Roberts analyses the differences
between his first, stand-alone refactoring tool (“While techni-
cally interesting, it was rarely used, even by ourselves.”) and his
more recent, highly successful Refactoring Browser [23]. He lists
both technical and practical success criteria for a refactoring tool:
maintaining a source code data base with easy access to accu-
rate syntactic and semantic information (type of object under cur-
sor, scope-aware search for identifiers, definitions and uses, etc.),
speed of analyses and transformations/recompilations, support for
recovery of last-known-good code version via undo, and tight in-
tegration of refactoring into standard programming environment.

Roberts’ advice clearly outlines the issues we will have to ad-
dress: unless we can reuse existing code, maintaining a data
base of semantic information implies building the front-end of a
Haskell compiler, including parsing, type checking and semantic
analysis. The program transformations themselves will then have
to be implemented on top of this. To achieve acceptable response
times, the analyses should ideally be incremental, avoiding com-
plete re-“compilations” for every small refactoring step.

3 Work Packages and Deliverables

The work packages are organised to cover the aspects of refac-
toring discussed in Section 2 while producing deliverables that
match objectives I-V given in the project overview. The project
will build on the initial groundwork we have done, but it will pro-
vide us with the resources to extend the scope and the depth of our
work. We will investigate the issues of theory and tool support
for functional refactoring in the concrete context of a catalogue of
refactorings for the functional language Haskell.

Survey of Existing Work

We have started to collect references and URLs for relevant exist-
ing work, and this collection will need to be expanded and kept
up to date throughout the project.Expected deliverable:an an-
notated bibliography, made available on the web, and covering
publications as well as links to groups, projects and tools.

A Catalogue of Functional Refactorings

As a concrete focus for this project, we will develop a catalogue
of refactorings for Haskell, deriving language-independent refac-
torings by generalisation wherever possible; this work is started
in [25]. We have chosen Haskell because it is standardised and
has several freely available implementations. It also has a large
user community, ensuring widespread dissemination and evalua-
tion of our research results, both inside and outside the academic
community. Finally, it has reached a stage where the existence of
libraries and tool support has led it to be used in applications of
various sorts.

As in object-oriented languages, typical refactoring tasks will
have to be identified and broken down into smaller steps, small
enough to allow for convincing arguments that neither these ele-
mentary refactorings nor their composition changes the externally
observable program functionality. Some of the elementary refac-
torings, such as adding or removing parameters in the definition

and all applications of a function, are likely to carry over without
change. However, the differences between object-oriented and
functional languages are substantial enough to expect consider-
able differences in the catalogue of useful refactorings.

Methodology: we have experience of refactoring by hand, and
by reflecting on this experience we will be able to generate initial
examples and general classes of refactorings. Building on this,
we expect to deploy a range of methods in gathering a library of
refactorings, including the following.

• We will undertake surveys of other functional programmers,
by means of the Haskell mailing list and the newsgroup
comp.lang.functional.

• We will invite functional programmers working on substan-
tial projects to keep logs of changes that they make to their
code, and collate these logs into collections of refactorings.

• We will investigate existing change histories, such as the
CVS repository for GHC, to ascertain what refactoring has
taken place during the evolution of Haskell systems.

• In addition to continuously monitoring our programming
practice, the researcher will undertake an initial, small-scale,
case study and keep a record of the refactorings made during
the exercise.

• We envisage using Haskell as the principal platform for
building refactoring tool support. This activity itself will be
monitored for candidate refactorings.

Expected deliverables:the catalogue itself as well as a com-
mentary describing the problems of -and opportunities for- refac-
toring in Haskell. As discussed in Section 2.1, the catalogue will
also go some way in documenting functional program design pat-
terns and their pros and cons.

Theoretical Basis and Tool Support

While the catalogue provides the focus for this project, maintain-
ing a solid theoretical basis and establishing prototypical tool sup-
port form the research core. The topic for this project is practice-
driven, and so the project itself needs to be connected to program-
ming practice. Implementing refactorings ensures that all rele-
vant aspects, such as program analyses, specification of refactor-
ings, etc., are formalised in a sufficient level of detail to be prac-
tical. We expect the work on theory and implementation to be
strongly correlated (emphasised here by placing both in a single
work package): the implementation will need to be based directly
on theory and will thus stress-test any theoretical claims, and it
will also point out areas were further theoretical work is needed.

Progress in this work package will depend on the availability
of meta-programming infra-structure (at least parsing and pretty-
printing) for Haskell. While practical experience with the sug-
gested refactorings on real programs is considered essential for
the success of the project, the development of a production-
quality refactoring tool is not. The dual interface approach out-
lined in Section 2.2, complementing existing text editors with a
separate refactoring tool, should give us a gradual route, both for
implementation and for adoption of our tool.

Stage 0 (preparations): the elementary refactorings and
their combinations need to be formalised. Side-conditions have to
be established under which refactorings are demonstrably correct,
and program analyses have to be devised to determine the validity
of those conditions, to identify the program fragments affected by

comp.lang.functional


Thompson, Reinke Refactoring Functional Programs 5

a refactoring, and to compute complementary follow-on changes
needed to preserve program functionality throughout a refactor-
ing. This will overlap with the catalogue creation.

Stage 1 (initial tool support): in the beginning, few
refactorings will be available, and programmers will operate
mostly in their editor, switching to our tool only temporarily, for
substantial refactorings. At this stage, the tool can be relatively
simple, and will need to re-generate syntactic and semantic infor-
mation on each invocation. When more refactorings are added,
and the tool is used more frequently, the costs of re-generating
information by processing source files again and again will be-
come more and more of a problem. While this is unavoidable for
changes initiated from outside the tool, it should be possible to
predict the effects of refactorings initiated from within the tool.

Stage 2 (advanced tool support): there are two com-
ponents to crossing this barrier: (a) the analyses performed by the
tool will have to become incremental, so that refactorings can up-
date the information instead of invalidating it. (b) While we have
no hope or aim to replace the programmers’ favourite editors, we
need to make our refactoring tool capable and attractive enough
to take on the lead role in the dual programming interface. In-
stead of the editor occasionally calling out to the refactorer, the
refactorer has to be the main code inspection tool, calling out to
the editor only for free-form editing tasks it is not designed to
handle. The key to this switch of roles will be making the syntac-
tic and semantic information known to the refactorer available to
programmers – the refactorer can become a language-aware code
inspection and visualisation tool. Re-analysis can then be limited
to those fragments of source files that have been made available
for external editing.

Expected deliverables:prototypical tool support for a suitable
selection of refactorings of Haskell programs. Proofs that the
refactorings are functionality-preserving. Documentation of the
analyses, descriptions and other techniques employed in the im-
plementation of the tool. User documentation.

Evaluation and Comparison

Once refactoring support for functional languages has been es-
tablished to match that for object-oriented languages, we will be
able to draw parallels or spot differences, and to investigate the
novel interaction between refactoring and functional program-
ming. For instance, program restructuring highlights problems
with program structure and has initiated research into extensions
of object-oriented languages. Will similar implications become
apparent for functional language designs?

Other questions include: Is Haskell (and particularly its type
system) suited for refactoring, or what changes could be sug-
gested? How does existing work on flexible program structure
in functional languages fit into the picture? Does type inference
help program analysis for refactoring or does typing make pro-
gram analysis more complex? What additional refactorings does
the advanced type system suggest? Are our tools being accepted
and used by the Haskell community?

Expected deliverables:Discussions with the functional pro-
gramming community at large, and especially with our contacts at
Microsoft Cambridge (UK), Oregon (US), and York (UK). Docu-
mentation of specific issues throughout the project, overall review
at the end.

Workplan, Beneficiaries, Dissemination

A detailed graphical workplan is attached to the case for support.
The project group (Reinke, Thompson, researcher) will work col-
laboratively on objectives I, II, IV and V. The researcher’s main
task will be to fulfill objective III; the investigators will supervise
this activity.

As functional languages have developed into widely used tools
for research, teaching and prototyping, any deliverables for objec-
tives II and III can be expected to be disseminated and exploited
in this community.

Specific beneficiaries nationally would include our colleagues
in York and Cambridge and, internationally, the Pacific Software
Research Center in Oregon (US). All groups are involved in sub-
stantial Haskell implementation projects, as well as the develop-
ment of tool support and applications.

Work on objectives II, III, and IV will feed into objectives I and
V, and further work will branch off from there. Both investigators
hope to exploit the results of this project for their related research
interests in language design, software engineering, and functional
programming in research and education. UKC’s computing lab
has strong interests in software and systems engineering, and is
involved in industry cooperations (OMG, pUML), so we expect
lab-internal discussions and dissemination of results as well.

Bibliography

[1] The Haskell Home Page.http://www.haskell.org, lan-
guage definition, implementations, libraries, tool.

[2] The LOLITA system as a contents scanning tool. InPro-
ceedings of the 13th International Conference on Artificial
Intelligence, Expert Systems and Natural Language Pro-
cessing, Avignon, 1993.

[3] R. M. Burstall and J. Darlington. A Transformation System
for Developing Recursive Programs.Journal of the ACM,
24(1):44–67, 1977.

[4] J. Darlington. Program Transformations. In J. Darlington,
P. Henderson, and D. A. Turner, editors,Functional Pro-
gramming and its Applications, pages 193–215. Cambridge
University Press, 1982.

[5] M. Fowler. The New Methodology. http://www.
martinfowler.com/articles/newMethodology.html.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of Exist-
ing Code. Addison-Wesley, 1999. see also:http://www.
refactoring.com/.

[7] Galois Connections Inc.http://www.galconn.com/.

[8] D. Gärtner and W. Kluge.π-RED+: An interactive compil-
ing graph reduction system for an appliedλ-calculus.Jour-
nal of Functional Programming, 6(5), Sept. 1996.

[9] GHC – The Glasgow Haskell Compiler.http://www.
haskell.org/ghc/.

[10] W. G. Griswold. Program restructuring to aid soft-
ware maintenance. PhD thesis, University of Washing-
ton, Dept. of Computer Science and Engineering, 1991.
Tech. Rep. No. 91-08-04.

http://www.haskell.org
http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.refactoring.com/
http://www.refactoring.com/
http://www.galconn.com/
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/


Thompson, Reinke Refactoring Functional Programs 6

[11] W. G. Griswold and D. Notkin. Automated Assistance for
Program Restructuring.ACM Transactions on Software En-
gineering and Methodology, 2(3):228–269, July 1993.

[12] P. Hudak. Conception, Evolution, and Application of Func-
tional Programming Languages.ACM Computing Surveys,
21(3):359–411, Sept. 1989.

[13] W. Hürsch and C. V. Lopes. Separation of Concerns. Tech-
nical Report NU-CCS-95-03, Boston, Massachusetts, 1995.

[14] S. P. Jones. Compiling Haskell by program transformation:
a report from the trenches. InEuropean Symposium on Pro-
gramming (ESOP’96), Apr. 1996.

[15] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming. InECOOP’97, June 1997. see also:http:
//www.parc.xerox.com/csl/projects/aop/.

[16] W. E. Kluge. A User’s Guide for the Reduction System
π-RED+. Technical Report 9419, Institute of Computer
Science and Applied Mathematics, Christian-Albrechts-
University, Kiel, Dec. 1994.http://www.informatik.
uni-kiel.de/~base/.

[17] J. D. Morgenthaler.Static Analysis for a Software Trans-
formation Tool. PhD thesis, University of California, San
Diego, 1997.

[18] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, 1992.

[19] H. Ossher and P. Tarr. Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. InSymposium
on Software Architectures and Component Technology: The
State of the Art in Software Development. Kluwer, 2000. see
alsohttp://www.research.ibm.com/hyperspace/.

[20] H. Partsch and R. Steinbrüggen. Program transformation
systems.ACM Computing Surveys, 15(3), Sept. 1983.

[21] L. C. Paulson. Isabelle – A Generic Theorem Prover.
Springer-Verlag, Lecture Notes in Computer Science, 828,
1994.

[22] G. D. Plotkin. Call-by-name, call-by-value and theλ-
calculus.Theoretical Computer Science, 1:125–159, 1975.

[23] D. Roberts, J. Brant, and R. Johnson. A Refactoring
Tool for Smalltalk. Theory and Practice of Object Sys-
tems (TAPOS), special issue on software reengineering,
3(4):253–263, 1997. see alsohttp://st-www.cs.uiuc.
edu/users/brant/Refactory/.

[24] D. B. Roberts. Practical Analysis for Refactoring. PhD
thesis, University of Illinois at Urbana Champaign, 1999.

[25] S. Thompson and C. Reinke. A Catalogue of Functional
Refactorings, Version 1. http://www.cs.ukc.ac.uk/
people/staff/sjt/Refactor/.

[26] P. Wadler. The essence of functional programming. InPOPL
’92, Albuquerque, 1992.

[27] P. Wadler. Functional Programming: An angry half-dozen.
Column, SIGPLAN Notices 33(2):25-30, Feb. 1998. see
also http://cm.bell-labs.com/cm/cs/who/wadler/
papers/sigplan-angry/sigplan-angry.ps.gz and
http://cm.bell-labs.com/cm/cs/who/wadler/
realworld/.

[28] J. D. Wells. Extreme Programming, A Gentle Introduction,
Apr. 2001.http://www.extremeprogramming.org.

http://www.parc.xerox.com/csl/projects/aop/
http://www.parc.xerox.com/csl/projects/aop/
http://www.informatik.uni-kiel.de/~base/
http://www.informatik.uni-kiel.de/~base/
http://www.research.ibm.com/hyperspace/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://st-www.cs.uiuc.edu/users/brant/Refactory/
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/
http://cm.bell-labs.com/cm/cs/who/wadler/papers/sigplan-angry/sigplan-angry.ps.gz
http://cm.bell-labs.com/cm/cs/who/wadler/papers/sigplan-angry/sigplan-angry.ps.gz
http://cm.bell-labs.com/cm/cs/who/wadler/realworld/
http://cm.bell-labs.com/cm/cs/who/wadler/realworld/
http://www.extremeprogramming.org

	Executive Summary
	Background
	Why investigate functional refactoring?
	Prototype Tools

	Work Packages and Deliverables

